首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We developed a PCR-based assay to quantify trichothecene-producing Fusarium based on primers derived from the trichodiene synthase gene (Tri5). The primers were tested against a range of fusarium head blight (FHB) (also known as scab) pathogens and found to amplify specifically a 260-bp product from 25 isolates belonging to six trichothecene-producing Fusarium species. Amounts of the trichothecene-producing Fusarium and the trichothecene mycotoxin deoxynivalenol (DON) in harvested grain from a field trial designed to test the efficacies of the fungicides metconazole, azoxystrobin, and tebuconazole to control FHB were quantified. No correlation was found between FHB severity and DON in harvested grain, but a good correlation existed between the amount of trichothecene-producing Fusarium and DON present within grain. Azoxystrobin did not affect levels of trichothecene-producing Fusarium compared with those of untreated controls. Metconazole and tebuconazole significantly reduced the amount of trichothecene-producing Fusarium in harvested grain. We hypothesize that the fungicides affected the relationship between FHB severity and the amount of DON in harvested grain by altering the proportion of trichothecene-producing Fusarium within the FHB disease complex and not by altering the rate of DON production. The Tri5 quantitative PCR assay will aid research directed towards reducing amounts of trichothecene mycotoxins in food and animal feed.  相似文献   

2.
3.
Forty-eight spring barley genotypes were evaluated for deoxynivalenol (DON) concentration under natural infection across 5 years at Harrington, Prince Edward Island. These genotypes were also evaluated for Fusarium head blight (FHB) severity and DON concentration under field nurseries with artificial inoculation of Fusarium graminearum by the grain spawn method across 2 years at Ottawa, Ontario, and one year at Hangzhou, China. Additionally, these genotypes were also evaluated for FHB severity under greenhouse conditions with artificial inoculation of F. graminearum by conidial suspension spray method across 3 years at Ottawa, Ontario. The objective of the study was to investigate if reactions of barley genotypes to artificial FHB inoculation correlate with reactions to natural FHB infection. DON concentration under natural infection was positively correlated with DON concentration (r = 0.47, P < 0.01) and FHB incidence (r = 0.56, P < 0.01) in the artificially inoculated nursery with grain spawn method. Therefore, the grain spawn method can be used to effectively screen for low DON. FHB severity, generated from greenhouse spray, however, was not correlated with DON concentration (r = 0.12, P > 0.05) under natural infection and it was not correlated with DON concentration (r = −0.23, P > 0.05) and FHB incidence (r = 0.19, P > 0.05) in the artificially inoculated nursery with grain spawn method. FHB severity, DON concentration, and yield were affected by year, genotype, and the genotype × year interaction. The effectiveness of greenhouse spray inoculation for indirect selection for low DON concentration requires further studies. Nine of the 48 genotypes were found to contain low DON under natural infection. Island barley had low DON and also had high yield.  相似文献   

4.
The impact of moisture on the development of Fusarium head blight (FHB) and accumulation of deoxynivalenol (DON) in Fusarium-infected wheat was examined. The field experiments were designed as split-split-plot with five replicates. Main plots were durations of mist-irrigation [14, 21, 28 and 35 days after inoculation (DAI)]; sub-plots were wheat cultivar; and sub-sub-plots were F. graminearum isolates differing in aggressiveness and DON production capacity. The wheat cultivars ‘Alsen’ (moderately resistant), ‘2375’ (moderately susceptible) and ‘Wheaton’ (susceptible) were inoculated at anthesis. Severity of FHB was assessed 21 days after inoculation. Visually scabby kernels (VSK) and mycotxin content (DON, 15-AcDON, 3-AcDON and nivalenol) were determined on harvested grain. The damage to grain, as measured by VSK, was significantly lower in the treatments receiving the least amount of mist-irrigation (14 DAI) suggesting that extended moisture promotes disease development. DON was, however, significantly lower in the 35-DAI misting treatment than in treatments receiving less post-inoculation moisture. The reduction of DON observed in treatments receiving extended mist-irrigation was greatest in ‘Wheaton’ which recorded the highest FHB severity, VSK and DON of the cultivars examined. Our results suggest that DON and other trichothecenes may be reduced by late-season moisture despite increased grain colonization. We suggest that leaching may explain much of the reduction of mycotoxins, and that differences in tissue morphology and metabolism may determine the rate of leaching from specific tissues.  相似文献   

