首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three acylated flavonol diglucosides, kaempferol 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside; quercetin 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside; isorhamnetin 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside were isolated from the whole plant aqueous alcohol extract of Lotus polyphyllos. The known 3,7-di-O-glucosides of the aglycones kaempferol, quercetin and isorhamnetin were also characterized. All structures were established on the basis of chemical and spectral evidence.  相似文献   

2.
Here we describe the efficient synthesis of two oligosaccharide moieties of human glycosphingolipids, globotetraose (GalNAcβ1→3Galα1→4Galβ1→4Glc) and isoglobotetraose (GalNAcβ1→3Galα1→3Galβ1→4Glc), with in situ enzymatic regeneration of UDP-N-acetylgalactosamine (UDP-GalNAc). We demonstrate that the recombinant β-1,3-N-acetylgalactosaminyltransferase from Haemophilus influenzae strain Rd can transfer N-acetylgalactosamine to a wide range of acceptor substrates with a terminal galactose residue. The donor substrate UDP-GalNAc can be regenerated by a six-enzyme reaction cycle consisting of phosphoglucosamine mutase, UDP-N-acetylglucosamine pyrophosphorylase, phosphate acetyltransferase, pyruvate kinase, and inorganic pyrophosphatase from Escherichia coli, as well as UDP-N-acetylglucosamine C4 epimerase from Plesiomonas shigelloides. All these enzymes were overexpressed in E. coli with six-histidine tags and were purified by one-step nickel-nitrilotriacetic acid affinity chromatography. Multiple-enzyme synthesis of globotetraose or isoglobotetraose with the purified enzymes was achieved with relatively high yields.  相似文献   

3.
Neoplastic mast cells of mice (including long-established and newly derived lines) were grown in large-volume suspension cultures to provide enough cells for preparation of microsomal fractions. Microsomal preparations from P815Y and P815S cells synthesized 14C-labelled glycosaminoglycan when incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine. No significant amount of 14C-labelled glycosaminoglycan was formed when UDP-N-acetylglucosamine was substituted for the UDP-N-acetylgalactosamine. Microsomal preparations from X163 cells synthesized 14C-labelled glycosaminoglycan when incubated with UDP-[14C]glucuronic acid and either UDP-N-acetylgalactosamine or UDP-N-acetylglucosamine. The 14C-labelled glycosaminoglycan formed in the presence of UDP-N-acetylgalactosamine was degradable by testicular hyaluronidase, indicating that it was chondroitin-like. The 14C-labelled glycosaminoglycan formed in the presence of UDP-N-acetylglucosamine was not degradable by testicular hyaluronidase. Microsomal preparations from P815S cells were tested for sulphating activity by incubation with adenosine 3′-phosphate 5′-sulphatophosphate, as well as UDP-[14C]glucuronic acid, and UDP-N-acetylgalactosamine. The resulting newly synthesized polysaccharide was shown by chondroitinase ABC digestion to be 70% chondroitin 4-sulphate and 30% chondroitin. The molecular size of this newly synthesized glycosaminoglycan was determined by gel filtration to be larger than 40000 mol.wt. In general, the glycosaminoglycan-synthesizing ability of the microsomal preparations appeared to reflect glycosaminoglycan synthesis by the intact cells.  相似文献   

4.
1. The tissue contents of hexose monophosphate, N-acetylglucosamine 6-phosphate, UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine and UDP-glucuronic acid were determined in the skin of young rats less than 1 day post partum. Tissue-space determinations were used to calculate their average cellular concentrations. 2. The incorporation of [U-14C]-glucose into the intermediates was recorded with time and their rates of turnover were calculated. The results demonstrated product–precursor relationships along the pathway of hexosamine synthesis and that of hexuronic acid synthesis. The rates of synthesis of UDP-N-acetylhexosamine and UDP-glucuronic acid were 1·5±0·3 and 0·24±0·03mμmoles/min./g. of tissue respectively. These results indicated the average turnover time of the total tissue glycosaminoglycans to be about 5 days.  相似文献   

