首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Takada S  Goto K 《The Plant cell》2003,15(12):2856-2865
The flowering time of plants is tightly regulated by both promotive and repressive factors. Molecular genetic studies using Arabidopsis have identified several epigenetic repressors that regulate flowering time. Terminal flower2, (TFL2), which encodes a homolog of heterochromatin protein1 represses flowering locus T (FT) expression, which is induced by the activator constans (CO) in response to the long-day signal. Here, we show that TFL2, CO, and FT are expressed together in leaf vascular tissues and that TFL2 represses FT expression continuously throughout development. Mutations in TFL2 derepress FT expression within the vascular tissues of leaves, resulting in daylength-independent early flowering. TFL2 can reduce FT expression even when CO is overexpressed. However, FT expression reaches a level sufficient for floral induction even in the presence of TFL2, suggesting that TFL2 does not maintain FT in a silent state or inhibit it completely; rather, it counteracts the effect of CO on FT activation.  相似文献   

2.
3.
We provide evidence for the presence of targeting signals in the cytoplasmic, transmembrane, and stem (CTS) regions of Golgi glycosyltransferases that mediate sorting of their intracellular catalytic activity into different functional subcompartmental areas of the Golgi. We have constructed chimeras of human alpha1, 3-fucosyltransferase VI (FT6) by replacement of its CTS region with those of late and early acting Golgi glycosyltransferases and have stably coexpressed these constructs in BHK-21 cells together with the secretory reporter glycoprotein human beta-trace protein. The sialyl Lewis X:Lewis X ratios detected in beta-trace protein indicate that the CTS regions of the early acting GlcNAc-transferases I (GnT-I) and III (GnT-III) specify backward targeting of the FT6 catalytic domain, whereas the CTS region of the late acting human alpha1,3-fucosyltransferase VII (FT7) causes forward targeting of the FT6 in vivo activity in the biosynthetic glycosylation pathway. The analysis of the in vivo functional activity of nine different CTS chimeras toward beta-trace protein allowed for a mapping of the CTS donor glycosyltransferases within the Golgi/trans-Golgi network: GnT-I < (ST6Gal I, ST3Gal III) < GnT-III < ST8Sia IV < GalT-I < (FT3, FT6) < ST3Gal IV < FT7. The sensitivity or resistance of the donor glycosyltransferases toward intracellular proteolysis is transferred to the chimeric enzymes together with their CTS regions. Apparently, there are at least three different signals contained in the CTS regions of glycosyltransferases mediating: first, their Golgi retention; second, their targeting to specific in vivo functional areas; and third, their susceptibility toward intracellular proteolysis as a tool for the regulation of the intracellular turnover.  相似文献   

4.
Turner's syndrome was originally reported as sexual infantilism, short stature, webbed neck and cubitus valgus. Subsequent investigations, however, have disclosed many other abnormalities both in chromosomal and physical features occurring in this syndrome. An increased prevalence of Hashimoto's thyroiditis in patients with Turner's syndrome has been well documented and molecular defects of the TBG have been described. In our study we examined serum T3, T4, FT3, FT4, TSH and TBG levels in 18 girls with Turner's syndrome, in 18 healthy control girls and in the parents of both groups. We reported significant elevated levels of T3 and FT3 in the Turner's group (P 0.01). We did not find any quantitative abnormalities of immunoreactive TBG in the same patients.  相似文献   

5.
Wigge PA 《Current biology : CB》2011,21(9):R374-R378
Plants synchronise their flowering with the seasons to maximise reproductive fitness. While plants sense environmental conditions largely through the leaves, the developmental decision to flower occurs in the shoot apex, requiring the transmission of flowering information, sometimes over quite long distances. Interestingly, despite the enormous diversity of reproductive strategies and lifestyles of higher plants, a key component of this mobile flowering signal, or florigen, is contributed by a highly conserved gene: FLOWERING LOCUS T (FT). The FT gene encodes a small globular protein that is able to translocate from the leaves to the shoot apex through the phloem. Plants have evolved a variety of regulatory networks that control FT expression in response to diverse environmental signals, enabling flowering and other developmental responses to be seasonally timed. As well as playing a key role in flowering, recent discoveries indicate FT is also involved in other developmental processes in the plant, including dormancy and bud burst.  相似文献   

