首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of weaning on the level of glycogen and the activities of glycogen synthase and phosphorylase were determined in rat liver. Glycogen levels in rat liver increased at the start of the weaning period and reached a plateau on postnatal day 20. The active form of glycogen synthase increased until postnatal day 19 and then declined. Total glycogen synthase (active + inactive) remained high during the suckling period and declined to a new low level during the weaning period. The activity ratio (active/total) increased from day 16 to days 18-22 and then decreased to the same level as found during the suckling period. At the onset of weaning the active form of phosphorylase decreased, whereas total phosphorylase initially increased and then decreased after postnatal day 20. Both forms of phosphorylase increased again at the end of the weaning period. The activity ratio decreased at the start of weaning and remained low throughout the rest of the weaning period. The effects of premature weaning were similar to those observed in normally weaned animals, but the changes occurred sooner and were more pronounced.  相似文献   

2.
In liver cells isolated from fed female rats, glucagon (290nM) increased adenosine 3':5'-monophosphate (cyclic AMP) content and decreased cyclic AMP binding 30 s after addition of hormones. Both returned to control values after 10 min. Glucagon also stimulated cyclic AMP-independent protein kinase activity at 30 s and decreased protein kinase activity assayed in the presence of 2 muM cyclic AMP at 1 min. Glucagon increased the levels of glycogen phosphorylase a, but there was no change in total glycogen phosphorylase activity. Glucagon increased glycogen phosphorylase a at concentrations considerably less than those required to affect cyclic AMP and protein kinase. The phosphodiesterase inhibitor, 1-methyl-3-isobutyl xanthine, potentiated the action of glucagon on all variables, but did not increase the maximuM activation of glycogen phosphorylase. Epinephrine (1muM) decreased cyclic AMP binding and increased glycogen phosphorylase a after a 1-min incubation with cells. Although 0.1 muM epinephrine stimulated phosphorylase a, a concentration of 10 muM was required to increase protein kinase activity. 1-Methyl-3-isobutyl xanthine (0.1 mM) potentiated the action of epinephrine on cyclic AMP and protein kinase. (-)-Propranolol (10muM) completely abolished the changes in cyclic AMP binding and protein kinase due to epinephrine (1muM) in the presence of 0.1mM 1-methyl-3-isobutyl xanthine, yet inhibited the increase in phosphorylase a by only 14 per cent. Phenylephrine (0.1muM) increased glycogen phosphorylase a, although concentrations as great as 10 muM failed to affect cyclic AMP binding or protein kinase in the absence of phosphodiesterase inhibitor. Isoproterenol (0.1muM) stimulated phosphorylase and decreased cyclic AMP binding, but only a concentration of 10muM increased protein kinase. 1-Methyl-3-isobutyl xanthine potentiated the action of isoproterenol on cyclic AMP binding and protein kinase, and propranolol reduced the augmentation of glucose release and glycogen phosphorylase activity due to isoproterenol. These data indicate that both alpha- and beta-adrenergic agents are capable of stimulating glycogenolysis and glycogen phosphorylase a in isolated rat liver cells. Low concentrations of glucagon and beta-adrenergic agonists stimulate glycogen phosphorylase without any detectable increase in cyclic AMP or protein kinase activity. The effects of alpha-adrenergic agents appear to be completely independent of changes in cyclic AMP protein kinase activity.  相似文献   

