首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
SK4/IK1 encodes an intermediate conductance, Ca2+-activated K+ channel and fulfills a variety of physiological functions in excitable and nonexcitable cells. Although recent studies have provided evidence for the presence of SK4/IK1 channels in salivary acinar cells, the regulatory mechanisms and the physiological function of the channel remain unknown in these cells. Using molecular and electrophysiological techniques, we examined whether cytosolic ATP-dependent regulation of native SK4/IK1-like channel activity would involve endogenous cAMP-dependent protein kinase (PKA) in rat submandibular acinar (RSA) cells. Electrophysiological properties of tetraethylammonium (TEA) (10 mM)-insensitive, Ca2+-dependent K+ currents in macropatches excised from RSA cells matched those of whole cell currents recorded from human embryonic kidney-293 cells heterologously expressing rat SK4/IK1 (rSK4/IK1) cloned from RSA cells. In outside-out macropatches, activity of native SK4/IK1-like channels, defined as a charybdotoxin (100 nM)-blockable current in the presence of TEA (10 mM) in the bathing solution, ran down unless both ATP and Mg2+ were present in the pipette solution. The nonhydrolyzable ATP analog AMP-PNP failed to support the channel activity as ATP did. The addition of Rp-cAMPS (10 µM), a PKA inhibitor, to the pipette solution containing ATP/Mg2+ induced a rundown of the Ca2+-dependent K+ currents. Inclusion of cAMP (1 mM) into the pipette solution (1 µM free Ca2+) containing ATP/Mg2+ caused a gradual increase in the currents, the effect being pronounced for the currents induced by 0.1 µM free Ca2+. Forskolin (1 µM), an adenylyl cyclase activator, also increased the currents induced by 0.1 µM free Ca2+. In inside-out macropatches, cytosolic ATP/Mg2+ increased both the maximum current (proportional to the maximum channel activity) and Ca2+ sensitivity of current activation. Collectively, these results suggest that ATP-dependent regulation of native SK4/IK1-like channels, at least in part, is mediated by endogenous PKA in RSA cells. Ca2+-activated K+ channel; patch clamp; human embryonic kidney-293; salivary secretion  相似文献   

2.
The present study examined whether regulation ofcoronary tone in conduit arteries (>1.0 mm ID) is altered by exercisetraining. Yucatan miniature swine were treadmill trained for 16-20wk (Ex) and compared with sedentary counterparts (Sed).Endothelium-denuded arterial rings were stretched to optimal length andallowed to equilibrate for 60 min. Inhibition of eitherCa2+-activated channels [1mM tetraethylammonium (TEA) or 10 nM iberiotoxin (IBTX)] orvoltage-dependent K+ channels[1 mM 4-aminopyridine (4-AP)] significantlyincreased resting tension in both groups; however, the effect of allK+-channel blockers was greater inEx. Addition of 1 mM sodium nitroprusside reduced resting tension inboth groups, confirming the presence of active basal tone; however,sodium nitroprusside-sensitive tone was increased approximately twofoldin Ex compared with Sed group. Perforated patch-clamp experiments onisolated smooth muscle cells demonstrated no effect of exercisetraining on whole cell TEA-sensitive, 4-AP-sensitive, or basalK+ current. Similarly, whereasTEA, 4-AP, and IBTX all decreased resting membrane potential, there wasno difference in depolarization between groups. The greater effect ofTEA on resting tension in Ex could be mimicked in Sed by addition ofthe Ca2+-channel agonist BAY K8644. In conclusion, the greater response toK+-channel blockers after exercisetraining is consistent with an increased contribution ofK+ channels to regulation of basaltone in conduit coronary arteries. The lack of an effect of training onK+ current characteristics ormembrane potential responses in isolated cells suggests that arequisite factor for enhancedK+-channel activation in arteriesfrom Ex, possibly stretch, is absent in isolated cells.

