首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of matrix and cytosolic NADH by isolated beetroot and wheat leaf mitochondria was investigated to determine whether the rotenone-insensitive NADH dehydrogenases of plant mitochondria were the products of nuclear or mitochondrial genes. After aging beetroot tissue (slicing and incubating in a CaSO4 solution), the induction of the level of matrix NADH oxidation in the presence of rotenone was greatly reduced in mitochondria isolated from tissue treated with cycloheximide, a nuclear protein synthesis inhibitor. This was also true for the oxidation of cytosolic NADH. Mitochondria isolated from chloramphenicol-treated tissue exhibited greatly increased levels of both matrix and external rotenone-insensitive NADH oxidation when compared to the increase due to the aging process alone. This increase was not accompanied by an increase in matrix NAD-linked substrate dehydrogenases such as malic enzyme nor intra-mitochondrial NAD levels. Possible explanations for this increase in rotenone-insensitive NADH oxidation are discussed. Based on these results we have concluded that the matrix facing rotenone-insensitive NADH dehydrogenase of plant mitochondria is encoded by a nuclear gene and synthesis of the protein occurs in the cytosol.  相似文献   

2.
There are multiple routes of NAD(P)H oxidation associated with the inner membrane of plant mitochondria. These are the phosphorylating NADH dehydrogenase, otherwise known as Complex I, and at least four other nonphosphorylating NAD(P)H dehydrogenases. Complex I has been isolated from beetroot, broad bean, and potato mitochondria. It has at least 32 polypeptides associated with it, contains FMN as its prosthetic group, and the purified enzyme is sensitive to inhibition by rotenone. In terms of subunit complexity it appears similar to the mammalian and fungal enzymes. Some polypeptides display antigenic similarity to subunits fromNeurospora crassa but little cross-reactivity to antisera raised against some beef heart complex I subunits. Plant complex I contains eight mitochondrial encoded subunits with the remainder being nuclear-encoded. Two of these mitochondrial-encoded subunits, nad7 and nad9, show homology to corresponding nuclear-encoded subunits inNeurospora crassa (49 and 30 kDa, respectively) and beef heart CI (49 and 31 kDa, respectively), suggesting a marked difference between the assembly of CI from plants and the fungal and mammalian enzymes. As well as complex I, plant mitochondria contain several type-II NAD(P)H dehydrogenases which mediate rotenone-insensitive oxidation of cytosolic and matrix NADH. We have isolated three of these dehydrogenases from beetroot mitochondria which are similar to enzymes isolated from potato mitochondria. Two of these enzymes are single polypeptides (32 and 55 kDa) and appear similar to those found in maize mitochondria, which have been localized to the outside of the inner membrane. The third enzyme appears to be a dimer comprised of two identical 43-kDa subunits. It is this enzyme that we believe contributes to rotenone-insensitive oxidation of matrix NADH. In addition to this type-II dehydrogenases, several observations suggest the presence of a smaller form of CI present in plant mitochondria which is insensitive to rotenone inhibition. We propose that this represents the peripheral arm of CI in plant mitochondria and may participate in nonphosphorylating matrix NADH oxidation.  相似文献   

3.
Characteristics of External NADH Oxidation by Beetroot Mitochondria   总被引:6,自引:6,他引:0       下载免费PDF全文
Mitochondria isolated from fresh red beetroot (Beta vulgaris L.) tissue do not oxidize external NADH with O2 as the electron acceptor. These mitochondria have a rotenone- and antimycin-insensitive pathway of NADH oxidation associated with the outer membrane and are capable of reducing cytochrome c or potassium ferricyanide. They are also capable of oxidizing internal NADH via the inner membrane electron transport chain with normal rotenone and antimycin sensitivity and ADP/O ratios. They differ from other plant mitochondria in the apparent lack of the NADH dehydrogenase located on the outer surface of the inner membrane. It is shown that this activity develops during the aging of red beetroot slices in aerated dilute CaSO4 solutions, and is present in the mitochondria isolated from aged tissue.  相似文献   