3.
The correlation between blood glucose levels, the concentration of glycogen, the activities of glycogen synthase and phosphorylase and their respective kinases and phosphatases was examined in liver of rat fetuses between day 18 of gestation and one day after birth. Between day 18 and 21 there is a rapid increase in the concentration of glycogen and in the activity of synthase a and a much slower increase in the activity of phosphorylase a. The activity of the respective kinases increased rapidly during this period and reached maximum on day 21. The activity of synthase phosphatase and phosphorylase phosphatase increased after day 18, to reach a maximum on day 19 and 20, respectively, but decreased again towards day 21. The possibility that the changes in glycogen concentration and enzyme activities were related to an effect of glucose or AMP on the respective phosphatases was considered. It was found that the Km of phosphorylase phosphatase for glucose in the prenatal period was 5--7 mM, as in the adult. Since the level of blood glucose during this period was constant (2.8 mM), an effect of glucose on phosphatase activity seems unlikely. AMP concentration increased between day 18 and 21 from 6--15 nmol/g. In view of the low level of phosphorylase a activity during this period, the increase in AMP concentration is not considered to be important in the regulation of glycogen breakdown at this time. Immediately after birth blood glucose levels dropped to 5 mg/dl. This was accompanied by a rapid decrease in glycogen concentration and in the activity of glycogen synthase and a rise in phosphorylase activity. Blood glucose levels returned to the initial level within 1 h after birth, whereas the changes in glycogen concentration and enzyme activities continued for at least 3 h after birth. On day 22 all parameters examined had reached the level found in adult rat liver. It is suggested that the rapid changes observed immediately after birth are due to an effect of gypoglycemia mediated by hormones and cannot be ascribed to direct effects of metabolites on the enzyme systems involved.  相似文献   

4.
Interventions such as glycogen depletion, which limit myocardial anaerobic glycolysis and the associated proton production, can reduce myocardial ischemic injury; thus it follows that inhibition of glycogenolysis should also be cardioprotective. Therefore, we examined whether the novel glycogen phosphorylase inhibitor 5-Chloro-N-[(1S,2R)-3-[(3R,4S)-3,4-dihydroxy-1-pyrrolidinyl)]-2-hydroxy-3-oxo-1-(phenylmethyl)propyl]-1H-indole-2-carboxamide (ingliforib; CP-368,296) could reduce infarct size in both in vitro and in vivo rabbit models of ischemia-reperfusion injury (30 min of regional ischemia, followed by 120 min of reperfusion). In Langendorff-perfused hearts, constant perfusion of ingliforib started 30 min before regional ischemia and elicited a concentration-dependent reduction in infarct size; infarct size was reduced by 69% with 10 microM ingliforib. No significant drug-induced changes were observed in either cardiac function (heart rate, left ventricular developed pressure) or coronary flow. In open-chest anesthetized rabbits, a dose of ingliforib (15 mg/kg loading dose; 23 mg.kg(-1).h(-1) infusion) selected to achieve a free plasma concentration equivalent to an estimated EC(50) in the isolated hearts (1.2 microM, 0.55 microg/ml) significantly reduced infarct size by 52%, and reduced plasma glucose and lactate concentrations. Furthermore, myocardial glycogen phosphorylase a and total glycogen phosphorylase activity were reduced by 65% and 40%, respectively, and glycogen stores were preserved in ingliforib-treated hearts. No significant change was observed in mean arterial pressure or rate-pressure product in the ingliforib group, although heart rate was modestly decreased postischemia. In conclusion, glycogen phosphorylase inhibition with ingliforib markedly reduces myocardial ischemic injury in vitro and in vivo; this may represent a viable approach for both achieving clinical cardioprotection and treating diabetic patients at increased risk of cardiovascular disease.  相似文献   

