首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rho subunits that constitute the gamma-aminobutyric acid (GABA)C receptors of retinal neurons form a unique subclass of ligand-gated chloride channels that give rise to sustained GABA-evoked currents that exhibit slow offset (deactivation) kinetics. We exploited this property to examine the molecular mechanisms that govern the disparate response kinetics and pharmacology of perch GABA rho1B and rho2A subunits expressed in Xenopus oocytes. Using a combination of domain swapping and site-directed mutagenesis, we identified the residues at amino acid position 320 in the second transmembrane domain as an important determinant of the receptor kinetics of GABAC receptors. When the site contains a proline residue, as in wild-type rho1 subunits, the receptor deactivates slowly; when serine occupies the site, as in wild-type rho2 subunits, the time course of deactivation is more rapid. In addition, we found that the same site also altered the pharmacology of GABA rho receptors, e.g., when the serine residue of the rho2A receptor was changed to proline, the response of the mutant receptor to imidazole-4-acetic acid (I4AA) mimicked that of the rho1B receptor. However, despite gross changes in receptor pharmacology, the apparent binding affinity for the drug was not significantly altered. These findings provide further evidence that the second transmembrane domain is involved in the gating mechanism that governs the response properties of the various rho receptor subunits. It is noteworthy that the proline residue in native rho1 subunits and the serine residue of rho2 subunits are well conserved in all species, a good indication that the presence of multiple GABA rho subunits serves to generate GABAC receptors that display the wide range of response kinetics observed on various types of retinal neurons.  相似文献   

2.
GABA(B) receptors function as heterodimers   总被引:4,自引:0,他引:4  
Our current understanding is that functional GABA(B) receptors exist as heterodimers of two related seven-transmembrane proteins, GABA(B)-R1 and GABA(B)-R2. GABA(B)-R1 requires GABA(B)-R2 to be expressed at the cell surface as a mature glycoprotein. Cloning of the GABA(B) receptor has failed to provide molecular evidence to support the existence of true receptor subtypes. The discovery of the heterodimeric nature of the GABA(B) receptor has already changed the way we think about GPCR function and it is likely that future studies will change our understanding about how receptor subtypes can be formed.  相似文献   

3.
The ρ subunits that constitute the γ‐aminobutyric acid (GABA)C receptors of retinal neurons form a unique subclass of ligand‐gated chloride channels that give rise to sustained GABA‐evoked currents that exhibit slow offset (deactivation) kinetics. We exploited this property to examine the molecular mechanisms that govern the disparate response kinetics and pharmacology of perch GABA ρ1B and ρ2A subunits expressed in Xenopus oocytes. Using a combination of domain swapping and site‐directed mutagenesis, we identified the residues at amino acid position 320 in the second transmembrane domain as an important determinant of the receptor kinetics of GABAC receptors. When the site contains a proline residue, as in wild‐type ρ1 subunits, the receptor deactivates slowly; when serine occupies the site, as in wild‐type ρ2 subunits, the time course of deactivation is more rapid. In addition, we found that the same site also altered the pharmacology of GABA ρ receptors, e.g., when the serine residue of the ρ2A receptor was changed to proline, the response of the mutant receptor to imidazole‐4‐acetic acid (I4AA) mimicked that of the ρ1B receptor. However, despite gross changes in receptor pharmacology, the apparent binding affinity for the drug was not significantly altered. These findings provide further evidence that the second transmembrane domain is involved in the gating mechanism that governs the response properties of the various ρ receptor subunits. It is noteworthy that the proline residue in native ρ1 subunits and the serine residue of ρ2 subunits are well conserved in all species, a good indication that the presence of multiple GABA ρ subunits serves to generate GABAC receptors that display the wide range of response kinetics observed on various types of retinal neurons. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 67–76, 1999  相似文献   