6.
Abstract

Integrated ichnology, sedimentology and sequence stratigraphy of the Lower Quartzite Member to the Arkosic Sandstone Member of the Koti Dhaman Formation (Cambrian Series 2, Stage 4), Tal Group, Nigali Dhar Syncline, Lesser Himalayan lithotectonic zone are presented. Trilobite traces of Gondwanan affinity i.e., Cruziana salomonis, Cruziana fasciculata, Rusophycus dispar and Rusophycus burjensis are recorded along with Arenicolites isp. and Skolithos isp. from the Lower Quartzite Member. A rich and diverse ichnoassemblage attributed to the Cruziana ichnofacies is described for the first time from the Arkosic Sandstone Member of the same formation. Seven ichnofossil assemblages, i.e., Cruziana-Rusophycus, Planolites-Palaeophycus, Cruziana problematica, Diplichnites, Cochlichnus anguineus, Bergaueria perata and Psammichnites gigas have been recognized in the Lower Quartzite to Arkosic Sandstone members of the Koti Dhaman Formation. Seven sedimentary facies i.e., sandstone–shale facies (FT1), cross-bedded (trough and planar) sandstone (FT2), bedded sandstone facies (FT3), shale facies (FT4), shale–sandstone facies (FT5), shale-rippled sandstone facies (FT6) and planar and trough cross-laminated sandstone (FT7) and four facies associations FA1-FA4 are identified in the Koti Dhaman Formation. The formation contains shallowing upward parasequences of a tidal flat complex. Overall, two major events are recognized: i) the break in sedimentation between the Lower Quartzite Member and the overlying Shale Member probably related to forced-regressive event and ii) the facies shift from FT6 to FT7 of the Arkosic Sandstone Member represents an erosive transgressive event; the surface is interpreted as wave ravinement surface, which also serves as a sequence boundary. Integrated ichnology, sedimentology and sequence stratigraphic studies indicate that the Lower Quartzite Member was deposited in a shallow subtidal sand sheet complex and tidal flat complex; the Shale Member was deposited in a mud flat setting of a tidal flat complex, and the Arkosic Sandstone Member in a mixed-flat (tidal flat complex) to sand sheet complex front and margin (subtidal sand sheet complex). Overall, the lower to middle part of the Koti Dhaman Formation represents a tide-dominated shallow subtidal–intertidal to mud-flat subenvironments of the tidal flat complex. A palaeogeographic reconstruction of lower Cambrian (516–514?Ma) is presented based on the distribution of trilobite traces from the Lesser Himalaya and the Bikaner–Nagaur area of Peninsular India (eastern Gondwana), Egypt, Jordan, Turkey (western Gondwana) and Canada (Avalonia).  相似文献   

7.
8.
9.
FLOWERING LOCUS T (FT) genes encode proteins that function as the mobile floral signal, florigen. In this study, we characterized five FT-like genes from the model legume, Medicago (Medicago truncatula). The different FT genes showed distinct patterns of expression and responses to environmental cues. Three of the FT genes (MtFTa1, MtFTb1, and MtFTc) were able to complement the Arabidopsis (Arabidopsis thaliana) ft-1 mutant, suggesting that they are capable of functioning as florigen. MtFTa1 is the only one of the FT genes that is up-regulated by both long days (LDs) and vernalization, conditions that promote Medicago flowering, and transgenic Medicago plants overexpressing the MtFTa1 gene flowered very rapidly. The key role MtFTa1 plays in regulating flowering was demonstrated by the identification of fta1 mutants that flowered significantly later in all conditions examined. fta1 mutants do not respond to vernalization but are still responsive to LDs, indicating that the induction of flowering by prolonged cold acts solely through MtFTa1, whereas photoperiodic induction of flowering involves other genes, possibly MtFTb1, which is only expressed in leaves under LD conditions and therefore might contribute to the photoperiodic regulation of flowering. The role of the MtFTc gene is unclear, as the ftc mutants did not have any obvious flowering-time or other phenotypes. Overall, this work reveals the diversity of the regulation and function of the Medicago FT family.  相似文献   