5.
The correlation between blood glucose levels, the concentration of glycogen, the activities of glycogen sythase and phosphorylase and their respective kinases and phosphatases was examined in liver of rat fetuses between day 18 of gestation and one day after birth. Between day 18 and 21 there is a rapid increase in the concentration of glycogen and in the activity of synthase a and a much slower increase in the activity of phosphorylase a. The activity of the respective kinases increased rapidly during this period and reached maximun on day 21. The activity of synthase phosphatase and phosphorylase phosphatase increased after day 18, to reach a maximum on day 19 and 20, respectively, but decreased again towards day 21. The possibility that the changes in glycogen concentration and enzyme activities were related to an effect of glucose of AMP on the respective phosphatases was considered. It was found that the Km of phosphatase for glucose in the prenatal period was 5–7 mM, as in the adult. Since the level of blood glucose during this period was constant (2.8 mM), an effect of glucose on phosphatase activity seems unlikely. AMP concentration increased between day 18 and 21 from 6–15 nmol/g. In view of the low level of phosphorylase a activity during this period, the increase in AMP concentration is not considered to be important in the regulation of glycogen breakdown at this time.Immediately after birth blood glucose levels dropped to 5 mg/dl. This was accompanied by a rapid decrease in glycogen concentration and in the activity of glycogen synthase and a rise in phosphorylase activity. Blood glucose levels returned to the initial level within 1 h after birth, whereas the changes in glycogen concentration and enzyme activities continued for at least 3 h after birth. On day 22 all parameters examined had reached the level found in adult rat liver.It is suggested that the rapid changes observed immediately after birth are due to an effect of hypoglycemia mediated by hormones and cannot be ascribed to direct effects of metabolites on the enzyme systems involved.  相似文献   

6.
Acute effects of two part sequences of human growth hormone on the in vivo activity levels of hepatic glycogen synthase and glycogen phosphorylase were examined. The peptide corresponding to residues 6 to 13 of the hormone (hGH 6--13) decreased the percentage of phosphorylase in the active form without affecting synthase activity. This action was indirect and dependent upon insulin. The peptide hGH 177--191 decreased the level of the active form of synthase without affecting phosphorylase activity. This effect was also observed with analogous peptides containing the sequence hGH 178--191 (i.e., hGH 172--191 and hGH 178--191), whereas the peptide hGH 179--191 was inert. The onset of these effects was rapid, and maximum changes in activity were produced in 5 min by both peptides. The effect for hGH 177--191 was short-lived, and synthase activity had returned to normal levels by 15 min, whereas the action of hGH 6--13 was of longer duration and was still quite marked at 60 min. Both peptides showed a linear dependence of response to the log dose of peptide injected over the range 0.1--250 microgram hGH 6--13 per kg body weight and 0.05--25 microgram hGH 177--191 per kg body weight. Hepatic 3',5'-cyclicadenylic acid levels were not affected by either peptide. Incorporation of glycerol carbon into liver glycogen was increased by hGH 6--13 and decreased by hGH carbon into liver glycogen was increased by hGH 6--13 and decreased by hGH 177--191. This is discussed in terms of a futile cycle between glycogen and hexose phosphate in the liver, as the basis for a control mechanism for hepatic glycogen metabolism. The present observations are consistent with other in vivo and in vitro actions of these and related peptides.  相似文献   