  相似文献   

3.
Gustatory receptor cells, isolated from the lingual epitheliumof larval tiger salamanders (Ambystoma tigrinum), possess avariety of voltage- and ion-dependent conductances, includinga transient Na+ -current (INa), a voltage-gated Ca2+ -current(IA). a transient K+ -current (IA), a delayed rectifier K+ -current(IK), and a Ca2+ -activated K+ -current (IK(Ca))- By use ofwhole-cell and excised-patch tight-seal recording techniques,we examined the effects of taste stimuli on the conductancesof taste cells from the tiger salamander. Depolarizing receptorpotentials elicited by NaCl were associated with slow, gradedinward currents which were composed of amiloride-sensitive andtetrodoxin-(TTX)-sensitive components. Potassium chloride producedmaintained inward currents, which usually showed both phasicand tonic components and were only partially blocked by tetraethylammoniumchloride (TEA). Citric and acetic acids elicited slow depolarizationsin taste cells. Under voltage-clamp, acids produced graded inwardcurrents which were composed of two components: one attributableto a transient block of voltage-dependent K+ -channels and asmaller component which may have resulted from an increasedconductance to cations. Quinine hydrochloride elicited slowdepolarization of taste cells which was associated with a slowlydeveloping maintained inward current under voltage-clamp. Quininesuppressed both voltage-dependent inward and outward currents.In some taste cells, L-arginine elicited small outward currentswhich were attributable to an increase in K+ conductance. Inother cells, L-arginine produced a decrease in voltage-dependentoutward currents and generated depolarizations associated withinward currents. These results indicate that several independentmechanisms, including amiloride-sensitive Na+ -channels, andstimulus modulation of voltage-dependent K+ -channels, are involvedin taste cell responses to chemical stimuli. More than one mechanismis typically present in a single cell. 3Present address: Department of Physiology, Tokyo Medical andDental University, 5-45 Yushima 1-chome, Bunkyo-ku, Tokyo 113,Japan  相似文献   

4.
Ca(2+)-activated Cl(-) current in sheep lymphatic smooth muscle   总被引:1,自引:0,他引:1  
Freshly dispersed sheep mesenteric lymphaticsmooth muscle cells were studied at 37°C using the perforatedpatch-clamp technique with Cs+- and K+-filledpipettes. Depolarizing steps evoked currents that consisted ofL-type Ca2+ [ICa(L)]current and a slowly developing current. The slow current reversed at1 ± 1.5 mV with symmetrical Cl concentrationscompared with 23.2 ± 1.2 mV (n = 5) and34.3 ± 3.5 mV (n = 4) when externalCl was substituted with either glutamate (86 mM) orI (125 mM). Nifedipine (1 µM) blocked and BAY K 8644 enhanced ICa(L), the slow-developing sustainedcurrent, and the tail current. The Cl channel blockeranthracene-9-carboxylic acid (9-AC) reduced only the slowly developinginward and tail currents. Application of caffeine (10 mM) tovoltage-clamped cells evoked currents that reversed close to theCl equilibrium potential and were sensitive to 9-AC.Small spontaneous transient depolarizations and larger actionpotentials were observed in current clamp, and these were blocked by9-AC. Evoked action potentials were triphasic and had a prominentplateau phase that was selectively blocked by 9-AC. Similarly, fluidoutput was reduced by 9-AC in doubly cannulated segments ofspontaneously pumping sheep lymphatics, suggesting that theCa2+-activated Cl current plays an importantrole in the electrical activity underlying spontaneous activity in this tissue.

  相似文献   

5.
Mice are useful animal models to study pathogenic mechanisms involved in pulmonary vascular disease. Altered expression and function of voltage-gated K+ (KV) channels in pulmonary artery smooth muscle cells (PASMCs) have been implicated in the development of pulmonary arterial hypertension. KV currents (IK(V)) in mouse PASMCs have not been comprehensively characterized. The main focus of this study was to determine the biophysical and pharmacological properties of IK(V) in freshly dissociated mouse PASMCs with the patch-clamp technique. Three distinct whole cell IK(V) were identified based on the kinetics of activation and inactivation: rapidly activating and noninactivating currents (in 58% of the cells tested), rapidly activating and slowly inactivating currents (23%), and slowly activating and noninactivating currents (17%). Of the cells that demonstrated the rapidly activating noninactivating current, 69% showed IK(V) inhibition with 4-aminopyridine (4-AP), while 31% were unaffected. Whole cell IK(V) were very sensitive to tetraethylammonium (TEA), as 1 mM TEA decreased the current amplitude by 32% while it took 10 mM 4-AP to decrease IK(V) by a similar amount (37%). Contribution of Ca2+-activated K+ (KCa) channels to whole cell IK(V) was minimal, as neither pharmacological inhibition with charybdotoxin or iberiotoxin nor perfusion with Ca2+-free solution had an effect on the whole cell IK(V). Steady-state activation and inactivation curves revealed a window K+ current between –40 and –10 mV with a peak at –31.5 mV. Single-channel recordings revealed large-, intermediate-, and small-amplitude currents, with an averaged slope conductance of 119.4 ± 2.7, 79.8 ± 2.8, 46.0 ± 2.2, and 23.6 ± 0.6 pS, respectively. These studies provide detailed electrophysiological and pharmacological profiles of the native KV currents in mouse PASMCs. KV channels  相似文献   