4.
Lin X  Li X  Jiang M  Chen L  Xu C  Zhang W  Zhao H  Sun B  Xu X  Nan F  Liu J 《The Biochemical journal》2012,443(3):627-634
Many GPCRs (G-protein-coupled receptors) can activate RTKs (receptor tyrosine kinases) in the absence of RTK ligands, a phenomenon called transactivation. However, the underlying molecular mechanisms remain undefined. In the present study we investigate the molecular basis of GABA(B) (γ-aminobutyric acid B) receptor-mediated transactivation of IGF-1R (insulin-like growth factor type I receptor) in primary neurons. We take a chemical biology approach by developing an activity-based probe targeting the GABA(B) receptor. This probe enables us first to lock the GABA(B) receptor in an inactive state and then activate it with a positive allosteric modulator, thereby permitting monitoring of the dynamic of the protein complex associated with IGF-1R transactivation. We find that activation of the GABA(B) receptor induces a dynamic assembly and disassembly of a protein complex, including both receptors and their downstream effectors. FAK (focal adhesion kinase), a non-RTK, plays a key role in co-ordinating this dynamic process. Importantly, this dynamic of the GABA(B) receptor-associated complex is critical for transactivation and transactivation-dependent neuronal survival. The present study has identified an important mechanism underlying GPCR transactivation of RTKs, which was enabled by a new chemical biology tool generally applicable for dissecting GPCR signalling.  相似文献   

5.
Tu H  Rondard P  Xu C  Bertaso F  Cao F  Zhang X  Pin JP  Liu J 《Cellular signalling》2007,19(9):1996-2002
gamma-aminobutyric acid type B (GABA(B)) receptor is an allosteric complex made of two subunits, GABA(B1) and GABA(B2). GABA(B2) plays a major role in the coupling to G protein whereas GABA(B1) binds GABA. It has been shown that GABA(B) receptor activates ERK(1/2) in neurons of the central nervous system, but the molecular mechanisms underlying this event are poorly characterized. Here, we demonstrate that activation of GABA(B) receptor by either GABA or the selective agonist baclofen induces ERK(1/2) phosphorylation in cultured cerebellar granule neurons. We also show that CGP7930, a positive allosteric regulator specific of GABA(B2), alone can induce the phosphorylation of ERK(1/2). PTX, a G(i/o) inhibitor, abolishes both baclofen and CGP7930-mediated-ERK(1/2) phosphorylation. Moreover, both baclofen and CGP7930 induce ERK-dependent CREB phosphorylation. Furthermore, by using LY294002, a PI-3 kinase inhibitor, and a C-term of GRK-2 that has been reported to sequester Gbetagamma subunits, we demonstrate the role of Gbetagamma in GABA(B) receptor-mediated-ERK(1/2) phosphorylation. In conclusion, the activation of GABA(B) receptor leads to ERK(1/2) phosphorylation via the coupling of GABA(B2) to G(i/o) and by releasing Gbetagamma subunits which in turn induce the activation of CREB. These findings suggest a role of GABA(B) receptor in long-term change in the central nervous system.  相似文献   

6.
The gamma-aminobutyric acid, type B (GABA(B)) receptor is well recognized as being composed of two subunits, GABA(B1) and GABA(B2). Both subunits share structural homology with other class-III G-protein-coupled receptors. They are composed of two main domains: a heptahelical domain (HD) typical of all G-protein-coupled receptors and a large extracellular domain (ECD). Although GABA(B1) binds GABA, GABA(B2) is required for GABA(B1) to reach the cell surface. However, it is still not demonstrated whether the association of these two subunits is always required for function in the brain. Indeed, GABA(B2) plays a major role in the coupling of the heteromer to G-proteins, such that it is possible that GABA(B2) can transmit a signal in the absence of GABA(B1). Today only ligands interacting with GABA(B1) ECD have been identified. Thus, the compounds acting exclusively on the GABA(B2) subunit will be helpful in analyzing the specific role of this subunit in the brain. Here, we explored the mechanism of action of CGP7930, a compound described as a positive allosteric regulator of the GABA(B) receptor. We showed that it activates the wild type GABA(B) receptor but with a low efficacy. The GABA(B2) HD is necessary for this effect, although one cannot exclude that CGP7930 could also bind to GABA(B1). Of interest, CGP7930 could activate GABA(B2) expressed alone and is the first described agonist of GABA(B2). Finally, we show that CGP7930 retains its agonist activity on a GABA(B2) subunit deleted of its ECD. This demonstrates that the HD of GABA(B2) behaves similar to a rhodopsin-like receptor, because it can reach the cell surface alone, can couple to G-protein, and be activated by agonists. These data open new strategies for studying the mechanism of activation of GABA(B) receptor and examine any possible role of homomeric GABA(B2) receptors.  相似文献   

