首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Drosophila is a useful model organism in which the genetics of human diseases, including recent advances in identification of the genetics of heart development and disease in the fly, can be studied. To identify novel genes that cause cardiomyopathy, we performed a deficiency screen in adult Drosophila. Using optical coherence tomography to phenotype cardiac function in awake adult Drosophila, we identified Df(1)Exel6240 as having cardiomyopathy. Using a number of strategies including customized smaller deletions, screening of mutant alleles, and transgenic rescue, we identified CG3226 as the causative gene for this deficiency. CG3226 is an uncharacterized gene in Drosophila possessing homology to the mammalian Siah-interacting protein (SIP) gene. Mammalian SIP functions as an adaptor protein involved in one of the β-catenin degradation complexes. To investigate the effects of altering β-catenin/Armadillo signaling in the adult fly, we measured heart function in flies expressing either constitutively active Armadillo or transgenic constructs that block Armadillo signaling, specifically in the heart. While, increasing Armadillo signaling in the heart did not have an effect on adult heart function, decreasing Armadillo signaling in the fly heart caused the significant reduction in heart chamber size. In summary, we show that deletion of CG3226, which has homology to mammalian SIP, causes cardiomyopathy in adult Drosophila. Alterations in Armadillo signaling during development lead to important changes in the size and function of the adult heart.  相似文献   

3.
Pro-apoptotic proteins from the reaper, hid, grim (RHG) family are primary regulators of programmed cell death in Drosophila due to their antagonistic effect on inhibitor of apoptosis (IAP) proteins, thereby releasing IAP-inhibition of caspases that effect apoptosis. Using a degenerate PCR approach to conserved domains from the 12 Drosophila species, we have identified the first reaper and hid orthologs from a tephritid, the Caribfly Anastrepha suspensa. As-hid is the first identified non-drosophilid homolog of hid, and As-rpr is the second non-drosophilid rpr homolog. Both genes share more than 50% amino acid sequence identity with their Drosophila homologs, suggesting that insect pro-apoptotic peptides may be more conserved than previously anticipated. Importantly, both genes encode the conserved IBM and GH3 motifs that are key for IAP-inhibition and mitochondrial localization. Functional verification of both genes as cell death effectors was demonstrated by cell death assays in A. suspensa embryonic cell culture, as well as in heterologous Drosophila melanogaster S2 cells. Notably, heterologous cell death activity was found to be higher for Anastrepha genes than their Drosophila counterparts. In common with the Drosophila cognates, As-hid and As-rpr negatively regulated the Drosophila inhibitor of apoptosis (DIAP1) gene to promote apoptosis, and both genes when used together effected increased cell death activity, indicating a co-operative function for As-hid and As-rpr. We show that these tephritid cell death genes are functional and potent as cell death effectors, and could be used to design improved transgenic lethality systems for insect population control.  相似文献   

4.
Extensive research has been carried out to understand how circadian clocks regulate various physiological processes in organisms. The discovery of clock genes and the molecular clockwork has helped researchers to understand the possible role of these genes in regulating various metabolic processes. In Drosophila melanogaster, many studies have shown that the basic architecture of circadian clocks is multi-oscillatory. In nature, different neuronal subgroups in the brain of D. melanogaster have been demonstrated to control different circadian behavioural rhythms or different aspects of the same circadian rhythm. Among the circadian phenomena that have been studied so far in Drosophila, the egg-laying rhythm is unique, and relatively less explored. Unlike most other circadian rhythms, the egg-laying rhythm is rhythmic under constant light conditions, and the endogenous or free-running period of the rhythm is greater than those of most other rhythms. Although the clock genes and neurons required for the persistence of adult emergence and activity/rest rhythms have been studied extensively, those underlying the circadian egg-laying rhythm still remain largely unknown. In this review, we discuss our current understanding of the circadian egg-laying rhythm in D. melanogaster, and the possible molecular and physiological mechanisms that control the rhythmic output of the egg-laying process.  相似文献   

5.

Background  

ABC proteins constitute one of the largest families of transporters found in all living organisms. In Arabidopsis thaliana, 120 genes encoding ABC transporters have been identified. Here, the characterization of one member of the MRP subclass, AtMRP6, is described.  相似文献   