6.
Summary The effects of tetraethylammonium ions on currents through high-conductance voltage- and Ca2+-activated K+ channels have been studied with the help of patch-clamp single-channel and whole-cell current recording on pig pancreatic acinar cells. In excised outside-out membrane patches TEA (1 to 2 mM) added to the bath solution virtually abolishes unitary current activity except at very positive membrane potentials when unitary currents corresponding to a markedly reduced conductance are observed. TEA in a lower concentration (0.2 mM) markedly reduces the open-state probability and causes some reduction of the single-channel conductance. In inside-out membrane patches bath application of TEA in concentrations up to 2 mM has no effect on single-channel currents. At a higher concentration (10 mM) slight reductions in single-channel conductance occur. In whole-cell current recording experiments TEA (1 to 2 mM) added to the bath solution completely suppresses the outward currents associated with depolarizing voltage jumps to membrane potentials of 0 mV and blocks the major part (70 to 90%) of the outward currents even at very positive membrane potentials (30 to 40 mV). In contrast TEA (2 mM) added to the cell interior (pipette solution) has no effect on the outward K+ current. Our results demonstrate that TEA in low concentrations (1 to 2 mM) acts specifically on the outside of the plasma membrane to block current through the high-conductance Ca2+- and voltage-activated K+ channels  相似文献   

7.
Elevation of the external potassium concentration induced a two-phase inward current in freshly isolated pyramidal hippocampal neurons. This current was voltage-dependent and demonstrated strong inward rectification. The current consisted of a leakage current and a time-dependent current (τ=40–50 msec at 21°C); the latter was designated asI ΔK. As was shown earlier, K+ is a major charge carrier in the development of slow potassium-activated current. The pharmacological properties ofI ΔK were studied using a patch-clamp technique.I ΔK was completely blocked by external 10 mM TEA or 5 mM Ba2+ (IC50=480±90mM) and exhibited low sensitivity to extracellular Cs+ (2 mM). This current was not affected by 1 mM 4-aminopyridine and was insensitive to a muscarinic agonist, carbachol (50 μM), and to 1 mM extracellular Cd2+. Elevation of external Ca2+ from 2.5 mM to 10 mM did not changeI ΔK. Our data indicate that the pharmacological properties ofI ΔK differ from those of other voltage-gated potassium currents, but more specific blockers must be used to make this evidence conclusive.  相似文献   

8.
Mechanism of Postinhibitory Rebound in Molluscan Neurons   总被引:1,自引:1,他引:0  
Postinhibitory rebound (PIR) is an intrinsic property of manyneurons but the underlying mechanism is not well understood.We studied PIR and its relationship to spike adaptation in B-cellsisolated from the buccal ganglia of Aplysia. These neurons exhibitPIR following inhibitory synaptic input and following directmembrane hyperpolarization. Hyperpolarizing and depolarizingvoltage clamp pulses from the resting potential evoke slow changesin membrane current that persist in the form of tail currentsfollowing the pulses. A subtraction method was used to isolateslow tail currents for study. Current-voltage measurements indicatethat slow outward tail currents following depolarizing pulsesresult from increases in membrane conductance, while inwardtail currents following hyperpolarizations to –50 and–60 mV result from conductance decreases. The reversalpotential of both outward and inward tail current is between–60 and –70 mV. Tail currents activated by pulsesmore positive than –60 mV are sensitive to the externalK+ concentration and blocked by injection of Cs+ and TEA. WhenCa2+ influx is prevented by bathing cells in Ca2+ free salineor by adding Co2+ or Ni2+, the tail currents are reduced buta significant fraction of the current is insensitive to thesetreatments. More negative conditioning pulses activate a secondcomponent of inward tail current that is weakly sensitive toK+ but more strongly effected by substitution of N-methyl glucamineor Li+ for external Na+. We conclude that both PIR and adaptationresult from slow changes in a voltage dependent, non-inactivatingK+ conductance that is active at voltages near the resting potentialand is not tightly coupled to Ca2+ influx. In addition, a secondinward current is activated by large hyperpolarizing pulsesthat results from an increase in Na+ and K+ conductance. Thissecond process is likely to contribute to PIR under particularcircumstances.  相似文献   