5.
We have identified an operon and characterized the functions of two genes from the severe food-poisoning bacterium, Bacillus cereus subsp. cytotoxis NVH 391-98, that are involved in the synthesis of a unique UDP-sugar, UDP-2-acetamido-2-deoxyxylose (UDP-N-acetyl-xylosamine, UDP-XylNAc). UGlcNAcDH encodes a UDP-N-acetyl-glucosamine 6-dehydrogenase, converting UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-N-acetyl-glucosaminuronic acid (UDP-GlcNAcA). The second gene in the operon, UXNAcS, encodes a distinct decarboxylase not previously described in the literature, which catalyzes the formation of UDP-XylNAc from UDP-GlcNAcA in the presence of exogenous NAD+. UXNAcS is specific and cannot utilize UDP-glucuronic acid and UDP-galacturonic acid as substrates. UXNAcS is active as a dimer with catalytic efficiency of 7 mm−1 s−1. The activity of UXNAcS is completely abolished by NADH but unaffected by UDP-xylose. A real-time NMR-based assay showed unambiguously the dual enzymatic conversions of UDP-GlcNAc to UDP-GlcNAcA and subsequently to UDP-XylNAc. From the analyses of all publicly available sequenced genomes, it appears that UXNAcS is restricted to pathogenic Bacillus species, including Bacillus anthracis and Bacillus thuringiensis. The identification of UXNAcS provides insight into the formation of UDP-XylNAc. Understanding the metabolic pathways involved in the utilization of this amino-sugar may allow the development of drugs to combat and eradicate the disease.  相似文献   

6.
Santonin (1) was incubated with separate growing cultures of Aspergillus niger ATCC 9142, Mucor plumbeus ATCC 4740, Whetzelinia sclerotiorum ATCC 18687, Cunninghamella echinulata var. elegans ATCC 8688a and Phanerochaete chrysosporium ATCC 24725. Three novel metabolites were isolated: 11β,13-dihydroxysantonin (3), 6,7-dehydosantonin (5) and 3,6-dihydroxy-9-keto-9,10-seco-selina-1,3,5(10)-trien-12-oic acid-12,6-lactone (7). 11β-Hydroxysantonin (2), 14-hydroxysantonin (4) and 3,6,9-trihydroxy-9,10-seco-selina-1,3,5(10)-trien-12-oic acid-12,6-lactone (6) were also isolated. Hydroxylation at C-9 followed by a retro-aldol reaction was postulated to have produced 6 and 7. Through the synthesis and fermentation of the santonin analogues: tetrahydrosantonin (8) and α-desmotroposantonin (12), several new compounds were obtained; the most significant being 9-keto-desmotroposantonin (14), which was indicative of C-9 monohydroxylation.  相似文献   

7.
A complex trisaccharide β-d-GalpNAcA-(1 → 4)-β-d-GlcpNAc-(1 → 4)-d-ManpNAc (3) was prepared in a good yield (35%) in a transglycosylation reaction catalyzed by β-N-acetylhexosaminidase from Talaromyces flavus using p-nitrophenyl 2-acetamido-2-deoxy-β-d-galacto-hexodialdo-1,5-pyranoside (1) as a donor followed by the in situ oxidation of the aldehyde functionality by NaClO2. The disaccharide β-d-GlcpNAc-(1 → 4)-d-ManpNAc (2) was used as galactosyl acceptor. A disaccharide β-d-GalpNAcA-(1 → 4)-d-GlcpNAc (4; 39%) originated as a by-product in the reaction. Oligosaccharides comprising a carboxy moiety at C-6 are shown to be very efficient ligands to natural killer cell activation receptors, particularly to human receptor CD69. Thus, oxidized trisaccharide 3 is the best-known oligosaccharidic ligand to this receptor, with IC50 = 2.5 × 10−9 M. The presented method of introducing a β-d-GalpNAcA moiety into carbohydrate structures is versatile and can be applied in the synthesis of other complex oligosaccharides.  相似文献   

8.
9.
A panel of six complementary monodeoxy and mono-O-methyl congeners of methyl β-d-mannopyranosyl-(1→2)-β-d-mannopyranoside (1) were synthesized by stereoselective glycosylation of monodeoxy and mono-O-methyl monosaccharide acceptors with a 2-O-acetyl-glucosyl trichloroacetimidate donor, followed by a two-step oxidation–reduction sequence at C-2′. The β-manno configurations of the final deprotected congeners 2–7 were confirmed by measurement of 1JC1,H1 heteronuclear and 3J1′,2′ homonuclear coupling constants. These disaccharide derivatives will be used to map the protective epitope recognized by a protective anti-Candida albicans monoclonal antibody C3.1 (IgG3) and to determine its key polar contacts with the binding site.  相似文献   