7.
Epinephrine and the alpha-adrenergic agonist phenylephrine activated phosphorylase, glycogenolysis, and gluconeogenesis from lactate in a dose-dependent manner in isolated rat liver parenchymal cells. The half-maximally active dose of epinephrine was 10-7 M and of phenylephrine was 10(-6) M. These effects were blocked by alpha-adrenergic antagonists including phenoxybenzamine, but were largely unaffected by beta-adrenergic antagonists including propranolol. Epinephrine caused a transient 2-fold elevation of adenosine 3':5'-monophosphate (cAMP) which was abolished by propranolol and other beta blockers, but was unaffected by phenoxybenzamine and other alpha blockers. Phenoxybenzamine and propranolol were shown to be specific for their respective adrenergic receptors and to not affect the actions of glucagon or exogenous cAMP. Neither epinephrine (10-7 M), phenylephrine (10-5 M), nor glucagon (10-7 M) inactivated glycogen synthase in liver cells from fed rats. When the glycogen synthase activity ratio (-glucose 6-phosphate/+ glucose 6-phosphate) was increased from 0.09 to 0.66 by preincubation of such cells with 40 mM glucose, these agents substantially inactivated the enzyme. Incubation of hepatocytes from fed rats resulted in glycogen depletion which was correlated with an increase in the glycogen synthase activity ratio and a decrease in phosphorylase alpha activity. In hepatocytes from fasted animals, the glycogen synthase activity ratio was 0.32 +/- 0.03, and epinephrine, glucagon, and phenylephrine were able to lower this significantly. The effects of epinephrine and phenylephrine on the enzyme were blocked by phenoxybenzamine, but were largely unaffected by propranolol. Maximal phosphorylase activation in hepatocytes from fasted rats incubated with 10(-5) M phenylephrine preceded the maximal inactivation of glycogen synthase. Addition of glucose rapidly reduced, in a dose-dependent manner, both basal and phenylephrine-elevated phosphorylase alpha activity in hepatocytes prepared from fasted rats. Glucose also increased the glycogen synthase activity ratio, but this effect lagged behind the change in phosphorylase. Phenylephrine (10-5 M) and glucagon (5 x 10(-10) M) decreased by one-half the fall in phosphoryalse alpha activity seen with 10 mM glucose and markedly suppressed the elevation of glycogen synthase activity. The following conclusions are drawn from these findings. (a) The effects of epinephrine and phenylephrine on carbohydrate metabolism in rat liver parenchymal cells are mediated predominantly by alpha-adrenergic receptors. (b) Stimulation of these receptors by epinephrine or phenylephrine results in activation of phosphorylase and gluconeogenesis and inactivation of glycogen synthase by mechanisms not involving an increase in cellular cAMP. (c) Activation of beta-adrenergic receptors by epinephrine leads to the accumulation of cAMP, but this is associated with minimal activation of phosphorylase or inactivation of glycogen synthase...  相似文献   

8.
Phosphorylase and glycogen synthase protein were measured in normal and genetically diabetic (C57BL/KsJ db/db) mice liver extracts using rocket immunoelectrophoresis, and these data correlated with measurements of total phosphorylase and total glycogen synthase activities, respectively. Phosphorylase protein in 5-week-old normal mice was about 5 micrograms/mg protein and reached 8 micrograms/mg protein by 9 weeks. In comparison, the diabetic mice had elevated levels of phosphorylase protein (11-13 micrograms/mg protein) which correlated with an increased total phosphorylase activity compared to normals. The correlation coefficient for the phosphorylase activity vs protein plot was highly significant (r = 0.73, P less than 0.001). The molar concentration of phosphorylase subunit in normal mouse liver was calculated to be 11 microM and up to 23 microM in the diabetic mice. The liver concentration of glycogen synthase was relatively constant in normal mice at 400 ng/mg protein (corresponding to approximately 1.4 microM) but varied from 230 to 441 ng/mg protein (0.9 to 1.8 microM) in diabetic mice. There was little correlation between glycogen synthase activity and enzymatic protein (r = 0.15). These results indicate (1) that phosphorylase is present at concentrations approximately 10 times that of glycogen synthase, and (2) that glycogen synthase activity is relatively more dependent upon factors other than the amount of enzymatic protein.  相似文献   