4.
In order to distinguish the pathways involved in the oxidation of matrix NADH in plant mitochondria, the oxidation of NADH and nicotinamide hypoxanthine dinucleotide (reduced form) was investigated in submitochondrial particles prepared from beetroot (Beta vulgaris L. cv. Derwent Globe) and soybeans (Glycine max L. cv. Bragg). Nicotinamide-hypoxanthine-dinucleotide(reduced form)-oxidase activity was more strongly inhibited by rotenone than the NADH-oxidase activity but both of the rotenone-inhibited activities could be stimulated by adding ubiquinone-1. The corresponding ubiquinone-1-reductase activities were inhibited by rotenone (to 69%) and further inhibited by N,N'-dicyclohexylcarbodiimide (to 79%), whilst the K3Fe(CN)6-reductase activities were not sensitive to either rotenone or N,N'-dicyclohexylcarbodiimide. Immunological analysis of mitochondrial proteins using an antiserum raised against purified beetroot complex I indicated very few differences between soybean and fresh and aged beetroot mitochondria, despite their varying sensitivities to rotenone. We confirm that there are two dehydrogenases capable of oxidising internal NADH and that only one of these, namely complex I, is inhibited by rotenone. Further, we conclude that complex I has two potential sites of quinone reduction, both sensitive to N,N'-dicyclohexycarbodiimide inhibition but only one of which is sensitive to rotenone inhibition.  相似文献   

5.
A simple in situ model of alamethicin-permeabilized isolated rat liver mitochondria was used to investigate the channeling of NADH between mitochondrial malate dehydrogenase (MDH) and NADH:ubiquinone oxidoreductase (complex I). Alamethicin-induced pores in the mitochondrial inner membrane allow effective transport of low molecular mass components such as NAD+/NADH but not soluble proteins. Permeabilized mitochondria demonstrate high rates of respiration in the presence of malate/glutamate and NAD+ due to coupled reaction between MDH and complex I. In the presence of pyruvate and lactate dehydrogenase, an extramitochondrial competitive NADH utilizing system, respiration of permeabilized mitochondria with malate/glutamate and NAD+ was completely abolished. These data are in agreement with the free diffusion of NADH and do not support the suggestion of direct channeling of NADH from MDH to complex I.  相似文献   

6.
The mitochondrial electron transport system is necessary for growth and survival of malarial parasites in mammalian host cells. NADH dehydrogenase of respiratory complex I was demonstrated in isolated mitochondrial organelles of the human parasite Plasmodium falciparum and the mouse parasite Plasmodium berghei by using the specific inhibitor rotenone on oxygen consumption and enzyme activity. It was partially purified by two sequential steps of fast protein liquid chromatographic techniques from n-octyl glucoside solubilization of the isolated mitochondria of both parasites. In addition, physical and kinetic properties of the malarial enzymes were compared to the host mouse liver mitochondrial respiratory complex I either as intact or as partially purified forms. The malarial enzyme required both NADH and ubiquinone for maximal catalysis. Furthermore, rotenone and plumbagin (ubiquinone analog) showed strong inhibitory effect against the purified malarial enzymes and had antimalarial activity against in vitro growth of P. falciparum. Some unique properties suggest that the enzyme could be exploited as chemotherapeutic target for drug development, and it may have physiological significance in the mitochondrial metabolism of the parasite.  相似文献   

7.
Fang J  Beattie DS 《Biochemistry》2002,41(9):3065-3072
A rotenone-insensitive NADH dehydrogenase has been isolated from the mitochondria of the procyclic form of African parasite, Trypanosoma brucei. The active form of the purified enzyme appears to be a dimer consisting of two 33-kDa subunits with noncovalently bound FMN as a cofactor. Hypotonic treatment of intact mitochondria revealed that the NADH dehydrogenase is located in the inner membrane/matrix fraction facing the matrix. The treatment of mitochondria with increasing concentrations of digitonin suggested that the NADH dehydrogenase is loosely bound to the inner mitochondrial membrane. The NADH:ubiquinone reductase activity is insensitive to rotenone, flavone, or dicumarol; however, it was inhibited by diphenyl iodonium in a time- and concentration-dependent manner. Maximum inhibition by diphenyl iodonium required preincubation with NADH to reduce the flavin. More complete inhibition was obtained with the more hydrophobic electron acceptors, such as Q(1) or Q(2), as compared to the more hydrophilic ones, such as Q(0) or dichloroindophenol. Kinetic analysis of the enzyme indicated that the enzyme followed a ping-pong mechanism. The enzyme conducts a one-electron transfer and can reduce molecular oxygen forming superoxide radical.  相似文献   