9.
Activation of P2X receptors by a Ca2+- and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein-dependent release of ATP was measured using patch-clamp recordings from dissociated guinea pig stellate neurons. Asynchronous transient inward currents (ASTICs) were activated by depolarization or treatment with the Ca2+ ionophore ionomycin (1.5 and 3 µM). During superfusion with a HEPES-buffered salt solution containing 2.5 mM Ca2+, depolarizing voltage steps (–60 to 0 mV, 500 ms) evoked ASTICs on the decaying phase of a larger, transient inward current. Equimolar substitution of Ba2+ for Ca2+ augmented the postdepolarization frequency of ASTICs, while eliminating the larger transient current. Perfusion with an ionomycin-containing solution elicited a sustained activation of ASTICs, allowing quantitative analysis over a range of holding potentials. Under these conditions, increasing extracellular [Ca2+] to 5 mM increased ASTIC frequency, whereas no events were observed following replacement of Ca2+ with Mg2+, demonstrating a Ca2+ requirement. ASTICs were Na+ dependent, inwardly rectifying, and reversed near 0 mV. Treatment with the nonselective purinergic receptor antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) (10 µM) blocked all events under both conditions, whereas the ganglionic nicotinic antagonist hexamethonium (100 µM and 1 mM) had no effect. PPADS also blocked the macroscopic inward current evoked by exogenously applied ATP (300 µM). The presence of botulinum neurotoxin E (BoNT/E) in the whole-cell recording electrode significantly attenuated the ionomycin-induced ASTIC activity, whereas phorbol ester treatment potentiated this activity. These results suggest that ASTICs are mediated by vesicular release of ATP and activation of P2X receptors. sympathetic; purinergic; neurotransmission; phorbol ester; botulinum toxin  相似文献   

10.
Epidermal-cell protoplasts from rye (Secale cereale L.) rootswere voltage-clamped in both the whole-cell and outside-outmembrane-patch modes. Time-dependent inwardly-rectified (IR)and outwardly-rectified (OR) K+-currents were recorded, as wellas a ubiquitous, timeindependent (instantaneous) K+-current. The IR current activated at voltages more negative than —100mVwith two exponentially rising components. The time-constantof the shorter component was voltage-independent, whereas thetime-constant of the longer component was voltage-dependent,increasing as the activating voltage became more negative. TheIR current showed no inactivation. The IR current deactivatedwith a single exponential timecourse. The steady-state IR currentcould be fitted to a Boltzmann function with —135 mV asthe voltage at which the current was half-maximal and a minimalgating charge of 1.93. These parameters were insensitive tochanges in EK. One component of the IR current was K + , butother ions were also permeable. The IR current was inhibitedby extracellular Ca2+ , Ba2+ , Cs+, and TEA+, but was insensitiveto quinine. Single channels with unitary conductances of 56pS and 110 pS (in c.100 mM K+) were recorded at negative voltages. Two OR currents were observed. One had sigmoidal activationkinetics and activated at low positive voltages. The other activatedmore rapidly, with apparently exponential kinetics, at voltages50–100 mV more positive than the first. Neither currentshowed inactivation and deactivation of OR currents followeda double exponential time-course. Unitary-conductances of thechannels mediating these OR currents were 24 pS and 57 pS (inc.100 mM K+), respectively. Only the first type of OR currentwas studied in detail. This current activated with a sigmoidaltime-course, which could be described using a Hodgkin-Huxleyfunction with the activation variable raised to the second power.Its voltage-dependence was modulated in response to changesin EK and analysis of single-channel recordings indicated thatthe channel was K+-selective. The current was inhibited by Ba2+and TEA+, but not Ca2+, Cs+ or quinine. The instantaneous current was selective for monovalent cationsand K+ , Na+ and Cs+ were all permeant. It was inhibited byextracellular quinine and the instantaneous inward K+-currentwas reduced by extracellular Ca2+, Ba2+ and TEA+, as well asby competing permeant monovalent cations. The kinetics and pharmacology of these currents are comparedwith K+-currents across the plasma membrane of protoplasts fromother root-derived cells and with K+ channels in the plasmamembrane of rye roots studied following incorporation into artificial,planar lipid bilayers. Key words: Ionic currents, patch-clamp, pharmacology, potassium, K+, rye, Secale cereale L  相似文献   