9.
Glycogen synthase (labelled in sites-3) and glycogen phosphorylase from rabbit skeletal muscle were used as substrates to investigate the nature of the protein phosphatases that act on these proteins in the glycogen and microsomal fractions of rat liver. Under the assay conditions employed, glycogen synthase phosphatase and phosphorylase phosphatase activities in both subcellular fractions could be inhibited 80-90% by inhibitor-1 or inhibitor-2, and the concentrations required for half-maximal inhibition were similar. Glycogen synthase phosphatase and phosphorylase phosphatase activities coeluted from Sephadex G-100 as broad peaks, stretching from the void volume to an apparent molecular mass of about 50 kDa. Incubation with trypsin decreased the apparent molecular mass of both activities to about 35 kDa, and decreased their I50 for inhibitors-1 and -2 in an identical manner. After tryptic digestion, the I50 values for inhibitors-1 and -2 were very similar to those of the catalytic subunit of protein phosphatase-1 from rabbit skeletal muscle. The glycogen and microsomal fractions of rat liver dephosphorylated the beta-subunit of phosphorylase kinase much faster than the alpha-subunit and dephosphorylation of the beta-subunit was prevented by the same concentrations of inhibitor-1 and inhibitor-2 that were required to inhibit the dephosphorylation of phosphorylase. The same experiments performed with the glycogen plus microsomal fraction from rabbit skeletal muscle revealed that the properties of glycogen synthase phosphatase and phosphorylase phosphatase were very similar to the corresponding activities in the hepatic glycogen fraction, except that the two activities coeluted as sharp peaks near the void volume of Sephadex G-100 (before tryptic digestion). Tryptic digestion of the hepatic glycogen and microsomal fractions increased phosphorylase phosphatase about threefold, but decreased glycogen synthase phosphatase activity. Similar results were obtained with the glycogen plus microsomal fraction from rabbit skeletal muscle or the glycogen-bound form of protein phosphatase-1 purified to homogeneity from the same tissue. Therefore the divergent effects of trypsin on glycogen synthase phosphatase and phosphorylase phosphatase activities are an intrinsic property of protein phosphatase-1. It is concluded that the major protein phosphatase in both the glycogen and microsomal fractions of rat liver is a form of protein phosphatase-1, and that this enzyme accounts for virtually all the glycogen synthase phosphatase and phosphorylase phosphatase activity associated with these subcellular fractions.  相似文献   

10.
Hormonal regulation of glycogen metabolism in neonatal rat liver   总被引:5,自引:3,他引:2  
1. The development of active and inactive phosphorylase was determined in rat liver during the perinatal period. No inactive form could be found in tissues from animals less than 19 days gestation or older than the fifth postnatal day. 2. The regulation of phosphorylase in organ cultures of foetal rat liver was examined. None of the agents examined [glucagon, insulin or dibutyryl cyclic AMP (6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate)] changed the amount of phosphorylase activity. 3. Glycogen concentration in these explants were nevertheless decreased more than twofold by 4h of incubation with glucagon or dibutyryl cyclic AMP. Incubation with insulin for 4h increased the glycogen content twofold. 4. Glycogen synthetase activity was examined in these explants. I-form activity (without glucose 6-phosphate) was found to decrease by a factor of two after 4h of incubation with dibutyryl cyclic AMP, whereas I+D activity (with glucose 6-phosphate) remained nearly constant. Incubation for 4h with insulin increased I-form activity threefold, with only a slight increase in I+D activity. 5. When explants were incubated with insulin followed by addition of dibutyryl cyclic AMP, the effects of insulin on glycogen concentration and glycogen synthetase activity were reversed. 6. These results indicate that the regulation of glycogen synthesis may be the major factor in the hormonal control of glycogen metabolism in neonatal rat liver.  相似文献   

11.
Acute effects of two part sequences of human growth hormone on the in vivo activity levels of hepatic glycogen synthase and glycogen phosphorylase were examined. The peptide corresponding to residues 6 to 13 of the hormone (hGH 6–13) decreased the percentage of phosphorylase in the active form without affecting synthase activity. This action was indirect and dependent upon insulin. The peptide hGH 177–191 decreased the level of the active form of synthase without affecting phosphorylase activity. This effect was also observed with analogous peptides containing the sequence hGH 178–191 (i.e., hGH 172–191 and hGH 178–191), whereas the peptide hGH 179–191 was inert.The onset of these effects was rapid, and maximum changes in activity were produced in 5 min by both peptides. The effect for hGH 177–191 was short-lived, and synthase activity had returned to normal levels by 15 min, whereas the action of hGH 6–13 was of longer duration and was still quite marked at 60 min. Both peptides showed a linear dependence of response to the log dose of peptide injected over the range 0.1–250 μg hGH 6–13 per kg body weight and 0.05–25 gmg hGH 177–191 per kg body weight. Hepatic 3′,5′-cyclicadenylic acid levels were not affected by either peptide. Incorporation of glycerol carbon liver glycogen was increased by hGH 6–13 and decreased by hGH 177–191. This discussed in terms of a futile cycle between glycogen and hexone phosphate in the liver, as the basis for a control mechanism for hepatic glycogen metabolism. The present observations are consistent with other in vivo and in vitro actions of these and related peptides.  相似文献   