7.
Molecular biological approaches to the GABAa receptor have resulted in new insights into the structure and pharmacology of this complex. It is known that the GABAa complex is a heterooligomer composed of multiple subunits which contain binding sites for the GABA, benzodiazepines and barbiturates. These subunits also contain regulatory sites for phosphorylation by intracellular kinases. There appear to be regional differences in the expression of the various subunits for the GABAa receptor complex. The functional significance of molecular heterogeneity is not yet known but it is expected that regional differences may result in pharmacologically diverse responses. Studies on the effects of chronic administration of diazepam have clearly delineated such regional differences. Chronic benzodiazepine administration results in the development of subsensitivity to the electrophysiological actions of GABA in the dorsal raphe, but not in GABA receptive neurons of the substantia nigra pars reticulata. Such data is consistent with regional heterogeneity in response to chronic benzodiazepine, exposure. It is hoped that by understanding GABAa receptor heterogeneity, and its molecular basis, we can improve the, existing receptor subtype specificity and pharmacology of the benzodiazepines.  相似文献   

8.
Metabotropic gamma-aminobutyric acid (GABA)B receptors are known to modulate the synaptic release of various neurotransmitters in the nervous system. Activation of GABA(B) receptor induces the inhibition of adenylyl cyclase activity, while it does not stimulate the formation of inositol phosphates. Activation of a potassium conductance and suppression of a calcium conductance are also recognized, similarly to some of G protein-coupled receptors. Recent molecular cloning has revealed that GABA(B) receptor possesses a large extracellular domain including the binding site for GABA and seven transmembrane domains. Their molecular structures in the brain are unique and interesting because of heterodimerization consisting of two distinct genes: GABABR1 and GABABR2. Such assembled receptors can be classified as a novel type of the metabotropic receptor superfamily.  相似文献   

9.
GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. The dynamic control of the cell surface stability of GABA(B) receptors is likely to be of fundamental importance in the modulation of receptor signaling. Presently, however, this process is poorly understood. Here we demonstrate that GABA(B) receptors are remarkably stable at the plasma membrane showing little basal endocytosis in cultured cortical and hippocampal neurons. In addition, we show that exposure to baclofen, a well characterized GABA(B) receptor agonist, fails to enhance GABA(B) receptor endocytosis. Lack of receptor internalization in neurons correlates with an absence of agonist-induced phosphorylation and lack of arrestin recruitment in heterologous systems. We also demonstrate that chronic exposure to baclofen selectively promotes endocytosis-independent GABA(B) receptor degradation. The effect of baclofen can be attenuated by activation of cAMP-dependent protein kinase or co-stimulation of beta-adrenergic receptors. Furthermore, we show that increased degradation rates are correlated with reduced receptor phosphorylation at serine 892 in GABA(B)R2. Our results support a model in which GABA(B)R2 phosphorylation specifically stabilizes surface GABA(B) receptors in neurons. We propose that signaling pathways that regulate cAMP levels in neurons may have profound effects on the tonic synaptic inhibition by modulating the availability of GABA(B) receptors.  相似文献   

10.
The G-protein-coupled receptor (GPCR) activated by the neurotransmitter GABA is made up of two subunits, GABA(B1) and GABA(B2). GABA(B1) binds agonists, whereas GABA(B2) is required for trafficking GABA(B1) to the cell surface, increasing agonist affinity to GABA(B1), and activating associated G proteins. These subunits each comprise two domains, a Venus flytrap domain (VFT) and a heptahelical transmembrane domain (7TM). How agonist binding to the GABA(B1) VFT leads to GABA(B2) 7TM activation remains unknown. Here, we used a glycan wedge scanning approach to investigate how the GABA(B) VFT dimer controls receptor activity. We first identified the dimerization interface using a bioinformatics approach and then showed that introducing an N-glycan at this interface prevents the association of the two subunits and abolishes all activities of GABA(B2), including agonist activation of the G protein. We also identified a second region in the VFT where insertion of an N-glycan does not prevent dimerization, but blocks agonist activation of the receptor. These data provide new insight into the function of this prototypical GPCR and demonstrate that a change in the dimerization interface is required for receptor activation.  相似文献   