11.
Atrial natriuretic peptide (ANP) and its analog,atriopeptin III (APIII), inhibit carotid body chemoreceptor nerveactivity evoked by hypoxia. In the present study, we have examined the hypothesis that the inhibitory effects of ANP and APIII are mediated bycyclic GMP and protein kinase G (PKG) via the phosphorylation and/ordephosphorylation of K+ and Ca2+ channelproteins that are involved in regulating the response of carotid bodychemosensory type I cells to low-O2 stimuli. In freshlydissociated rabbit type I cells, we examined the effects of a PKGinhibitor, KT-5823, and an inhibitor of protein phosphatase 2A (PP2A),okadaic acid (OA), on K+ and Ca2+ currents. Wealso investigated the effects of these specific inhibitors onintracellular Ca2+ concentration and carotid sinus nerve(CSN) activity under normoxic and hypoxic conditions. Voltage-dependentK+ currents were depressed by hypoxia, and this effect wassignificantly reduced by 100 nM APIII. The effect of APIII on thiscurrent was reversed in the presence of either 1 µM KT-5823 or 100 nMOA. Likewise, these drugs retarded the depression of voltage-gated Ca2+ currents induced by APIII. Furthermore, APIIIdepressed hypoxia-evoked elevations of intracellular Ca2+,an effect that was also reversed by OA and KT-5823. Finally, CSNactivity evoked by hypoxia was decreased in the presence of 100 nMAPIII, and was partially restored when APIII was presented along with100 nM OA. These results suggest that ANP initiates a cascade of eventsinvolving PKG and PP2A, which culminates in the dephosphorylation ofK+ and Ca2+ channel proteins in thechemosensory type I cells.

  相似文献   

12.
The experiments were perfomed on transvcrsus abdominis muscle of Elaphe dione by subendothelial recording. The results indicate that in snake motor nerve endings there exist four types of K* channels, i.e. voltage-dependent fast and slow K channels, Ca2 -activated K channel and ATP-sensitive K channel, (i) The typical wave form of snake terminal current was the double-peaked negativity in standard solution. The first peak was at-tributed to Na influx (INa) in nodes of Ranvier. The second one was blocked by 3, 4-aminopyridine (3, 4-DAP) or te-traethylammonium (TEA), which corresponded to fast K outward current (IKF) through the fast K* channels in terminal part, (ii) After IKF as well as the slow K current (IKS) were blocked by 3, 4-DAP, the TEA-sensitive Ca2 -dependent K current (IK(Ca)) passing through Ca2 -activated K channel was revealed, whose amplitude depended on [K ]and [Ca2 ] It was blocked by Ba2 , Cd2 or Co2 . (iii) IK.F and IK(Ca) were blocked by TEA, while IK.S was retained. It  相似文献   

13.
Cell shrinkageis an early prerequisite in programmed cell death, and cytoplasmicK+ is a dominant cation that controls intracellular ionhomeostasis and cell volume. Blockade of K+ channelsinhibits apoptotic cell shrinkage and attenuates apoptosis. We examined whether apoptotic repressor with caspase recruitment domain (ARC), an antiapoptotic protein, inhibits cardiomyocyte apoptosis by reducing K+ efflux throughvoltage-gated K+ (Kv) channels. In heart-derived H9c2cells, whole cell Kv currents (IK(V)) wereisolated by using Ca2+-free extracellular (bath) solutionand including 5 mM ATP and 10 mM EGTA in the intracellular (pipette)solution. Extracellular application of 5 mM 4-aminopyridine (4-AP), ablocker of Kv channels, reversibly reduced IK(V)by 50-60% in H9c2 cells. The remaining currents during 4-APtreatment may be generated by K+ efflux through4-AP-insensitive K+ channels. Overexpression of ARC inheart-derived H9c2 cells significantly decreasedIK(V), whereas treatment with staurosporine, apotent apoptosis inducer, enhanced IK(V)in wild-type cells. The staurosporine-induced increase inIK(V) was significantly suppressed and thestaurosporine-mediated apoptosis was markedly inhibited incells overexpressing ARC compared with cells transfected with thecontrol neomycin vector. These results suggest that theantiapoptotic effect of ARC is, in part, due to inhibition of Kvchannels in cardiomyocytes.