5.
Nitrogen (N) fertilization and fungicide applications are still subject to discussion concerning the influence on Fusarium head blight (FHB) and related mycotoxin accumulation. Field studies were made in 2000–2001 and 2001–2002 to investigate the effect of two N‐rates and 11 plant protection treatments on FHB severity and the content of FHB‐related mycotoxins, namely deoxynivalenol (DON) and zearalenone (ZEA) under conditions of natural infection. The treatments applied can be summarized as (i) an integrated approach using a decision support system, (ii) the use of two plant strengtheners, Bion® (benzo [1,2,3]thiadiazole‐7‐carbothioic acid S‐methyl‐ester, BTH) and a compound based on the biomass of the cyanobacterium Spirulina platensis, (iii) the use of plant strengtheners in combination with a broad‐spectrum fungicide and (iv) common fungicide strategies against foliar diseases. Fusarium infections as well as the analysed mycotoxins were observed at low levels in both years. Disease severity was significantly increased by conventional N‐fertilization only in 2001. Neither FHB severity nor mycotoxin accumulation was significantly influenced by any of the treatments, although treatments without fungicides appeared to lead to lower disease severities. In 2002, there was a tendency towards higher disease severities when common fungicide strategies were applied. Mycotoxin contamination was found in grain samples from both years. In 2001 DON was mainly traceable, whereas in 2002 ZEA was also detected. Mycotoxin contamination was influenced by N‐fertilization rather than by the treatments. In 2001, the DON content was significantly increased due to the conventional N‐supply. Our results indicate that less intensive fungicide strategies, including plant strengtheners, are no worse than common fungicide strategies under conditions of low FHB severity and mycotoxin accumulation. Immoderate N‐fertilization however, can increase mycotoxin levels significantly even under conditions unfavourable for Fusarium spp.  相似文献   

6.
Fusarium culmorum can cause Fusarium head blight (FHB) disease of cereals, resulting in yield loss and contamination of grain with the trichothecene mycotoxin, deoxynivalenol (DON). In this study, we compared the efficacy of a biological control agent (Pseudomonas fluorescens strain MKB 158) with the biochemical chitosan (the deacetylated derivative of chitin) in controlling FHB disease of wheat and barley. Both agents were equally effective in reducing DON contamination of grain caused by F. culmorum. Under both glasshouse and field conditions, treatment with commercially available crabshell-derived chitosan reduced the severity of FHB symptom development on wheat and barley by ?74% (P ? 0.050). While treatment with P. fluorescens reduced the severity of FHB symptom development on these cereals by ?48% (P ? 0.050). Chitosan and P. fluorescens respectively prevented ?58 and ?35% of the FHB-associated reductions in 1000-grain weight in wheat and barley (P ? 0.050). Both agents significantly reduced the DON content of wheat and barley under both glasshouse and field conditions (P ? 0.050) and were equally efficacious in doing so (?74 and ?79% reductions due to chitosan and P. fluorescens, respectively). Crude chitin extracts from crabshells and crude chitosan-based formulations prepared from crabshells and eggshells were also tested under field conditions, but were not as effective as the commercial crabshell-derived preparation in controlling FHB disease. This is the first report on the use of chitosan for the control of Fusarium head blight disease and DON contamination of grain.  相似文献   

7.
Fusarium head blight (FHB) is a devastating disease in wheat that reduces grain yield, grain quality and contaminates the harvest with deoxynivalenol (DON). As potent resistance sources Sumai 3 and its descendants from China and Frontana from Brazil had been analysed by quantitative trait loci (QTL) mapping. We introgressed and stacked two donor QTL from CM82036 (Sumai 3/Thornbird) located on chromosomes 3B and 5A and one donor QTL from Frontana on chromosome 3A in elite European spring wheat and estimated the effects of the three individual donor QTL and their four combinations on DON, Fusarium exoantigen content, and FHB rating adjusted to heading date. One class with the susceptible QTL alleles served as control. Each of the eight QTL classes was represented by 12–15 F3-derived lines tested in F5 generation as bulked progeny possessing the respective marker alleles homozygously. Traits were evaluated in a field experiment across four locations with spray inoculation of Fusarium culmorum. All three individual donor-QTL alleles significantly reduced DON content and FHB severity compared to the marker class with no donor QTL. The only exception was the donor-QTL allele 3A that had a low, but non-significant effect on FHB severity. The highest effect had the stacked donor-QTL alleles 3B and 5A for both traits. They jointly reduced DON content by 78% and FHB rating by 55% compared to the susceptible QTL class. Analysis of Fusarium exoantigen content illustrates that lower disease severity is associated with less mycelium content in the grain. In conclusion, QTL from non-adapted sources could be verified in a genetic background of German elite spring wheat. Within the QTL classes significant (P<0.05) genotypic differences were found among the individual genotypes. An additional phenotypic selection would, therefore, be advantageous after performing a marker-based selection.  相似文献   