8.
Immunological analysis of plant mitochondrial NADH dehydrogenases.   总被引:4,自引:0,他引:4       下载免费PDF全文
Plant mitochondrial NADH dehydrogenases were analysed by two immunological strategies. The first exploited an antiserum raised to a preparation of SDS-solubilized mitochondrial-inner-membrane particles. By using a combination of activity-immunoprecipitation and crossed immunoelectrophoresis, it was shown that Triton X-100-solubilized membranes contain at least three immunologically distinct NADH dehydrogenases. Two of these were subsequently isolated by line immunoelectrophoresis and analysed for polypeptide composition: one contained three polypeptides with molecular masses of 75, 62 and 41 kDa; the other was a single polypeptide with a molecular mass of 53 kDa. The other approach was to probe plant mitochondrial membranes with antibodies raised to a purified preparation of ox heart rotenone-sensitive NADH dehydrogenase and subunits thereof. Cross-reactions were observed with the subunit-specific antisera against the 30 and 49 kDa ox heart proteins. However, the molecular masses of the equivalent polypeptides in plant mitochondria are slightly lower, at 27 and 46 kDa respectively.  相似文献   

9.
We report the electron transfer properties of the NADH:ubiquinone oxidoreductase complex of the respiratory chain (Complex I) in mitochondria of cells derived from LHON patients with two different mutations in mitochondrial DNA (mtDNA). The mutations occur in the mtDNA genes coding for the ND1 and ND4 subunits of Complex I. The ND1/3460 mutation exhibits 80% reduction in rotenone-sensitive and ubiquinone-dependent electron transfer activity, whereas the proximal NADH dehydrogenase activity of the Complex is unaffected. This is in accordance with the proposal that the ND1 subunit interacts with rotenone and ubiquinone. In contrast, the ND4/11778 mutation had no effect on electron transfer activity of the Complex in inner mitochondrial membrane preparations; also Km for NADH and NADH dehydrogenase activity were unaffected. However, in isolated mitochondria with the ND4 mutation, the rate of oxidation of NAD-linked substrates, but not of succinate, was significantly decreased. This suggests that the ND4 subunit might be involved in specific aggregation of NADH-dependent dehydrogenases and Complex I, which may result in fast ('solid state') electron transfer from the former to the latter.  相似文献   

10.
Menz RI  Day DA 《Plant physiology》1996,112(2):607-613
Exogenous NADH oxidation of mitochondria isolated from red beetroots (Beta vulgaris L.) increased dramatically upon slicing and aging the tissue. Anion-exchange chromatography of soluble fractions derived by sonication from fresh and aged beetroot mitochondria yielded three NADH dehydrogenase activity peaks. The third peak from aged beetroot mitochondria was separated into two activities by blue-affinity chromatography. One of these (the unbound peak) readily oxidized dihydrolipoamide, whereas the other (the bound peak) did not. The latter was an NAD(P)H dehydrogenase with high quinone and ferricyanide reductase activity and was absent from fresh beet mitochondria. Further affinity chromatography of the NAD(P)H dehydrogenase indicated enrichment of a 58-kD polypeptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We propose that this 58-kD protein is the inducible, external NADH dehydrogenase.  相似文献   

11.
Several previously unreported small heat-shock proteins (sHsps) were detected in mitochondria from heat-stressed rat PC12 cells, but not in unstressed controls. Functional inactivation of the mitochondrial sHsps with murine Hsp25 antibody indicated that these sHsps protect NADH:ubiquinone oxidoreductase and NADH dehydrogenase activity (i.e., complex I) in submitochondrial vesicles during heat and oxidative stress. These results (i) confirm the existence of multiple sHsps in mammals and indicate that several of these sHsps associate with the mitochondria, (ii) indicate a conserved function between plant and mammalian mitochondrial sHsps in protecting electron transport during stress, and (iii) suggest that these sHsps may play an important role in diseases whose etiology is based upon oxidative damage of complex I.  相似文献   

12.
Lipoamide dehydrogenase (NADH:lipoamide oxidoreductase EC 1.6.4.3) has been isolated from Ascaris suum muscle mitochondria. This activity has been purified to apparent homogeneity from both the pyruvate dehydrogenase complex and from 150,000g mitochondrial supernatants which were devoid of pyruvate dehydrogenase complex activity. The enzymes from both sources exhibited similar kinetic, catalytic, and regulatory properties and appear to be identical as judged by polyacrylamide gel electrophoresis. The native enzyme acts as a dimer, containing 2 mol of FAD, and has a subunit molecular weight of 54,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel chromatography. The enzyme also possesses substantial NADH:NAD+ transhydrogenase activity. Heat denaturation and differential solubilization experiments imply that the transhydrogenase activity previously reported is, in fact, associated with the lipoamide dehydrogenase moiety of the Ascaris pyruvate dehydrogenase complex. Whether or not this activity functions physiologically in hydride ion translocation, as previously suggested, remains to be demonstrated.  相似文献   