10.
BackgroundEssential metals play critical roles in fetal growth and development, but results from human studies are inconsistent. Additionally, whether maternal thyroid hormone (TH) levels mediate the associations between essential metals and fetal growth remains unknown.MethodsData for analysis were extracted from the Information System of Guangdong Women and Children Hospital between January 2017 and December 2019. Maternal levels of essential metals [copper (Cu), zinc (Zn), magnesium (Mg), and iron (Fe)] and THs were measured at the second trimester. Multivariate linear models were introduced to evaluate the potential associations between maternal essential metals, thyroid functions, and fetal growth, and the possible mediation effects of thyroid functions were explored in the median analyses.ResultsA total of 4186 mother-infant pairs were included in the present study. Maternal Fe levels were found to significantly increase birth weight in 272.91 g (95 % CI: 15.59, 530.22) among anemia group. Maternal Cu levels were positively associated with increased free triiodothyronine/free thyroxine ratio (FT3/FT4). Negative associations of Fe and Mg levels with thyroid-stimulating hormone (TSH) concentrations were observed, accompanied with the positive associations in relation to FT3, FT4 and FT3/FT4 ratio. Mediation analyses suggested that 72.01 % of the associations between Fe levels and birth length might be mediated by FT3 levels. Additionally, 25.85 % of the Cu-birth length association and 44.53 % of the Fe-birth length association could be explained by FT3/FT4 ratio.ConclusionOur findings suggest that maternal Cu, Mg, and Fe levels can alter TH concentrations, and maternal FT3 and FT3/FT4 ratio might be potential mediators on the developmental effects of Cu and Fe levels.  相似文献   

11.
Integration of flowering signals in winter-annual Arabidopsis   总被引:12,自引:0,他引:12       下载免费PDF全文
Photoperiod is the primary environmental factor affecting flowering time in rapid-cycling accessions of Arabidopsis (Arabidopsis thaliana). Winter-annual Arabidopsis, in contrast, have both a photoperiod and a vernalization requirement for rapid flowering. In winter annuals, high levels of the floral inhibitor FLC (FLOWERING LOCUS C) suppress flowering prior to vernalization. FLC acts to delay flowering, in part, by suppressing expression of the floral promoter SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1). Vernalization leads to a permanent epigenetic suppression of FLC. To investigate how winter-annual accessions integrate signals from the photoperiod and vernalization pathways, we have examined activation-tagged alleles of FT and the FT homolog, TSF (TWIN SISTER OF FT), in a winter-annual background. Activation of FT or TSF strongly suppresses the FLC-mediated late-flowering phenotype of winter annuals; however, FT and TSF overexpression does not affect FLC mRNA levels. Rather, FT and TSF bypass the block to flowering created by FLC by activating SOC1 expression. We have also found that FLC acts as a dosage-dependent inhibitor of FT expression. Thus, the integration of flowering signals from the photoperiod and vernalization pathways occurs, at least in part, through the regulation of FT, TSF, and SOC1.  相似文献   

12.
Several parameters of thyroid function were studied in 112 non-ketoacidotic youngsters with insulin-dependent diabetes mellitus (IDDM). Levels of thyroxine (T4), reverse triiodothyronine (rT3), thyroxine-binding globulin (TBG) and T3 were lower than in controls, whereas FT4, and FT3 were normal. T4 levels in IDDM patients were positively related to T3, rT3 and TBG, and inversely related to haemoglobin A1 (HbA1). However, only 4 patients showed biochemical hypothyroidism (T4 less than 5 micrograms/100 ml), whereas their FT4, FT3 and thyroid-stimulating hormone (TSH) levels were normal. Concurrent variations of T3 and rT3 levels were found in IDDM patients; thus, their T3/rT3 ratios were stable or higher than in controls, indicating that peripheral deiodination of T4 is preferentially oriented to production of rT3 only during ketoacidosis. Although changes in thyroid function may reflect the degree of metabolic control of diabetes in a large population, the clinical usefulness of serum thyroid hormone measurements in an individual case still appears to be limited.  相似文献   