10.
UDP-N-acetylglucosamine acyltransferase (LpxA) and UDP-3-O-(acyl)-glucosamine acyltransferase (LpxD) constitute the essential, early acyltransferases of lipid A biosynthesis. Recently, an antimicrobial peptide inhibitor, RJPXD33, was identified with dual affinity for LpxA and LpxD. To gain a fundamental understanding of the molecular basis of inhibitor binding, we determined the crystal structure of LpxA from Escherichia coli in complex with RJPXD33 at 1.9 Å resolutions. Our results suggest that the peptide binds in a unique modality that mimics (R)-β-hydroxyacyl pantetheine binding to LpxA and displays how the peptide binds exclusive of the native substrate, acyl-acyl carrier protein. Acyltransferase binding studies with photo-labile RJPXD33 probes and truncations of RJPXD33 validated the structure and provided fundamental insights for future design of small molecule inhibitors. Overlay of the LpxA-RJPXD33 structure with E. coli LpxD identified a complementary peptide binding pocket within LpxD and serves as a model for further biochemical characterization of RJPXD33 binding to LpxD.  相似文献   

11.
β-Echinenone is a major carotenoid in the gonad of sea urchins and may play an important role in reproduction and embryonic development. We reinvestigated β-echinenone occurrence in the gonad, viscera, test, and spine of the sea urchin Pseudocentrotus depressus. It was found that β-echinenone fraction consisted of all-E- and 9′Z-β-echinenone. The highest abundance of 9′Z-β-echinenone (76.0–78.2% of the total β-echinenone fraction) was observed in the ovary and testis of the sea urchin. In both females and males, all-E-β-echinenone predominated in the viscera (63.6–75.9%), unlike the 9′Z-β-echinenone, and it was also present in the test and spine (41.3–64.9%). It should be made clear that the work suggests that the Z-carotenoid may have a specific function in the sea urchin, possibly related to reproduction.  相似文献   

12.
A series of pregnanediols and pregnanetriols doubly conjugated with N-acetylglucosamine and glucuronic or sulfuric acid has been identified in urine from pregnant women. Steroid conjugates were separated by ion-exchange chromatography and the glucuronide and monosulfate fractions were analysed by fast atom bombardment mass spectrometry. After removal of the acid moiety, the neutral steroids were isolated, derivatized, and analysed by gas chromatography-mass spectrometry (GC-MS). The analyses revealed the presence of steroids conjugated with N-acetylhexosamine both in the glucuronide and the monosulfate fractions. Following enzyme hydrolysis, the sugar was identified by GC-MS as N-acetylglucosamine (GlcNAc). The major steroid conjugated with GlcNAc both in the glucuronide and monosulfate fractions was identified as 5α-pregnane-3α,20α-diol. 5β-Pregnane-3α,20α-diol was also present as a GlcNAc conjugate in both fractions whereas a GlcNAc conjugate of 5α-pregnane-3β,20α-diol was only found in the sulfate fraction. 5α-Pregnane-3α,20α,21-triol was a double conjugate with GlcNAc in the sulfate fraction whereas a pregnane-2,3,20-triol was a double conjugate in the glucuronide fraction. The positions of conjugation were determined by collision-induced dissociation of the pseudomolecular anions produced by fast atom bombardment ionization. The sulfate and glucuronic acid moieties were located at C-3 and N-acetylglucosamine at C-20. An alternative localization of GlcNAc at C-21 of 5α-pregnane-3α,20α,21-triol cannot be excluded. Judging from the enzymatic hydrolysis of the conjugates, the sugar was attached in β-glycosidic linkage. The mean excretion of N-acetylglucosaminides of the pregnanediols and pregnanetriols was 32.2 μmol/g creatinine (range 17.9–49.1 μmol) in five healthy women in the 38th–39th week of pregnancy. The mean excretion of 5β-pregnane-3α,20α-diol glucuronide in the same women was 71 μmol/g creatinine, (range 27–127 μmol). This indicates that conjugation with N-acetylglucosamine constitutes a quantitatively important pathway of progesterone metabolism in human pregnancy.  相似文献   