13.
S Leterme  M Boutry 《Plant physiology》1993,102(2):435-443
NADH:ubiquinone reductase (EC 1.6.19.3), or complex I, was isolated from broad bean (Vicia faba L.) mitochondria. Osmotic shock and sequential treatment with 0.2% (v/v) Triton X-100 and 0.5% (w/v) [3-cholamidopropyl)dimethylammonio]-1-propanesulfate (CHAPS) removed all other NADH dehydrogenase activities. Complex I was solubilized in the presence of 4% Triton X-100 and then purified by sucrose-gradient centrifugation in the presence of the same detergent. The second purification step was hydroxylapatite chromatography. Substitution of CHAPS for Triton X-100 helped remove contaminants such as ATPase. The high molecular mass complex is composed of at least 26 subunits with molecular masses ranging from 6000 to 75,000 kD. The purified complex I reduced ferricyanide and ubiquinone analogs but not cytochrome c. NADPH could not substitute for NADH as an electron donor. The KM for NADH was 20 microM at the optimum pH of 8.0. The NH2-terminal sequence of several subunits was determined, revealing the ambiguous nature of the 42-kD subunit.  相似文献   

14.
This study aims at characterizing NAD(P)H dehydrogenases on the inside and outside of the inner membrane of mitochondria of one phosphoenolpyruvate carboxykinase??crassulacean acid metabolism plant, Hoya carnosa. In crassulacean acid metabolism plants, NADH is produced by malate decarboxylation inside and outside mitochondria. The relative importance of mitochondrial alternative NADH dehydrogenases and their association was determined in intact??and alamethicin??permeabilized mitochondria of H. carnosa to discriminate between internal and external activities. The major findings in H. carnosa mitochondria are: (i) external NADPH oxidation is totally inhibited by DPI and totally dependent on Ca2+, (ii) external NADH oxidation is partially inhibited by DPI and mainly dependent on Ca2+, (iii) total NADH oxidation measured in permeabilized mitochondria is partially inhibited by rotenone and also by DPI, (iv) total NADPH oxidation measured in permeabilized mitochondria is partially dependent on Ca2+ and totally inhibited by DPI. The results suggest that complex I, external NAD(P)H dehydrogenases, and internal NAD(P)H dehydrogenases are all linked to the electron transport chain. Also, the total measurable NAD(P)H dehydrogenases activity was less than the total measurable complex I activity, and both of these enzymes could donate their electrons not only to the cytochrome pathway but also to the alternative pathway. The finding indicated that the H. carnosa mitochondrial electron transport chain is operating in a classical way, partitioning to both Complex I and alternative Alt. NAD(P)H dehydrogenases.  相似文献   

15.
Defects in mitochondrial electron transport chain (ETC) function have been implicated in a number of neurodegenerative disorders, cancer, and aging. Mitochondrial complex I (NADH dehydrogenase) is the largest and most complicated enzyme of the ETC with 45 subunits originating from two separate genomes. The biogenesis of complex I is an intricate process that requires multiple steps, subassemblies, and assembly factors. Here, we report the generation and characterization of a Drosophila model of complex I assembly factor deficiency. We show that CG7598 (dCIA30), the Drosophila homolog of human complex I assembly factor Ndufaf1, is necessary for proper complex I assembly. Reduced expression of dCIA30 results in the loss of the complex I holoenzyme band in blue-native polyacrylamide gel electrophoresis and loss of NADH:ubiquinone oxidoreductase activity in isolated mitochondria. The complex I assembly defect, caused by mutation or RNAi of dCIA30, has repercussions both during development and adulthood in Drosophila, including developmental arrest at the pupal stage and reduced stress resistance during adulthood. Expression of the single-subunit yeast alternative NADH dehydrogenase, Ndi1, can partially or wholly rescue phenotypes associated with the complex I assembly defect. Our work shows that CG7598/dCIA30 is a functional homolog of Ndufaf1 and adds to the accumulating evidence that transgenic NDI1 expression is a viable therapy for disorders arising from complex I deficiency.  相似文献   