6.
7.
Hypercephaly, in the form of lateral extensions of the head capsule, is observed in several families of Diptera. A particularly exaggerated form is found in Diopsid stalk-eyed flies, in which both eyes and antennae are laterally displaced at the end of stalks. The processes of early development and specification of the head capsule in stalk-eyed flies are similar to those in Drosophila melanogaster. In Drosophila the homeobox gene ocelliless (oc) shows a mediolateral gradient of expression across the region of the eye-antennal imaginal disc that gives rise to the head capsule and specifies the development of different head structures. The genes and developmental mechanisms that subsequently define head shape in Drosophila and produce hypercephaly in stalk-eyed flies remain unclear. To address this, we performed an enhancer trap screen for Drosophila genes expressed in the same region as oc and identified the homeobox gene defective proventriculus (dve). In the eye-antennal imaginal disc, dve is coexpressed with oc in the region that gives rise to the head capsule and is active along the medial edge of the antennal disc and in the first antennal segment. Analyses of dve expression in mutant eye-antennal discs are consistent with it acting downstream of oc in the development of the head capsule. We confirm that orthologues of dve are present in a diverse panel of five stalk-eyed fly species and analyse patterns of dve sequence variation within the clade. Our results indicate that dve expression and sequence are both highly conserved in stalk-eyed flies.M. Carr and I. Hurley contributed equally to this work.  相似文献   

8.
The intracellular messenger cGMP has been suggested to play a role in taste signal transduction in both vertebrates and invertebrates. In the present study, we have examined the role of the Drosophila atypical soluble guanylyl cyclases (sGCs), Gyc-89Da and Gyc-89Db, in larval and adult gustatory preference behaviors. We showed that in larvae, sucrose attraction requires Gyc-89Db and caffeine avoidance requires Gyc-89Da. In adult flies, sucrose attraction is unaffected by mutations in either gene whereas avoidance of low concentrations of caffeine is eliminated by loss of either gene. Similar defective behaviors were observed when cGMP increases were prevented by the expression of a cGMP-specific phosphodiesterase. We also showed that both genes were expressed in gustatory receptor neurons (GRNs) in larval and adult gustatory organs, primarily in a non-overlapping pattern, with the exception of a small group of cells in the adult labellum. In addition, in adults, several cells co-expressed the bitter taste receptor, Gr66a, with either Gyc-89Da or Gyc-89Db. We also showed that the electrophysiological responses of a GRN to caffeine were significantly reduced in flies mutant for the atypical sGCs, suggesting that at least part of the adult behavioral defects were due to a reduced ability to detect caffeine.  相似文献   

9.
Drosophila melanogaster, along with all insects and the vertebrates, lacks an RdRp gene. We created transgenic strains of Drosophila melanogaster in which the rrf-1 or ego-1 RdRp genes from C. elegans were placed under the control of the yeast GAL4 upstream activation sequence. Activation of the gene was performed by crossing these lines to flies carrying the GAL4 transgene under the control of various Drosophila enhancers. RT–PCR confirmed the successful expression of each RdRp gene. The resulting phenotypes indicated that introduction of the RdRp genes had no effect on D. melanogaster morphological development.  相似文献   

10.
Glutaredoxins are a family of small molecular weight proteins that have a central role in cellular redox regulation. Human GRX1 (hGRX1) has also been shown to play an integral role in copper homeostasis by regulating the redox activity of the metalated sites of copper chaperones such as ATOX1 and SOD1, and the copper efflux proteins ATP7A and ATP7B. To further elucidate the role of hGRX1 in copper homeostasis, we examined the impact of RNA interference-mediated knockdown of CG6852, a putative Drosophila orthologue of hGRX1. CG6852 shares ~41 % amino acid identity with hGRX1 and key functional domains including the metal-binding CXXC motif are conserved between the two proteins. Knockdown of CG6852 in the adult midline caused a thoracic cleft and reduced scutellum, phenotypes that were exacerbated by additional knockdown of copper uptake transporters Ctr1A and Ctr1B. Knockdown of CG6852 in the adult eye enhanced a copper-deficiency phenotype caused by Ctr1A knockdown while ubiquitous knockdown of CG6852 resulted a mild systemic copper deficiency. Therefore we conclude that CG6852 is a putative orthologue of hGRX1 and may play an important role in Drosophila copper homeostasis.  相似文献   

11.
Ogataea parapolymorpha sp. n. (NRRL YB-1982, CBS 12304, type strain), the ascosporic state of Candida parapolymorpha, is described. The species appears homothallic, assimilates methanol as is typical of most Ogataea species and forms hat-shaped ascospores in asci that become deliquescent. O. parapolymorpha is closely related to Ogataea angusta and Ogataea polymorpha. The three species can be resolved from gene sequence analyses but are unresolved from fermentation and growth reactions that are typically used for yeast identification. On the basis of multiple isolates, O. angusta is known only from California, USA, in association with Drosophila and Aulacigaster flies, O. parapolymorpha is predominantly associated with insect frass from trees in the eastern USA but O. polymorpha has been isolated from various substrates in the USA, Brazil, Spain and Costa Rica.  相似文献   