13.
The purpose of this report is to explore the growth inhibitory effect of extracts and compounds from black cohosh and related Cimicifuga species on human breast cancer cells and to determine the nature of the active components. Black cohosh fractions enriched for triterpene glycosides and purified components from black cohosh and related Asian species were tested for growth inhibition of the ER Her2 overexpressing human breast cancer cell line MDA-MB-453. Growth inhibitory activity was assayed using the Coulter Counter, MTT and colony formation assays.Results suggested that the growth inhibitory activity of black cohosh extracts appears to be related to their triterpene glycoside composition. The most potent Cimicifuga component tested was 25-acetyl-7,8-didehydrocimigenol 3-O-β-d-xylopyranoside, which has an acetyl group at position C-25. It had an IC50 of 3.2 μg/ml (5 μM) compared to 7.2 μg/ml (12.1 μM) for the parent compound 7,8-didehydrocimigenol 3-O-β-d-xylopyranoside. Thus, the acetyl group at position C-25 enhances growth inhibitory activity.The purified triterpene glycoside actein (β-d-xylopyranoside), with an IC50 equal to 5.7 μg/ml (8.4 μM), exhibited activity comparable to cimigenol 3-O-β-d-xyloside. MCF7 (ER+Her2 low) cells transfected for Her2 are more sensitive than the parental MCF7 cells to the growth inhibitory effects of actein from black cohosh, indicating that Her2 plays a role in the action of actein. The effect of actein on Her2 overexpressing MDA-MB-453 and MCF7 (ER+Her2 low) human breast cancer cells was examined by fluorescent microscopy. Treatment with actein altered the distribution of actin filaments and induced apoptosis in these cells.These findings, coupled with our previous evidence that treatment with the triterpene glycoside actein induced a stress response and apoptosis in human breast cancer cells, suggest that compounds from Cimicifuga species may be useful in the prevention and treatment of human breast cancer.  相似文献   

14.
The fate of 6α- and 6β-hydrogens of lathosterol during the transformation into 20-hydroxyecdysone was chased by feeding [3α,6β-2H2]- and [3α,6α-2H2]-lathosterols to hairy roots of Ajuga reptans var. atropurpurea. The behavior of 6β-hydrogen, which mostly migrated to the C-5 position of 20-hydroxyecdysone, was in agreement with that of C-6 hydrogen of cholesterol. The results strongly supported the view that cholesterol and lathosterol are first metabolized into 7-dehydrocholesterol, which is then converted into 20-hydroxyecdysone via 7-dehydrocholesterol 5α,6α-epoxide in the hairy roots.  相似文献   

15.
Three phenolic glycosides 5-O-{[5′′-O-E-(4′′′-O-threo-guaiacylglycerol)-feruloyl]-β-apiofuranosyl-(1→2)-β-xylopyranosyl} gentisic acid, 5-O-[(5′′-O-vanilloyl)-β-apiofuranosyl-(1→2)-β-xylopyranosyl] gentisic acid and 1-O-[E-(4′′′-O-threo-guaiacylglycerol)-feruloyl]-3-O-β-galacturonopyranosyl glycerol were isolated and identified from the roots of Medicago truncatula together with four known 5-O-β-xylopyranosyl gentisic acid, vicenin-2, hovetrichoside C and pterosupin identified for the first time in this species. Structural elucidation was carried out on the basis of UV, mass, 1H and 13C NMR spectral data.  相似文献   

16.
In order to prepare 3-aminopropyl glycosides of Neu5Ac-α-(2→6′)-lactosamine trisaccharide 1, and its N-glycolyl containing analogue Neu5Gc-α-(2→6′)-lactosamine 2, a series of lactosamine acceptors with two, three, and four free OH groups in the galactose residue was studied in glycosylations with a conventional sialyl donor phenyl [methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio- -glycero-α- and β- -galacto-2-nonulopyranosid]onates (3) and a new donor phenyl [methyl 4,7,8,9-tetra-O-acetyl-5-(N-tert-butoxycarbonylacetamido)-3,5-dideoxy-2-thio- -glycero-α- and β- -galacto-2-nonulopyranosid]onates (4), respectively. The lactosamine 4′,6′-diol acceptor was found to be the most efficient in glycosylation with both 3 and 4, while imide-type donor 4 gave slightly higher yields with all acceptors, and isolation of the reaction products was more convenient. In the trisaccharides, obtained by glycosylation with donor 4, the 5-(N-tert-butoxycarbonylacetamido) moiety in the neuraminic acid could be efficiently transformed into the desired N-glycolyl fragment, indicating that such protected oligosaccharide derivatives are valuable precursors of sialo-oligosaccharides containing N-modified analogues of Neu5Ac.  相似文献   