16.
Plant mitochondria differ from those of mammals, since they incorporate an alternative electron transport pathway, which branches at ubiquinol to an alternative oxidase (AOX), characteristically inhibited by salicylhydroxamic acid (SHAM). Another feature of plant mitochondria is that besides complex I (EC 1.6.5.3) they possess alternative NAD(P)H-dehydrogenases insensitive to rotenone. Many stress conditions are known to alter the expression of the alternative electron transport pathway in plant mitochondria. In the present study we investigated the effects of some thiol reagents and Ca(2+) on potato mitochondrial respiratory chain presenting different activities of the alternative respiratory components AOX and external NADH dehydrogenase, a condition induced by previous treatment of potato tubers (Solanum tuberosum L., cv. Bintje) to cold stress. The results showed that Ca(2+) presented an inhibitory effect on AOX pathway in potato mitochondria energized with NADH or succinate, which was only now observed when the cytochrome pathway was inhibited by cyanide. When the cytochrome pathway was functional, Ca(2+) stimulated the external NADH dehydrogenase. Diamide was a potent AOX inhibitor and this effect was only now observed when the cytochrome pathway was inactive, as was the case for the calcium ion. Mersalyl inhibited the externally located NADH dehydrogenase and had no effect on AOX activity. The results may represent an important function of Ca(2+) on the alternative mitochondrial enzymes NADH-DH(ext) and AOX.  相似文献   

17.
18.
Experimental evidence is presented showing the existence of an NADH-consuming enzyme in heart mitochondria, in addition to the NADH--ubiquinone oxidase of complex I. In contrast to the latter, the novel enzyme is accessible from the extramitochondrial space. Removal of the outer membranes from intact mitochondria had no influence on exogenous NADH consumption, indicating its location at the cytosolic face of the inner membrane. The enzyme could be solubilized from this membrane and purified by sedimentation through preformed sucrose gradients. Liver mitochondria exhibited no oxidation of external NADH, suggesting that the enzyme is organo-specific. The "exogenous NADH dehydrogenase" of heart mitochondria was found to introduce reducing equivalents into the respiratory chain before the rotenone block, indicating that the enzyme is associated with complex I. The enzyme was also demonstrated to be involved in electron flow from the respiratory chain to exogenous electron acceptors, including NAD+. This permitted us to elicit the existence of an energy-dependent reversed electron flow from complex II to complex I. The redox shuttle established by the novel enzyme could be of significance for the regulation of cellular NADH and the metabolic activation of foreign compounds such as adriamycin.  相似文献   

19.
The pyruvate dehydrogenase complex has been purified 76-fold, to a specific activity of 0.6 μmoles per minute per milligram protein, beginning with isolated pea (Pisum sativum L. var Little Marvel) chloroplasts. Purification was accomplished by rate zonal sedimentation, polyethyleneglycol precipitation, and ethyl-agarose affinity chromatography. Characterization of the substrates as pyruvate, NAD+, and coenzyme-A and the products as NADH, CO2, and acetyl-CoA, in a 1:1:1 stoichiometry unequivocally established that activity was the result of the pyruvate dehydrogenase complex. Immunochemical analysis demonstrated significant differences in structure and organization between the chloroplast pyruvate dehydrogenase complex and the more thoroughly characterized mitochondrial complex. Chloroplast complex has a higher magnesium requirement and a more alkaline pH optimum than mitochondrial complex, and these properties are consistent with light-mediated regulation in vivo. The chloroplast pyruvate dehydrogenase complex is not, however, regulated by ATP-dependent inactivation. The properties and subcellular localization of the chloroplast pyruvate dehydrogenase complex are consistent with its role of providing acetyl-CoA and NADH for fatty acid synthesis.  相似文献   

20.
Abstract: The catecholaminergic neurotoxin 6-hydroxydopamine causes parkinsonian symptoms in animals and it has been proposed that reactive oxygen species and oxidative stress, enhanced by iron, may play a key role in its toxicity. The present results demonstrate that 6-hydroxydopamine reversibly inhibits complex I (NADH dehydrogenase) of brain mitochondrial respiratory chain in isolated mitochondria. 6-Hydroxydopamine itself, rather than its oxidative products, was responsible for the inhibition. Iron(III) did not enhance inhibition but decreased it by stimulating the nonenzyme oxidation of 6-hydroxydopamine. Inhibition was potentiated to some extent by calcium ion. Desferrioxamine protected complex I activity against the inhibition, but it was not due to its chelator or antioxidative properties. Desferrioxamine was also shown to activate NADH dehydrogenase in the absence of 6-hydroxydopamine. Activation of mitochondrial respiration by desferrioxamine may contribute to the enhanced neuron survival in the presence of desferrioxamine in some neurodegenerative conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号