  相似文献   

14.
Two populations,Ca2+-dependent(BKCa) andCa2+-independentK+ (BK) channels of largeconductance were identified in inside-out patches of nonlabor and laborfreshly dispersed human pregnant myometrial cells, respectively.Cell-attached recordings from nonlabor myometrial cells frequentlydisplayed BKCa channel openings characterized by a relatively low open-state probability, whereas similar recordings from labor tissue displayed either no channel openings or consistently high levels of channel activity that oftenexhibited clear, oscillatory activity. In inside-out patch recordings,Ba2+ (2-10 mM),4-aminopyridine (0.1-1 mM), andShaker B inactivating peptide("ball peptide") blocked theBKCa channel but were much lesseffective on BK channels. Application of tetraethylammonium toinside-out membrane patches reduced unitary current amplitude ofBKCa and BK channels, withdissociation constants of 46 mM and 53 µM, respectively.Tetraethylammonium applied to outside-out patches decreased the unitaryconductance of BKCa and BKchannels, with dissociation constants of 423 and 395 µM,respectively. These results demonstrate that the properties of humanmyometrial large-conductance K+channels in myocytes isolated from laboring patients are significantly different from those isolated from nonlaboring patients.

  相似文献   

15.
In our previous studies on sheep parotid secretory cells, we showed that the K+ current evoked by acetylcholine (ACh) was not carried by the high-conductance voltage- and Ca2+-activated K+ (BK) channel which is so conspicuous in unstimulated cells, notwithstanding that the BK channel is activated by ACh. Since several studies from other laboratories had suggested that the BK channel did carry the ACh-evoked K+ current in the secretory cells of the mouse mandibular gland, and that the current could be blocked with tetraethylammonium (TEA), a known blocker of BK channels, we decided to investigate the ACh-evoked K+ current in mouse cells more closely. We studied whether the ACh-evoked K+ current in the mouse is inhibited by TEA and quinine. Using the whole-cell patch-clamp technique and microspectrofluorimetric measurement of intracellular Ca2+, we found that TEA and quinine do inhibit the ACh-evoked K+ current but that the effect is due to inhibition of the increase in intracellular Ca2+ evoked by ACh, not to blockade of a K+ conductance. Furthermore, we found that the K+ conductance activated when ionomycin is used to increase intracellular free Ca2+ was inhibited only by quinine and not by TEA. We conclude that the ACh-evoked K+ current in mouse mandibular cells does not have the blocker sensitivity pattern that would be expected if it were being carried by the high-conductance, voltage- and Ca2+-activated K+ (BK) channel. The properties of this current are, however, consistent with those of a 40 pS K+ channel that we have reported to be activated by ACh in these cells [16]. Received: 9 January 1996/Revised: 17 April 1996  相似文献   

16.
Human capillary endothelial cells (HCEC) in normal media contain noninactivating outwardly rectifying chloride currents, TEA-sensitive delayed rectifier K+ currents and an inward rectifier K+ current. Two additional ionic currents are induced in HCEC when the media are allowed to become conditioned: A Ca2+-activated K+ current (BKCA) that is sensitive to iberiotoxin is induced in 23.5% of the cells, a transient 4-AP-sensitive K+ current (A current) is induced in 24.7% of the cells, and in 22.3% of the cells both the transient and BKCA currents are coinduced. The EC50 for Ca2+ activation of the BKCA current in HCEC from conditioned media is 213 nM. RNA message for BKCA (hSlo clone) is undetecable after PCR amplification in control cells but is seen in those from conditioned cells. The induction of BKCA current is not blocked by conditioning with inhibitors of nitric oxide synthase, cyclo-oxgenase or lypo-oxygenase pathways. Apparently the characteristics of human endothelial cells are highly malleable and can be easily modified by their local environment. Received: 21 May 1998/Revised: 23 September 1998  相似文献   