13.
目的:探讨甲状腺功能减退患者血清同型半胱氨酸(Hcy)、甲状腺激素(TH)及血脂水平测定的临床意义。方法:选取2016年2月-2017年2月期间我院收治的甲状腺功能减退患者101例为观察组,选取同期于我院体检的健康志愿者80例为对照组。检测所有研究对象甲状腺素(FT4)和三碘甲状腺原氨酸(FT3)、Hcy及血脂[甘油三酯(TG)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)]变化水平。比较观察组治疗前后、对照组与观察组治疗前FT3、FT4、Hcy及血脂水平,采用Pearson相关性分析血清Hcy与FT3、FT4、血脂水平的相关性。结果:观察组患者治疗后FT3、FT4均较治疗前升高,Hcy、TC、LDL-C均较治疗前降低(P0.05),而观察组患者治疗前后TG、HDL-C比较差异无统计学意义(P0.05)。观察组治疗前FT3、FT4、HDL-C水平明显低于对照组,而Hcy、TG、TC、LDL-C则明显高于对照组(P0.05)。经Pearson相关性分析显示,甲状腺功能减退患者Hcy与FT3、FT4呈负相关(P0.05),与TC、TG呈正相关(P0.05),而与LDL-C、HDL-C无相关性(P0.05)。结论:甲状腺功能减退患者的FT3、FT4、Hcy及血脂水平表达异常,且Hcy与FT3、FT4、血脂水平密切相关,临床上可通过监测甲状腺功能减退患者的上述指标,有助于评估患者的病情程度。  相似文献   

14.
Four healthy young male volunteers were submitted to the study of circadian and circannual bioperiodicities of several hormones: FT3, FT4, Cortisol, HGH, prolactin, PTh and plasma insulin levels. They were observed for a whole year and their blood samples were collected six times a day, every other month. The results were analyzed by two-way ANOVA macroscopic analysis and Student r-test. Our data registered a circannual variation in the mean circadian plasma levels of the following hormones: Cortisol (peak in December), HGH (peak in April), FT3 (peak in April), insulin (peak in February). FT4, prolactin and PTH showed no cyclic variation during the period of observation.  相似文献   

15.
Four healthy young male volunteers were submitted to the study of circadian and circannual bioperiodicities of several hormones: FT3, FT4, Cortisol, HGH, prolactin, PTh and plasma insulin levels. They were observed for a whole year and their blood samples were collected six times a day, every other month. The results were analyzed by two-way ANOVA macroscopic analysis and Student r-test. Our data registered a circannual variation in the mean circadian plasma levels of the following hormones: Cortisol (peak in December), HGH (peak in April), FT3 (peak in April), insulin (peak in February). FT4, prolactin and PTH showed no cyclic variation during the period of observation.  相似文献   

16.
The Flowering Locus T1 (FT1) gene from Populus trichocarpa under the control of the 35S promoter was transformed into European plum (Prunus domestica L). Transgenic plants expressing higher levels of FT flowered and produced fruits in the greenhouse within 1 to 10 months. FT plums did not enter dormancy after cold or short day treatments yet field planted FT plums remained winter hardy down to at least -10°C. The plants also displayed pleiotropic phenotypes atypical for plum including shrub-type growth habit and panicle flower architecture. The flowering and fruiting phenotype was found to be continuous in the greenhouse but limited to spring and fall in the field. The pattern of flowering in the field correlated with lower daily temperatures. This apparent temperature effect was subsequently confirmed in growth chamber studies. The pleitropic phenotypes associated with FT1 expression in plum suggests a fundamental role of this gene in plant growth and development. This study demonstrates the potential for a single transgene event to markedly affect the vegetative and reproductive growth and development of an economically important temperate woody perennial crop. We suggest that FT1 may be a useful tool to modify temperate plants to changing climates and/or to adapt these crops to new growing areas.  相似文献   