8.
Toxin B — trichothecene deoxynivalenol (DON) is the most frequent Fusarium mycotoxin in Fusarium head blight (FHB) disease produced by Fusarium fungi. Thirty-one samples of naturally cultivated winter wheat were collected from different localities in Slovakia and evaluated for DON content, and after an artificial inoculation twelve of winter wheat cultivars were evaluated for FHB, fusarium damaged kernels (FDK) and DON content (resistance Type I and II) during two years. Plants were inoculated at anthesis with a conidial suspension of Fusarium culmorum (W. G. Smith) Sacc. The highest mean contents of DON 1.641 ppm were found in produced potato region (PPR) and 1.654 ppm in produced sugar beet region (PSBR). A positive correlation was found between DON content and rainfall, and a negative correlation was found between content of DON and temperature. Lower positive correlations were found between the contents of DON in 2003 and 2004 in the resistance Type I and Type II in twelve artificially infected cultivars. The significant positive correlations in content of DON were found between resistance Type I and Type II in the years 2003 and 2004. The lowest content of DON was found in the cultivars Alka, Malyska and the highest one in the cultivars Vanda and Boka. The positive correlation between the content of DON and FDK (in %) in head (average 2003 and 2004 years) from artificially infected and analysed cultivars was statistically significant in both resistances Type I and Type II.  相似文献   

9.

Background  

The fungal pathogen Fusarium graminearum causes Fusarium Head Blight (FHB) disease on wheat which can lead to trichothecene mycotoxin (e.g. deoxynivalenol, DON) contamination of grain, harmful to mammalian health. DON is produced at low levels under standard culture conditions when compared to plant infection but specific polyamines (e.g. putrescine and agmatine) and amino acids (e.g. arginine and ornithine) are potent inducers of DON by F. graminearum in axenic culture. Currently, host factors that promote mycotoxin synthesis during FHB are unknown, but plant derived polyamines could contribute to DON induction in infected heads. However, the temporal and spatial accumulation of polyamines and amino acids in relation to that of DON has not been studied.  相似文献   

10.
Fusarium graminearum is the primary cause of Fusarium head blight (FHB), one of the most economically important diseases of wheat worldwide. FHB reduces yield and contaminates grain with the trichothecene mycotoxin deoxynivalenol (DON), which poses a risk to plant, human and animal health. The first committed step in trichothecene biosynthesis is formation of trichodiene (TD). The volatile nature of TD suggests that it could be a useful intra or interspecies signalling molecule, but little is known about the potential signalling role of TD during F. graminearum-wheat interactions. Previous work using a transgenic Trichoderma harzianum strain engineered to emit TD (Th + TRI5) indicated that TD can function as a signal that can modulate pathogen virulence and host plant resistance. Herein, we demonstrate that Th + TRI5 has enhanced biocontrol activity against F. graminearum and reduced DON contamination by 66% and 70% in a moderately resistant and a susceptible cultivar, respectively. While Th + TRI5 volatiles significantly influenced the expression of the pathogenesis-related 1 (PR1) gene, the effect was dependent on cultivar. Th + TRI5 volatiles strongly reduced DON production in F. graminearum plate cultures and downregulated the expression of TRI genes. Finally, we confirm that TD fumigation reduced DON accumulation in a detached wheat head assay.  相似文献   

11.
12.
Fusarium head blight (FHB) is a devastating disease of small grain cereal crops caused by the necrotrophic pathogen Fusarium graminearum and Fusarium culmorum. These fungi produce the trichothecene mycotoxin deoxynivalenol (DON) and its derivatives, which enhance the disease development during their interactions with host plants. For the self-protection, the trichothecene producer Fusarium species have Tri101 encoding trichothecene 3-O-acetyltransferase. Although transgenic expression of Tri101 significantly reduced inhibitory action of DON on tobacco plants, there are several conflicting observations regarding the phytotoxicity of 3-acetyldeoxynivalenol (3-ADON) to cereal plants; 3-ADON was reported to be highly phytotoxic to wheat at low concentrations. To examine whether cereal plants show sufficient resistance to 3-ADON, we generated transgenic rice plants with stable expression and inheritance of Tri101. While root growth of wild-type rice plants was severely inhibited by DON in the medium, this fungal toxin was not phytotoxic to the transgenic lines that showed trichothecene 3-O-acetylation activity. This is the first report demonstrating the DON acetylase activity and DON-resistant phenotype of cereal plants expressing the fungal gene. S. Ohsato and T. Ochiai-Fukuda should be considered as joint first authors.  相似文献   