11.
Circadian clocks play vital roles in the control of daily rhythms in physiology and behavior of animals. In Drosophila, analysis of the molecular and behavioral rhythm has shown that the master clock neurons are entrained by sensory inputs and are synchronized with other clock neurons. However, little is known about the neuronal circuits of the Drosophila circadian system and the neurotransmitters that act on the clock neurons. Here, we provide evidence for a new neuronal input pathway to the master clock neurons, s-LN(v)s, in Drosophila that utilizes GABA as a slow inhibitory neurotransmitter. We monitored intracellular calcium levels in dissociated larval s-LN(v)s with the calcium-sensitive dye Fura-2. GABA decreased intracellular calcium in the s-LN(v)s and blocked spontaneous oscillations in calcium levels. The duration of this response was dose-dependent between 1 nM and 100 microM. The response to GABA was blocked by a metabotropic GABA(B) receptor (GABA(B)-R) antagonist, CGP54626, but not by an ionotropic receptor antagonist, picrotoxin. The GABA(B)-R agonist, 3-APMPA, produced a response similar to GABA. An antiserum against one of the Drosophila GABA(B)-Rs (GABA(B)-R2) labeled the dendritic regions of the s-LN(v)s in both adults and larvae, as well as the dissociated s-LN(v)s. We found that some GABAergic processes terminate at the dendrites of the LN(v)s, as revealed by GABA immunostaining and a GABA-specific GAL4 line (GAD1-gal4). Our results suggest that the s-LN(v)s receive slow inhibitory GABAergic inputs that decrease intracellular calcium of these clock neurons and block their calcium cycling. This response is mediated by postsynaptic GABA(B) receptors.  相似文献   

12.
We have constructed a molecular model of the ligand-binding domain of the GABA(C) receptor, which is a member of the Cys-loop ligand-gated ion channel family. The extracellular domains of these receptors share similar sequence homology (20%) with Limnaea acetylcholine-binding protein for which an X-ray crystal structure is available. We used this structure as a template for homology modeling of the GABA(C) receptor extracellular domain using FUGUE and MODELLER software. FlexX was then used to dock GABA into the receptor ligand-binding site, resulting in three alternative energetically favorable orientations. Residues located no more than 5 A from the docked GABA were identified for each model; of these, three were found to be common to all models with 14 others present only in certain models. Using data from experimental studies, we propose that the most likely orientation of GABA is with its amine close to Y198, and its carboxylate close to R104. These studies have therefore provided a model of the ligand-binding domain, which will be useful for both GABA(C) and GABA(A) receptor studies, and have also yielded an experimentally testable hypothesis of the location of GABA in the binding pocket. [Figure: see text].  相似文献   

13.
Recent studies have shown that GABA(B) receptors play more than a classical inhibitory role and can function as an important synaptic maturation signal early in life. In a previous study, we reported that GABA(B) receptor activation triggers secretion of brain-derived neurotrophic factor (BDNF) and promotes the functional maturation of GABAergic synapses in the developing rat hippocampus. To identify the signalling pathway linking GABA(B) receptor activation to BDNF secretion in these cells, we have now used the phosphorylated form of the cAMP response element-binding protein as a biological sensor for endogenous BDNF release. In the present study, we show that GABA(B) receptor-induced secretion of BDNF relies on the activation of phospholipase C, followed by the formation of diacylglycerol, activation of protein kinase C, and the opening of L-type voltage-dependent Ca(2+) channels. We further show that once released by GABA(B) receptor activation, BDNF increases the membrane expression of β(2/3) -containing GABA(A) receptors in neuronal cultures. These results reveal a novel function of GABA(B) receptors in regulating the expression of GABA(A) receptor through BDNF-tropomyosin-related kinase B receptor dependent signalling pathway.  相似文献   