17.
A lignan glucoside, (+)-pinoresinol 4-O-[6″-O-galloyl]-β-d-glucopyranoside (1), and two megastigmane glucosides, named macarangiosides E and F (2, 3), together with 15 known compounds (418) were isolated from leaves of Macaranga tanarius (L.) Müll.-Arg. (Euphorbiaceae). Their structures were elucidated by spectroscopic and chemical analyses. In addition, the absolute stereochemistry of macarangiosides B and C isolated previously from the same plant was also determined for the first time. Compounds 1 and 2 were galloylated on glucose and possessed potent DPPH radical-scavenging activity.  相似文献   

18.
Three prenylated flavonoid derivatives; 5,7,4′-trihydroxy-8-(3-methylbut-2-enyl)-6-(2″-hydroxy-3″-methylbut-3″enyl) isoflavone (isoerysenegalensein E), 5,7,2′-trihydroxy-4′-methoxy-5′-(3″-methylbut-2″-enyl) isoflavanone (lysisteisoflavanone), 5, 4′-dihydroxy-6-(3-methylbut-2-enyl)-2″-hydroxyisopropyl dihydrofurano [4″,5″:8,7] isoflavone (isosenegalensin), together with the four known flavonoids abyssinone V-4′-methylether, alpinumisoflavone, wighteone and burttinone were isolated from the stem bark of Erythrina lysistemon Hutch. (Leguminosae). Structures were elucidated by spectroscopic methods.  相似文献   

19.
UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) catalyzes the deacetylation of UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine to form UDP-3-O-myristoylglucosamine and acetate in Gram-negative bacteria. This second, and committed, step in lipid A biosynthesis is a target for antibiotic development. LpxC was previously identified as a mononuclear Zn(II) metalloenzyme; however, LpxC is 6–8-fold more active with the oxygen-sensitive Fe(II) cofactor (Hernick, M., Gattis, S. G., Penner-Hahn, J. E., and Fierke, C. A. (2010) Biochemistry 49, 2246–2255). To analyze the native metal cofactor bound to LpxC, we developed a pulldown method to rapidly purify tagged LpxC under anaerobic conditions. The metal bound to LpxC purified from Escherichia coli grown in minimal medium is mainly Fe(II). However, the ratio of iron/zinc bound to LpxC varies with the metal content of the medium. Furthermore, the iron/zinc ratio bound to native LpxC, determined by activity assays, has a similar dependence on the growth conditions. LpxC has significantly higher affinity for Zn(II) compared with Fe(II) with KD values of 60 ± 20 pm and 110 ± 40 nm, respectively. However, in vivo concentrations of readily exchangeable iron are significantly higher than zinc, suggesting that Fe(II) is the thermodynamically favored metal cofactor for LpxC under cellular conditions. These data indicate that LpxC expressed in E. coli grown in standard medium predominantly exists as the Fe(II)-enzyme. However, the metal cofactor in LpxC can switch between iron and zinc in response to perturbations in available metal ions. This alteration may be important for regulating the LpxC activity upon changes in environmental conditions and may be a general mechanism of regulating the activity of metalloenzymes.  相似文献   

20.
SLC35A3 is considered the main UDP-N-acetylglucosamine transporter (NGT) in mammals. Detailed analysis of NGT is restricted because mammalian mutant cells defective in this activity have not been isolated. Therefore, using the siRNA approach, we developed and characterized several NGT-deficient mammalian cell lines. CHO, CHO-Lec8, and HeLa cells deficient in NGT activity displayed a decrease in the amount of highly branched tri- and tetraantennary N-glycans, whereas monoantennary and diantennary ones remained unchanged or even were accumulated. Silencing the expression of NGT in Madin-Darby canine kidney II cells resulted in a dramatic decrease in the keratan sulfate content, whereas no changes in biosynthesis of heparan sulfate were observed. We also demonstrated for the first time close proximity between NGT and mannosyl (α-1,6-)-glycoprotein β-1,6-N-acetylglucosaminyltransferase (Mgat5) in the Golgi membrane. We conclude that NGT may be important for the biosynthesis of highly branched, multiantennary complex N-glycans and keratan sulfate. We hypothesize that NGT may specifically supply β-1,3-N-acetylglucosaminyl-transferase 7 (β3GnT7), Mgat5, and possibly mannosyl (α-1,3-)-glycoprotein β-1,4-N-acetylglucosaminyltransferase (Mgat4) with UDP-GlcNAc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号