12.
The regulation of glycogenolysis in human muscle during epinephrine infusion has been investigated. The content of cAMP in resting muscle was 2.7 +/- 0.7 (SD) mumol . kg dry muscle-1 and increased threefold during the first 5 min of infusion. Total glycogen phosphorylase and glycogen synthase activities were unchanged during the infusion. The proportion of phosphorylase in the a form in the basal state was estimated to be at least 22.5% and during infusion 80-90%. During infusion, synthase I activity decreased. The muscle glycogen content was 340 mmol . kg dry wt-1 and decreased during the first 2 min of infusion at a rate of 11.0 mmol glycosyl units . kg dry wt-1 . min-1. Prolonged infusion resulted in a much lower glycogenolytic rate, even though most of the phosphorylase was still in the a form. Accumulation of hexose monophosphates and lactate followed the changes in glycogen. It was concluded that despite the almost total transformation of phosphorylase to the a form, the in vivo activity was maintained at a low level. It is suggested that this may be due to a low concentration of inorganic phosphate at the active site of the enzyme.  相似文献   

13.
1. Mice treated with ethionine (intraperitoneally, 5mg./day for 4 days or 10mg./day for 3 days) showed a profound loss of hepatic glycogen, a decrease of glycogen synthetase activity, a development of hypoglycaemia, a two- to five-fold increase in the activity of glucose 6-phosphate dehydrogenase but no change in 6-phosphogluconate dehydrogenase and an earlier manifestation of the solubilization of phosphorylase as compared with glycogen synthetase. The administration of ATP did not prevent these effects. 2. During the early post-injection period (2-3 days) there was a further enhancement of the activity of glucose 6-phosphate dehydrogenase (tenfold) in the liver and a clear elevation of 6-phosphogluconate dehydrogenase activity (twofold). Subsequently, the glycogen concentration was restored, followed by an earlier reassociation of glycogen particle with phosphorylase than with glycogen synthetase, along with a disappearance of ethionine effect at about the eighteenth day. 3. Glucose 6-phosphate dehydrogenase from both control and ethionine-treated animals showed a marked preference for glucose 6-phosphate as substrate rather than for galactose 6-phosphate, whose rate of oxidation was only 10% of that of the glucose 6-phosphate. 4. Since actinomycin D, puromycin, 5-fluorouracil and dl-p-fluorophenylalanine failed to block the ethionine-enhanced glucose 6-phosphate dehydrogenase activity, the possibility that new enzyme protein synthesis is responsible for the effect is doubtful.  相似文献   

14.
Glucose is the main fuel for energy metabolism in retina. The regulatory mechanisms that maintain glucose homeostasis in retina could include hormonal action. Retinopathy is one of the chemical manifestations of long-standing diabetes mellitus. In order to better understand the effect of hyperglycemia in retina, we studied glycogen content as well as glycogen synthase and phosphorylase activities in both normal and streptozotocin-induced diabetic rat retina and compared them with other tissues. Glycogen levels in normal rat retina are low (46 +/- 4.0 nmol glucosyl residues/mg protein). However, high specific activity of glycogen synthase was found in retina, indicating a substantial capacity for glycogen synthesis. In diabetic rats, glycogen synthase activity increased between 50% and 100% in retina, brain cortex and liver of diabetic rats, but only retina exhibited an increase in glycogen content. Although, total and phosphorylated glycogen synthase levels were similar in normal and diabetic retina, activation of glycogen synthase by glucose-6-P was remarkable increased. Glycogen phosphorylase activity decreased 50% in the liver of diabetic animals; it was not modified in the other tissues examined. We conclude that the increase in glycogen levels in diabetic retina was due to alterations in glycogen synthase regulation.  相似文献   