14.
GABA(B) receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the mammalian central nervous system. They are implicated in a variety of neurological and psychiatric disorders. With the cloning of GABA(B) receptors ten years ago, substantial progress was made in our understanding of this receptor system. Here, we review current concepts of synaptic GABA(B) functions and present the evidence that points to specific roles for receptor subtypes. We discuss ultrastructural studies revealing that most GABA(B) receptors are located remote from GABAergic terminals, which raises questions as to when such receptors become activated. Finally, we provide possible explanations for the perplexing situation that GABA(B) receptor subtypes that have indistinguishable properties in vitro generate distinct GABA(B) responses in vivo.  相似文献   

15.
A radioiodinated probe, [125I]-CGP 71872, containing an azido group that can be photoactivated, was synthesized and used to characterize GABA(B) receptors. Photoaffinity labeling experiments using crude membranes prepared from rat brain revealed two predominant ligand binding species at approximately 130 and approximately 100 kDa believed to represent the long (GABA(B)R1a) and short (GABA(B)R1b) forms of the receptor. Indeed, these ligand binding proteins were immunoprecipitated using a GABA(B) receptor-specific antibody confirming the receptor specificity of the photoaffinity probe. Most convincingly, [125I]-CGP 71872 binding was competitively inhibited in a dose-dependent manner by cold CGP 71872, GABA, saclofen, (-)-baclofen, (+)-baclofen and (L)-glutamic acid with a rank order and stereospecificity characteristic of the GABA(B) receptor. Photoaffinity labeling experiments revealed that the recombinant GABA(B)R2 receptor does not bind [125I]-CGP 71872, providing surprising and direct evidence that CGP 71872 is a GABA(B)R1 selective antagonist. Photoaffinity labeling experiments using rat tissues showed that both GABA(B)R1a and GABA(B)R1b are co-expressed in the brain, spinal cord, stomach and testis, but only the short GABA(B)R1b receptor form was detected in kidney and liver whereas the long GABA(B)R1a form was selectively expressed in the adrenal gland, pituitary, spleen and prostate. We report herein the synthesis and biochemical characterization of the nanomolar affinity [125I]-CGP 71872 and CGP 71872 GABA(B)R1 ligands, and differential tissue expression of the long GABA(B)R1a and short GABA(B)R1b receptor forms in rat and dog.  相似文献   

16.
The neurotransmitter gamma-aminobutyric acid (GABA) mediates inhibitory signaling in the brain via stimulation of both GABA(A) receptors (GABA(A)R), which are chloride-permeant ion channels, and GABA(B) receptors (GABA(B)R), which signal through coupling to G proteins. Here we report physical interactions between these two different classes of GABA receptor. Association of the GABA(B) receptor 1 (GABA(B)R1) with the GABA(A) receptor gamma2S subunit robustly promotes cell surface expression of GABA(B)R1 in the absence of GABA(B)R2, a closely related GABA(B) receptor that is usually required for efficient trafficking of GABA(B)R1 to the cell surface. The GABA(B)R1/gamma2S complex is not detectably functional when expressed alone, as assessed in both ERK activation assays and physiological analyses in oocytes. However, the gamma2S subunit associates not only with GABA(B)R1 alone but also with the functional GABA(B)R1/GABA(B)R2 heterodimer to markedly enhance GABA(B) receptor internalization in response to agonist stimulation. These findings reveal that the GABA(B)R1/gamma2S interaction results in the regulation of multiple aspects of GABA(B) receptor trafficking, allowing for cross-talk between these two distinct classes of GABA receptor.  相似文献   

17.
Tracking cell surface GABAB receptors using an alpha-bungarotoxin tag   总被引:2,自引:0,他引:2  
GABA(B) receptors mediate slow synaptic inhibition in the central nervous system and are important for synaptic plasticity as well as being implicated in disease. Located at pre- and postsynaptic sites, GABA(B) receptors will influence cell excitability, but their effectiveness in doing so will be dependent, in part, on their trafficking to, and stability on, the cell surface membrane. To examine the dynamic behavior of GABA(B) receptors in GIRK cells and neurons, we have devised a method that is based on tagging the receptor with the binding site components for the neurotoxin, alpha-bungarotoxin. By using the alpha-bungarotoxin binding site-tagged GABA(B) R1a subunit (R1a(BBS)), co-expressed with the R2 subunit, we can track receptor mobility using the small reporter, alpha-bungarotoxin-conjugated rhodamine. In this way, the rates of internalization and membrane insertion for these receptors could be measured with fixed and live cells. The results indicate that GABA(B) receptors rapidly turnover in the cell membrane, with the rate of internalization affected by the state of receptor activation. The bungarotoxin-based method of receptor-tagging seems ideally suited to follow the dynamic regulation of other G-protein-coupled receptors.  相似文献   