13.
K20 is a novel amphiphilic aminoglycoside capable of inhibiting many fungal species. K20's capabilities to inhibit Fusarium graminearum the causal agent wheat Fusarium head blight (FHB) and to this disease were examined. K20 inhibited the growth of F. graminearum (minimum inhibitory concentrations, 7.8–15.6 mg L?1) and exhibited synergistic activity when combined with triazole and strobilurin fungicides. Application of K20 up to 720 mg L?1 to wheat heads in the greenhouse showed no phytotoxic effects. Spraying wheat heads in the greenhouse with K20 alone at 360 mg L?1 lowered FHB severity below controls while combining K20 with half–label rates of Headline (pyraclostrobin) improved its disease control efficacy. In field trials, spraying K20 at 180 mg L?1 and 360 mg L?1 combined with half-label rates of Headline, Proline 480 SC (prothioconazole), Prosaro 421 SC (prothioconazole + tebuconazole), and Caramba (metconazole) reduced FHB indices synergistically. In addition, the K20 plus Proline 480 SC combination reduced levels of the mycotoxin deoxinivalenol by 75 % compared to the control. These data suggest that K20 may be useful as a fungicide against plant diseases such as FHB particularly when combined with commercial fungicides applied at below recommended rates.  相似文献   

14.
Mycotoxins caused by Fusarium spp. is a major concern on food and feed safety in oats, although Fusarium head blight (FHB) is often less apparent than in other small grain cereals. Breeding resistant cultivars is an economic and environment-friendly way to reduce toxin content, either by the identification of resistance QTL or phenotypic evaluation. Both are little explored in oats. A recombinant-inbred line population, Hurdal × Z595-7 (HZ595, with 184 lines), was used for QTL mapping and was phenotyped for 3 years. Spawn inoculation was applied and deoxynivalenol (DON) content, FHB severity, days to heading and maturity (DH and DM), and plant height (PH) were measured. The population was genotyped with DArTs, AFLPs, SSRs and selected SNPs, and a linkage map of 1,132 cM was constructed, covering all 21 oat chromosomes. A QTL for DON on chromosome 17A/7C, tentatively designated as Qdon.umb-17A/7C, was detected in all experiments using composite interval mapping, with phenotypic effects of 12.2–26.6 %. In addition, QTL for DON were also found on chromosomes 5C, 9D, 13A, 14D and unknown_3, while a QTL for FHB was found on 11A. Several of the DON/FHB QTL coincided with those for DH, DM and/or PH. A half-sib population of HZ595, Hurdal × Z615-4 (HZ615, with 91 lines), was phenotyped in 2011 for validation of QTL found in HZ595, and Qdon.umb-17A/7C was again localized with a phenotypic effect of 12.4 %. Three SNPs closely linked to Qdon.umb-17A/7C were identified in both populations, and one each for QTL on 5C, 11A and 13A were identified in HZ595. These SNPs, together with those yet to be identified, could be useful in marker-assisted selection to pyramiding resistance QTL.  相似文献   

15.
15-Acetyldeoxynivalenol (15-AcDON) is a low molecular weight sesquiterpenoid trichothecene mycotoxin associated with Fusarium ear rot of maize and Fusarium head blight of small grain cereals. The accumulation of mycotoxins such as deoxynivalenol (DON) and 15-AcDON within harvested grain is subject to stringent regulation as both toxins pose dietary health risks to humans and animals. These toxins inhibit peptidyltransferase activity, which in turn limits eukaryotic protein synthesis. To assess the ability of intracellular antibodies (intrabodies) to modulate mycotoxin-specific cytotoxocity, a gene encoding a camelid single domain antibody fragment (VHH) with specificity and affinity for 15-AcDON was expressed in the methylotropic yeast Pichia pastoris. Cytotoxicity and VHH immunomodulation were assessed by continuous measurement of cellular growth. At equivalent doses, 15-AcDON was significantly more toxic to wild-type P. pastoris than was DON. In turn, DON was orders of magnitude more toxic than 3-acetyldeoxynivalenol. Intracellular expression of a mycotoxin-specific VHH within P. pastoris conveyed significant (p = 0.01) resistance to 15-AcDON cytotoxicity at doses ranging from 20 to 100 μg·ml−1. We also documented a biochemical transformation of DON to 15-AcDON to account for the attenuation of DON cytotoxicity at 100 and 200 μg·ml−1. The proof of concept established within this eukaryotic system suggests that in planta VHH expression may lead to enhanced tolerance to mycotoxins and thereby limit Fusarium infection of commercial agricultural crops.  相似文献   

16.