17.
Spontaneous transient outward currents(STOCs) were recorded from smooth muscle cells of theguinea pig taenia coli using the whole cell patch-clamp technique.STOCs were resolved at potentials positive to 50 mV. Treatingcells with caffeine (1 mM) caused a burst of outward currentsfollowed by inhibition of STOCs. Replacing extracellularCa2+ with equimolarMn2+ caused STOCs to "rundown." Iberiotoxin (200 nM) or charybdotoxin (ChTX; 200 nM)inhibited large-amplitude STOCs, but small-amplitude "mini-STOCs"remained in the presence of these drugs. Mini-STOCs were reduced byapamin (500 nM), an inhibitor of small-conductance Ca2+-activatedK+ channels (SK channels).Application of ATP or 2-methylthioadenosine 5'-triphosphate(2-MeS-ATP) increased the frequency of STOCs. The effects of 2-MeS-ATPpersisted in the presence of charybdotoxin but were blocked bycombination of ChTX (200 nM) and apamin (500 nM). 2-MeS-ATP did notincrease STOCs in the presence of pyridoxal phosphate6-azophenyl-2',4'-disulfonic acid, aP2 receptor blocker. Similarly,pretreatment of cells with U-73122 (1 µM), an inhibitor ofphospholipase C (PLC), abolished the effects of 2-MeS-ATP. XestosponginC, an inositol 1,4,5-trisphosphate(IP3) receptor blocker,attenuated STOCs, but these events were not affected by ryanodine. Thedata suggest that purinergic activation through P2Y receptors results in localizedCa2+ release via PLC- andIP3-dependent mechanisms. Releaseof Ca2+ is coupled to STOCs, whichare composed of currents mediated by large-conductanceCa2+-activatedK+ channels and SK channels. Thelatter are thought to mediate hyperpolarization and relaxationresponses of gastrointestinal muscles to inhibitory purinergic stimulation.

  相似文献   

18.
Using the whole cell patch clamp technique, we measured changesin outward K+ currents of gerbil taste cells in response todifferent kinds of sweeteners. Outward K+ currents of the tastecell induced by depolarizing pulses were suppressed by sweetstimuli such as 10 mM Na-saccharin. The membrane-permeable analogof cAMP, cpt-cAMP, also decreased outward K+ currents. On theother hand, the K+ currents were enhanced by amino acid sweetenerssuch as 10 mM D-tryptophan. The outward K+ current was enhancedby external application of Ca2+-transporting ionophore, 5 µMionomycin, and intracellular application of 5 µM inositol-1,4,5-trisphosphate(IP3). The outward K+ currents were no longer suppressed by10 mM Na-saccharin containing 20 µM gurmarin, but werestill enhanced by 10 mM D-tryptophan containing 20 µMgurmarin. These results suggest that sweet taste transductionfor one group of sweeteners such as Na-saccharin in gerbilsis concerned with an increase of the intracellular cAMP level,and that the transduction for the other group of sweetenerssuch as D-tryptophan is concerned with an increase of the intracellularIP3 level which releases Ca2+ from the internal stores. Chem.Senses 22: 163–169, 1997.  相似文献   

19.
20.
Enterochromaffin-like (ECL) cells are histamine-containingendocrine cells in the gastric mucosa that maintain a negative membranepotential of about 50 mV, largely due to voltage-gated K+ currents [D. F. Loo, G. Sachs, and C. Prinz. Am. J. Physiol. 270 (Gastrointest Liver Physiol. 33):G739-G745, 1996]. The current study investigated thepresence of voltage-gated Ca2+channels in single ECL cells. ECL cells were isolated from rat fundicmucosa by elutriation, density gradient centrifugation, and primaryculture to a purity >90%. Voltage-gatedCa2+ currents were measured insingle ECL cells using the whole cell configuration of the patch-clamptechnique. Depolarization-activated currents were recorded in thepresence of Na+ orK+ blocking solutions and additionof 20 mM extracellular Ca2+. ECLcells showed inward currents in response to voltage steps that wereactivated at a test potential of around 20 mV with maximalinward currents observed at +20 mV and 20 mM extracellular Ca2+. The inactivation rate of thecurrent decreased with increasingly negative holding potentials and wastotally abolished at a holding potential of 30 mV. Addition ofextracellular 20 mM Ba2+ insteadof 20 mM Ca2+ increased thedepolarization-induced current and decreased the inactivation rate. Theinward current was fully inhibited by the specific L-typeCa2+ channel inhibitor verapamil(0.2 mM) and was augmented by the L-typeCa2+ channel activator BAY K 8644 (0.07 mM). We conclude that depolarization activateshigh-voltage-activated Ca2+channels in ECL cells. Activation characteristics,Ba2+ effects, and pharmacologicalresults imply the presence of L-type Ca2+ channels, whereasinactivation kinetics suggest the presence of additional N-typechannels in rat gastric ECL cells.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号