18.
GABABR属于C族G蛋白偶联受体,是中枢神经细胞重要的抑制性神经递质受体.在体内GABABR由GB1和GB2两个基因编码,1998年以来研究者证实GABABR是由GB1和GB2形成的异二聚体,但近年来的研究表明,GB1也可以单独形成GB1 -GB1同二聚体并在体内行使功能.本文系统介绍了GB1亚基的分类,在GB2存在或不存在时的表达,以及在GABABR异二聚体和GB1-GB1同二聚体激活过程中所扮演的角色和生理功能;同时也展望了这些研究成果对于基础研究和药学研究的意义.  相似文献   

19.
Serine/threonine kinase Akt, or protein kinase B, has been shown to regulate a number of neutrophil functions. We sought to identify Akt binding proteins in neutrophils to provide further insights into understanding the mechanism by which Akt regulates various neutrophil functions. Proteomic and immunoprecipitation studies identified gamma-amino butyric acid (GABA) type B receptor 2 (GABA(B)R2) as an Akt binding protein in human neutrophils. Neutrophil lysates subjected to Akt immunoprecipitation followed by immunoblotting with anti-GABA(B)R2 demonstrated Akt association with the intact GABA(B)R. Similar results were obtained when reciprocal immunoprecipitations were performed with anti-GABA(B)R2 Ab. Additionally, GABA(B)R2 and Akt colocalization was demonstrated by confocal microscopy. A GABA(B)R agonist, baclofen, activated Akt and stimulated neutrophil-directed migration in a PI3K-dependent manner, whereas CGP52432, a GABA(B)R antagonist blocked such effects. Baclofen, stimulated neutrophil chemotaxis and tubulin reorganization in a PI3K-dependent manner. Additionally, a GABA(B)R agonist failed to stimulate neutrophil superoxide burst. We are unaware of the association of GABA(B)R with Akt in any cell type. The present study shows for the first time that a brain-specific receptor, GABA(B)R2 is present in human neutrophils and that it is functionally associated with Akt. Intraventricular baclofen pretreatment in rats subjected to a stroke model showed increased migration of neutrophils to the ischemic lesion. Thus, the GABA(B)R is functionally expressed in neutrophils, and acts as a chemoattractant receptor via an Akt-dependent pathway. The GABA(B)R potentially plays a significant role in the inflammatory response and neutrophil-dependent ischemia-reperfusion injury such as stroke.  相似文献   

20.
The gamma-amino-n-butyric acid type B (GABA(B)) receptor is composed of two subunits, GABA(B)1 and GABA(B)2, belonging to the family 3 heptahelix receptors. These proteins possess two domains, a seven transmembrane core and an extracellular domain containing the agonist binding site. This binding domain is likely to fold like bacterial periplasmic binding proteins that are constituted of two lobes that close upon ligand binding. Here, using molecular modeling and site-directed mutagenesis, we have identified residues in the GABA(B)1 subunit that are critical for agonist binding and activation of the heteromeric receptor. Our data suggest that two residues (Ser(246) and Asp(471)) located within lobe I form H bonds and a salt bridge with carboxylic and amino groups of GABA, respectively, demonstrating the pivotal role of lobe I in agonist binding. Interestingly, our data also suggest that a residue within lobe II (Tyr(366)) interacts with the agonists in a closed form model of the binding domain, and its mutation into Ala converts the agonist baclofen into an antagonist. These data demonstrate the pivotal role played by the GABA(B)1 subunit in the activation of the heteromeric GABA(B) receptor and are consistent with the idea that a closed state of the binding domain of family 3 receptors is required for their activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号