Key message

The major QTL for FHB resistance from hexaploid wheat line PI 277012 was successfully introgressed into durum wheat and minor FHB resistance QTL were detected in local durum wheat cultivars. A combination of these QTL will enhance FHB resistance of durum wheat.

Abstract

Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of durum wheat. To combat the disease, great efforts have been devoted to introgress FHB resistance from its related tetraploid and hexaploid wheat species into adapted durum cultivars. However, most of the quantitative trait loci (QTL) for FHB resistance existing in the introgression lines are not well characterized or validated. In this study, we aimed to identify and map FHB resistance QTL in a population consisting of 205 recombinant inbred lines from the cross between Joppa (a durum wheat cultivar) and 10Ae564 (a durum wheat introgression line with FHB resistance derived from the hexaploid wheat line PI 277012). One QTL (Qfhb.ndwp-2A) from Joppa and two QTL (Qfhb.ndwp-5A and Qfhb.ndwp-7A) from 10Ae564 were identified through phenotyping of the mapping population for FHB severity and DON content in greenhouse and field and genotyping with 90K wheat Infinium iSelect SNP arrays. Qfhb.ndwp-2A explained 14, 15, and 9% of the phenotypic variation, respectively, for FHB severity in two greenhouse experiments and for mean DON content across the two greenhouse environments. Qfhb.ndwp-5A explained 19, 10, and 7% of phenotypic variation, respectively, for FHB severity in one greenhouse experiment, mean FHB severity across two field experiments, and mean DON content across the two greenhouse experiments. Qfhb.ndwp-7A was only detected for FHB severity in the two greenhouse experiments, explaining 9 and 11% of the phenotypic variation, respectively. This study confirms the existence of minor QTL in North Dakota durum cultivars and the successful transfer of the major QTL from PI 277012 into durum wheat.
  相似文献   

17.
18.
Many Fusarium species produce one or more agriculturally important trichothecene mycotoxins, and the relative level of toxicity of these compounds is determined by the pattern of oxygenations and acetylations or esterifications on the core trichothecene structure. Previous studies with UV-induced Fusarium sporotrichioides NRRL 3299 trichothecene mutants defined the Tri1 gene and demonstrated that it was required for addition of the oxygen at the C-8 position during trichothecene biosynthesis. We have cloned and characterized the Tri1 gene from NRRL 3299 and found that it encodes a cytochrome P450 monooxygenase. The disruption of Tri1 blocks production of C-8-oxygenated trichothecenes and leads to the accumulation of 4,15-diacetoxyscirpenol, the same phenotype observed in the tri1 UV-induced mutants MB1716 and MB1370. The Tri1 disruptants and the tri1 UV-induced mutants do not complement one another when coinoculated, and the Tri1 gene sequence restores T-2 toxin production in both MB1716 and MB1370. The DNA sequence flanking Tri1 contains another new Tri gene. Thus, Tri1 encodes a C-8 hydroxylase and is located either in a new distal portion of the trichothecene gene cluster or in a second separate trichothecene gene cluster.  相似文献   

19.
20.
Winter wheat cultivar Basalt was artificially inoculated with Fusarium culmorum at the end of anthesis and treated with the systemic fungicide tebuconazole (Folicur®) a few days before and/or after inoculation. Check plots remained uninoculated and unsprayed. Head infections, yield, yield components and the percentage of Fusarium‐ infected kernels were determined. Artificial Fusarium inoculation lowered yield significantly by 24.2‐45.0%. Any fungicide treatment saved yield, thousand grain weight and kernel numbers per head. Pre‐infectional application of tebuconazole was superior to application carried out post‐infection. Moreover, the fungicide controlled deoxynivalenol (DON) synthesis in the field to a considerable extent, and enabled good control of Fusarium head blight, glume blotch and the percentage of Fusarium‐infected kernels. The levels of Fusarium kernel infection after harvest clearly reflected the DON content of w heat grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号