15.
The maximal activity of a selection of enzymes involved in muscle carbohydrate handling, citric acid cycle and fatty acyl beta-oxidation were studied after treatment with the fluorinated corticosteroid triamcinolone and compared to a similar treatment of the non-fluorinated corticosteroid prednisolone in an equipotent anti-inflammatory dose. Furthermore, because triamcinolone causes loss of body mass and muscle wasting, the effects of triamcinolone were investigated relative to a control group, with the same loss of body mass, due to nutritional deprivation. The study was performed in male Wistar rats in the following treatment groups: TR, triamcinolone treatment (0.25 mg x kg(-1) x day(-1) for 2 weeks), which resulted in a reduction of body mass (24%); ND, nutritional deprivation (30% of normal daily food intake for 2 weeks) resulting in a similar (24%) decrease of body mass as TR; PR, prednisolone treatment (0.31 mg x kg(-1) x day(-1) for 2 weeks), with a 10% increase in body mass; FF, free-fed control group, with a 12% increase in body mass in 2 weeks. Compared to FF, TR induced an increase in phosphofructokinase (PFK) activity (P < 0.01), glycogen synthase [GS(i + d)] activity (P < 0.05) and glycogen content (P < 0.01) in the tibialis anterior muscle. The PR and ND caused no alterations in PFK or citrate synthase (CS) activity compared to FF. Compared to PR, TR induced an increase in PFK (P < 0.01), CS (P < 0.05) and GS(i + d) activity (P < 0.01). Both TR and PR caused an increased muscle glycogen content, being more pronounced in TR (P < 0.05). Compared to ND, TR induced an increased CS (P < 0.05) and GS(i + d) activity (P < 0.01) and glycogen content (P < 0.01). The ND resulted in a decreased glycogen content compared to FF (P < 0.05). None of the treatments affected the activity of glycogen phosphorylase, beta-hydroxyacyl coenzyme A dehydrogenase and lactate dehydrogenase. It was concluded that corticosteroids led to an increased muscle glycogen content; however, the changes in the enzymes of carbohydrate metabolism were corticosteroid type specific and did not relate to undernutrition, which accompanied the triamcinolone treatment.  相似文献   

16.
1. In catfish (Ictalurus melas) after glucagon treatment blood glucose increased until 150 min, then it gradually decreased towards control values at the 5th hr. 2. In glucagon treated fish, liver glycogen levels were significantly lower then in controls 30 min after hormone administration; thereafter, liver glycogen levels returned rapidly to initial values. Glucagon did not induce any significant effect on the glycogen content in white and red muscles. 3. In liver slices, the addition of glucagon to the incubation medium significantly enhanced the glycogen phosphorylase activity and decreased the level of glycogen. Both phosphorylase activity and glycogen content of white and red muscle slices were practically unaffected by glucagon.  相似文献   