12.
Heparan sulfate proteoglycans play a vital role in signaling of various growth factors in both Drosophila and vertebrates. In Drosophila, mutations in the tout velu (ttv) gene, a homolog of the mammalian EXT1 tumor suppressor gene, leads to abrogation of glycosaminoglycan (GAG) biosynthesis. This impairs distribution and signaling activities of various morphogens such as Hedgehog (Hh), Wingless (Wg), and Decapentaplegic (Dpp). Mutations in members of the exostosin (EXT) gene family lead to hereditary multiple exostosis in humans leading to bone outgrowths and tumors. In this study, we provide genetic and biochemical evidence that the human EXT1 (hEXT1) gene is conserved through species and can functionally complement the ttv mutation in Drosophila. The hEXT1 gene was able to rescue a ttv null mutant to adulthood and restore GAG biosynthesis.  相似文献   

13.
Copper is an integral part of a number of proteins and thus an essential trace metal. However, free copper ions can be highly toxic and every organism has to carefully control its bioavailability. Eukaryotes contain three copper chaperones; Atx1p/Atox1 which delivers copper to ATP7 transporters located in the trans-Golgi network, Cox17 which provides copper to the mitochondrial cytochrome c oxidase, and CCS which is a copper chaperone for superoxide dismutase 1. Here we describe the knockout phenotype of the Drosophila homolog of mammalian Atox1 (ATX1 in yeast). Atox1/− flies develop normally, though at reduced numbers, and the eclosing flies are fertile. However, the mutants are unable to develop on low-copper food. Furthermore, the intestinal copper importer Ctr1B, which is regulated by copper demand, fails to be induced upon copper starvation in Atox1/− larvae. At the same time, intestinal metallothionein is upregulated. This phenotype, which resembles the one of the ATP7 mutant, is best explained by intestinal copper accumulation, combined with insufficient delivery to the rest of the body. In addition, compared to controls, Drosophila Atox1 mutants are relatively insensitive to the anticancer drug cisplatin, a compound which is also imported via Ctr1 copper transporters and was recently found to bind mammalian Atox1.  相似文献   

14.
Neurons have an enormous capacity to adapt to changing conditions through the regulation of gene expression, morphology, and physiology. In the fruit fly Drosophila melanogaster, this plasticity includes recurrent changes taking place within intervals of a few hours during the day. The rhythmic alterations in the morphology of neurons described so far include changes in axonal diameter, branching complexity, synapse numbers, and the number of synaptic vesicles. The cycles of these changes have larger amplitude when the fly is exposed to light, but they persist in constant darkness and require the expression of the clock genes period and timeless, leading to the concept of circadian plasticity. The molecular mechanisms driving these cycles appear to require the expression of these genes either inside the neurons themselves or in other peripheral pacemaker cells. Loss-of-function mutations in period and timeless not only abolish the morphological rhythms, but also often cause abnormal axonal branching suggesting that circadian plasticity is relevant for the maintenance of normal morphology. Research into whether (1) circadian plasticity is a common feature of neurons in all animals and (2) our own neurons change shape between day and night will be of interest.  相似文献   

15.
Apple (Malus domestica Borkh.) possesses gametophytic self-incompatibility (GSI) which is controlled by S-RNase in the pistil as well as a pollen S-determinant that has not been well characterized. The identification of S-locus F-box brother (SFBB) genes, which are good candidates for the pollen S-determinant in apple and pear, indicated the presence of multiple S-allelic polymorphic F-box genes at the S-locus. In apple, two SFBB gene groups have been described, while there are at least three groups in pear. In this report, we identified five MdSLFB (S-RNase-linked F-box) genes from four different S-genotypes of apple. These genes showed pollen- and S-allele-specific expression with a high polymorphism among S-alleles. The phylogenetic tree suggested that some of them belong to SFBBα or β groups as described previously, while others appear to be different from SFBBs. In particular, the presence of MdSLFB3 and MdSLFB9 suggested that there are more S-allelic polymorphic F-box gene groups in the S-locus besides α and β. Based on the sequence polymorphism of MdSLFBs, we developed an S-genotyping system for apple cultivars. In addition, we isolated twelve MdSLFB-like genes, which showed pollen-specific expression without S-allelic polymorphism.  相似文献   

16.
A pea rust fungus, Uromyces viciae-fabae, has been classified into two varieties, var. viciae-fabae and var. orobi, based on differences in urediniospore wall thickness and putative host specificity in Japan. In principal component analyses, morphological features of urediniospores and teliospores of 94 rust specimens from Vicia, Lathyrus, and Pisum did not show definite host-specific morphological groups. In molecular analyses, 23 Uromyces specimens from Vicia, Lathyrus, and Pisum formed a single genetic clade based on D1/D2 and ITS regions. Four isolates of U. viciae-fabae from V. cracca and V. unijuga could infect and sporulate on P. sativum. These results suggest that U. viciae-fabae populations on different host plants are not biologically differentiated into groups that can be recognized as varieties.Contribution no. 184, Laboratory of Plant Parasitic Mycology, Institute of Agriculture and Forestry, University of Tsukuba, Japan  相似文献   