17.
Human fucosyltransferase III (EC ) (FT3wt) is localized in the Golgi of baby hamster kidney cells and synthesizes Lewis determinants associated with cell adhesion events. Replacement of the amino acid residues from the transmembrane domain (TM) Cys-16, Gln-23, Cys-29, and Tyr-33 by Leu (FT3np) caused a shift in enzyme localization to the plasma membrane. The mislocalization caused a dramatic decrease in the amount of biosynthetic products of FT3wt, the Lewis determinants. Determination of the expression levels on the surface with mutants of the enzyme, where one, two, or three of these residues were replaced by Leu, suggested that Cys from the TM was required for the localization of FT3 in the Golgi. Furthermore, Cys-23 and Cys-29 mediated the formation of disulfide-bonded dimers but not higher molecular weight oligomers. In vitro reconstitution of intra-Golgi transport showed that FT3wt was incorporated into coatomer protein (COP) I vesicles, contrary to FT3np. These data suggested that Cys, Gln, and Tyr residues are important for FT3wt sorting into the transport vesicles possibly due to interactions with other membrane proteins.  相似文献   

18.
Farnesyltransferase (FT) inhibitors can suppress tumor cell proliferation without substantially interfering with normal cell growth, thus holding promise for cancer treatment. A structure-based approach to the design of improved FT inhibitors relies on knowledge of the conformational flexibility of the zinc-containing active site of FT. Although several X-ray structures of FT have been reported, detailed information regarding the active site conformational flexibility of the enzyme is still not available. Molecular dynamics (MD) simulations of FT can offer the requisite information, but have not been applied due to a lack of effective methods for simulating the four-ligand coordination of zinc in proteins. Here, we report in detail the problems that occurred in the conventional MD simulations of the zinc-bound FT and a solution to these problems by employing a simple method that uses cationic dummy atoms to impose orientational requirement for zinc ligands. A successful 1.0 ns (1.0 fs time step) MD simulation of zinc-bound FT suggests that nine conserved residues (Asn127alpha, Gln162alpha, Asn165alpha, Gln195alpha, His248beta, Lys294beta, Leu295beta, Lys353beta, and Ser357beta) in the active site of mammalian FT are relatively mobile. Some of these residues might be involved in the ligand-induced active site conformational rearrangement upon binding and deserve attention in screening and design of improved FT inhibitors for cancer chemotherapy.  相似文献   

19.
The transmembrane domain (TM) and flanking regions of glycosyltransferases (GTs) have been implicated in the localization of these proteins in the Golgi apparatus (GA). alpha3/4 Fucosyltransferase III (FT3wt) (EC 2.4.1.65) is localized in the trans-Golgi and trans-Golgi network (TGN) of baby hamster kidney (BHK) cells and synthesizes Lewis determinants associated with cell adhesion events. We have evaluated the effect of removing the cytosolic domain on the localization of the enzyme and its capacity for synthesizing the Lewis A (Le A) determinant. The mutant where the cytoplasmic domain (Asp-2 to Trp-13) of FT3wt has been deleted (FT3dc) was localized in the Golgi but it was shifted to earlier compartments than FT3wt. The mutant was not detected on the plasma membrane (PM) and glycosylation analysis indicated that FT3dc was transported beyond the endoplasmic reticulum (ER) since complex type glycosylation was observed. Cells expressing FT3dc showed a significantly lower efficiency to synthesize Le A when compared with cells expressing FT3wt, in vivo. This reduction was not due to lower specific activity because both enzyme forms had a similar specific activity in vitro. Therefore, removal of FT3 cytosolic tail caused a shift in enzyme distribution to earlier Golgi compartments concomitant to the decrease of its biosynthetic capacity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号