17.
Daily intraperitoneal injection of cadmium chloride (0.25 or 1 mg/kg) for 21 or 45 days into rats significantly stimulated the activities of hepatic pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose-1, 6-diphosphatase, and glucose-6-phosphatase, increased the concentrations of glucose and urea in the blood, and decreased the levels of glycogen in the liver. Whereas chronic cadmium treatment failed to alter adenosine-3',5'-monophosphate phosphodiesterase (phosphodiesterase) activity, the endogenous levels of cyclic AMP (cAMP) and the activity of basal- and fluoride-stimulated forms of hepatic adenylate cyclase (AC) were markedly increased in cadmium-injected animals. Treatment with the higher dose (1.0 mg/kg) of cadmium chloride for 45 days produced greater metabolic alterations in hepatic tissue than those seen with the lower dose (0.25 mg/kg) given for a shorter period of time (21 days). Discontinuation of cadmium administration for 14 days in rats previously injected with cadmium chloride (1 mg/kg per day) for 21 days, failed to reverse the observed changes in hepatic cAMP or carbohydrate metabolism. A similar persistence of metabolic alterations was noted in rats treated with cadmium (1 mg/kg per day) for 45 days and subsequently maintained without additional treatment for 28 days. Administration of an acute dose of cadmium chloride (60 mg/kg) decreased hepatic phosphodiesterase activity and glycogen content 1 h after the injection. In addition, acute cadmium exposure increased blood glucose, serum urea, and hepatic cAMP levels, and produced an augmentation of basal- and fluoride-activated AC. However, the activities of various hepatic gluconeogenic enzymes remained unaffected in animals given an acute dose of cadmium chloride (60 mg/kg). Data provide evidence that suggests that the gluconeogenic potential of liver is markedly enhanced following chronic exposure to cadmium and that the cadmium-induced changes in carbohydrate metabolism may be associated with an enhanced synthesis of cAMP. In addition, the present study shows that the cadmium-induced metabolic alterations persist even after the cessation of cadmium treatment for a period of 28 days.  相似文献   

18.
The regulatory role of protein kinase C (PKC) in glycogen metabolism in pectin fed rats was investigated. Administration of pectin (5 g/kg body wt/day) from cucumber (Cucumis sativius L.) led to inhibitory effects on PKC activity in the liver of rats. In the brain and pancreas, PKC activity was significantly higher in pectin-treated rats as compared to the control group. Level of blood glucose was significantly lowered and the level of glycogen in the liver was significantly increased in pectin-administered rats. Glycogen synthase activity was enhanced, while glycogen phosphorylase enzyme showed inhibition in pectin-treated rats. Results indicated that pectin administration might have caused an increase in the secretion of the insulin, which, in turn, had a stimulatory effect on the PKC activity in the pancreas. The decreased PKC activity in the liver and increased PKC activity in the brain and pancreas on pectin administration indicated enhanced glycogenesis and reduced glycogenolysis.  相似文献   

19.
The present study was designed to explore the mechanism of action of walnut (the seed of Juglans regia) leaf and ridge on hepatic glucose metabolism in diabetic mice. Experimental diabetes was induced by intravenous administration of streptozotocin (60 mg/kg)and confirmed with an increase of blood glucose, 90–100% of the control, 72 hours later. Isolated extracts from walnut leaf and ridges were administered in a single effective dose of 400 mg/kg orally. Firstly, blood glucose was determined every 1 hour until 5 hours post administration of extracts. In the second experiment, the liver was surgically removed, 2 hours post treatment of diabetic animals with extracts, homogenized and used for measurement of key enzymes of glycogenolysis (glycogen phosphorylase, GP) and gluconeogenesis (phosphoenolpyruvate carboxykinase, PEPCK). Treatment by both leaf and ridge extracts decreased blood glucose and liver PEPCK activity and increased blood insulin and liver GP activity. It is concluded that walnut is able to lower blood glucose through inhibition of hepatic gluconeogenesis and secretion of pancreatic insulin.  相似文献   

20.
1. The glycogen content of rat liver increased prenatally and dramatically decreased after the birth. 2. Glycogen synthase and glycogen phosphorylase activities increased prenatally, declined at 12 hr after birth and then again increased. 3. Phosphorylase kinase activities did not significantly change prenatally but steadily increased after the birth. 4. Protein kinase activities (units/mg liver) did not change prenatally but slightly increased after the birth. 5. Phosphoprotein phosphatase activities using phosphorylase a and histone as substrates dramatically increased at birth and then decreased after 24 hr of the birth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号