17.
An in vitro study is a powerful method for elucidating gene functions in cellular and developmental events. However, until date, no reliable in vitro transformation, cloning, or knockdown system has been reported for Drosophila cells, with the exception of S2 and Kc cells. In this study, we demonstrated that the piggyBac vector stably integrates donor DNA into ovarian somatic sheets derived from follicle stem cells. The transformed ovarian somatic sheet cells were easily cloned with a new piggyBac selection vector carrying enhanced green fluorescent protein and dihydrofolate reductase genes, egfp, and dhfr, respectively, in culture media containing methotrexate, an inhibitor of DNA synthesis. Donor egfp continued to be expressed at a high level in long-term culture. Furthermore, the translation of donor egfp was inhibited by treatment with double-stranded RNA derived from the target gene. The transfection and cloning methods mediated by the piggyBac vector would thus be useful for future analyses of gene functions in OSS cells and possibly be applicable to other Drosophila cell lines.  相似文献   

18.
The blast resistance gene Pik-p, mapping to the Pik locus on the long arm of rice chromosome 11, was isolated by map-based in silico cloning. Four NBS-LRR genes are present in the target region of cv. Nipponbare, and a presence/absence analysis in the Pik-p carrier cv. K60 excluded two of these as candidates for Pik-p. The other two candidates (KP3 and KP4) were expressed in cv. K60. A loss-of-function experiment by RNAi showed that both KP3 and KP4 are required for Pik-p function, while a gain-of-function experiment by complementation test revealed that neither KP3 nor KP4 on their own can impart resistance, but that resistance was expressed when both were introduced simultaneously. Both Pikp-1 (KP3) and Pikp-2 (KP4) encode coiled-coil NBS-LRR proteins and share, respectively, 95 and 99% peptide identity with the two alleles, Pikm1-TS and Pikm2-TS. The Pikp-1 and Pikp-2 sequences share only limited homology. Their sequence allowed Pik-p to be distinguished from Pik, Pik-s, Pik-m and Pik-h. Both Pikp-1 and Pikp-2 were constitutively expressed in cv. K60 and only marginally induced by blast infection.  相似文献   

19.
Lesion and transplantation studies in the cockroach, Leucophaea maderae, have located its bilaterally symmetric circadian pacemakers necessary for driving circadian locomotor activity rhythms to the accessory medulla of the optic lobes. The accessory medulla comprises a network of peptidergic neurons, including pigment-dispersing factor (PDF)-expressing presumptive circadian pacemaker cells. At least three of the PDF-expressing neurons directly connect the two accessory medullae, apparently as a circadian coupling pathway. Here, the PDF-expressing circadian coupling pathways were examined for peptide colocalization by tracer experiments and double-label immunohistochemistry with antisera against PDF, FMRFamide, and Asn13-orcokinin. A fourth group of contralaterally projecting medulla neurons was identified, additional to the three known groups. Group one of the contralaterally projecting medulla neurons contained up to four PDF-expressing cells. Of these, three medium-sized PDF-immunoreactive neurons coexpressed FMRFamide and Asn13-orcokinin immunoreactivity. However, the contralaterally projecting largest PDF neuron showed no further peptide colocalization, as was also the case for the other large PDF-expressing medulla cells, allowing the easy identification of this cell group. Although two-thirds of all PDF-expressing medulla neurons coexpressed FMRFamide and orcokinin immunoreactivity in their somata, colocalization of PDF and FMRFamide immunoreactivity was observed in only a few termination sites. Colocalization of PDF and orcokinin immunoreactivity was never observed in any of the terminals or optic commissures. We suggest that circadian pacemaker cells employ axonal peptide sorting to phase-control physiological processes at specific times of the day.  相似文献   

20.
The Drosophila photoreceptor is a highly polarized cell; a mature photoreceptor cell in Drosophila contains a photosensitive structure (the rhabdomere) and a supporting membrane (stalk) at its apical membrane. In a screen to isolate genes involved in determining stalk and rhabdomere formation, this study has identified the Drosophila mob2 (Dmob2) gene. Dmob2 belongs to a Mob1/phocein domain protein family whose functions are involved in polarized cell growth and asymmetric cell fate determination in yeast. To study the role of Dmob2 in photoreceptor development, we have raised an antibody against the Dmob2 protein. An immunocytochemical study has shown that Dmob2 is mainly localized in the apical membrane of photoreceptor cells during early development. As development proceeds, Dmob2 is gradually confined to the rhabdomere base of the photoreceptor cells. RNA interference (RNAi) for knockdown Dmob2 expression during eye development impairs rhabdomere formation. Our study further shows that the subcellular localization of phosphorylated Moesin and Crumbs in the developing photoreceptor cell is disrupted in Dmob2 RNAi flies. This work thus reports a novel function of Dmob2 in photoreceptor cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号