首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyrroloquinoline quinone (PQQ) added to purified diets devoid of PQQ improves indices of perinatal development in rats and mice. Herein, PQQ nutritional status and lysine metabolism are described, prompted by a report that PQQ functions as a vitamin-like enzymatic cofactor important in lysine metabolism (Nature 422 [2003] 832). Alternatively, we propose that PQQ influences lysine metabolism, but by mechanisms that more likely involve changes in mitochondrial content. PQQ deprivation in both rats and mice resulted in a decrease in mitochondrial content. In rats, alpha-aminoadipic acid (alphaAA), which is derived from alpha-aminoadipic semialdehyde (alphaAAS) and made from lysine in mitochondria, and the plasma levels of amino acids known to be oxidized in mitochondria (e.g., Thr, Ser, and Gly) were correlated with changes in the liver mitochondrial content of PQQ-deprived rats, but not PQQ-supplemented rats. In contrast, the levels of NAD dependent alpha-aminoadipate-delta-semialdehyde dehydrogenase (AASDH), a cytosolic enzyme important to alphaAA production from alphaAAS, was not influenced by PQQ dietary status. Moreover, the levels of U26 mRNA were not significantly changed even when diets differed markedly in PQQ and dietary lysine content. U26 mRNA levels were measured, because of U26's proposed, albeit questionable role as a PQQ-dependent enzyme involved in alphaAA formation.  相似文献   

2.
Iodine deficiency disorders affect reproductive performance in the afflicted populations. Environmental iodine deficiency (ID) and goitrogens are important in their aetiology. We observed earlier that chronic maternal dietary ID but not goitrogen feeding altered the blood-brain barrier nutrient transport in adult rats. Whether similar differences exist in their effects on reproduction of dams and postnatal performance of the offspring has been assessed. Inbred, female, weaning WNIN rats were rendered hypothyroid by feeding for 8-12 weeks, a low iodine test diet or a control diet with added potassium thiocyanate (KSCN) (@ 25 mg/rat/day). Following mating with control males, they continued on their respective diets till their pups were weaned. Indices of reproductive performance such as percentage of conception, mortality of dams during pregnancy and parturition, litter size, and survival of pups till weaning were affected markedly by ID but not thiocyanate feeding. Neither ID nor thiocyanate feeding from conception or parturition affected their reproductive performance. Nevertheless, postnatal weight gain of pups was less in all the three ID groups but not thiocyanate fed dams. Rehabilitation of chronically ID pregnant dams from conception or parturition did not improve their pregnancy weight gain, litter size or birth weight of pups but decreased abortion and mortality of mothers during pregnancy and parturition. Rehabilitation improved the pups' postnatal weight gain but the effect was only moderate. Based on the results of the present study it may be suggested that maternal ID but not thiocyanate feeding affects reproductive performance and postnatal performance of their offspring.  相似文献   

3.
Pyrroloquinoline quinone (PQQ) functions as a cofactor for prokaryotic oxidoreductases, such as methanol dehydrogenase and membrane-bound glucose dehydrogenase. In animals fed chemically defined diets, PQQ improves reproductive outcome and neonatal growth. Consequently, the present study was undertaken to determine the extent to which PQQ is absorbed by the intestine, its tissue distribution, and route of excretion. About 28 micrograms of PQQ (0.42 microCi/mumol), labeled with 14C derived from L-tyrosine, was administered orally to Swiss-Webster mice (18-20 g) to estimate absorption. PQQ was readily absorbed (62%, range 19-89%) in the lower intestine, and was excreted by the kidneys (81% of the absorbed dose) within 24 hr. The only tissues that retained significant amounts of [14C]PQQ at 24 hr were skin and kidney. For kidney, it was assumed that retention of [14C]PQQ represented primarily PQQ destined for excretion. For skin, the concentration of [14C]PQQ increased from 0.3% of the absorbed dose at 6 hr to 1.3% at 24 hr. Furthermore, most of the [14C]PQQ in blood (greater than 95%) was associated with the blood cell fraction, rather than plasma.  相似文献   

4.
Maternal malnutrition during the lactation period in early development may have long-term programming effects on adult offspring. We evaluated the combined effects of parasitological behaviour and histopathological features and malnutrition during lactation. Lactating mice and their pups were divided into a control group (fed a normal diet of 23% protein), a protein-restricted group (PR) (fed a diet containing 8% protein) and a caloric-restricted group (CR) (fed according to the PR group intake). At the age of 60 days, the offspring were infected with Schistosoma mansoni cercariae and killed at nine weeks post-infection. Food intake, body and liver masses, leptinaemia, corticosteronaemia, collagen morphometry and neogenesis and the cellular composition of liver granulomas were studied. PR offspring showed reduced weight gain and hypophagia, whereas CR offspring became overweight and developed hyperphagia. The pre-patent period was longer (45 days) in both programmed offspring as compared to controls (40 days). The PR-infected group had higher faecal and intestinal egg output and increased liver damage. The CR-infected group showed a lower number of liver granulomas, increased collagen neogenesis and a higher frequency of binucleate hepatocytes, suggesting a better modulation of the inflammatory response and increased liver regeneration. Taken together, our findings suggest that neonatal malnutrition of offspring during lactation affects the outcome of schistosomiasis in mice.  相似文献   

5.
Maternal overnutrition prior to and during gestation causes pronounced metabolic dysfunction in the adult offspring. However, less is known about metabolic adaptations in the offspring that occur independently of postnatal growth and nutrition. Therefore, we evaluated the impact of excess maternal dietary lipid intake on the in utero programming of body composition, hepatic function, and hypothalamic development in newborn (P0) offspring. Female mice were fed a low-fat (LF) or high-fat (HF) diet and were mated after 4, 12, and 23 wk. A subset of the obese HF dams was switched to the LF diet during the second (DR2) or third (DR3) pregnancies. The HF offspring accrued more fat mass than the LF pups, regardless of duration of maternal HF diet consumption or prepregnancy maternal adiposity. Increased neonatal adiposity was not observed in the DR3 pups. Liver weights were reduced in the HF offspring but not in the DR2 or DR3 pups. Offspring hepatic triglyceride content was reduced in the HF pups, but hepatic inflammation and expression of lipid metabolism genes were largely unaffected by maternal diet. Maternal diet did not alter the hypothalamic expression of orexigenic and anorexigenic neuropeptides in the offspring. Thus, the intrauterine programming of increased neonatal adiposity and reduced liver size by maternal overnutrition is evident in mice at birth and occurs prior to the development of maternal obesity. These observations demonstrate that dietary intervention during pregnancy minimizes the deleterious effects of maternal obesity on offspring body composition, potentially reducing the offsprings' risk of developing obesity and related diseases later in life.  相似文献   

6.
The purpose of this study was threefold: 1. to determine the long-term effects of interactions between lactational zinc deficiency and gender on bone mineral composition in repleted rat offspring, 2. to determine the nutritional efficacy of the second of two commercially designed, modified Luecke diets (ML2) during the gestational and lactational stress, and 3. determine the ultratrace element contents of Ralston Rodent Laboratory Chow #5001. The ML2 basal diet, based on dextrose, sprayed egg white, and corn oil contained 0.420 μg Zn/g, was supplemented with Zn (as zinc acetate) at 0 (diet 0ML2) or 30 (diet 30ML2) μg/g, and was mixed and pelleted commercially. all rat dams were fed the 30ML2 diet ad libitum during gestation. Beginning at parturition, the dams were fed either the 1. 0ML2, 2. 30ML2 (food restricted), or 3. 30ML2 (ad libitum) diets. All pups were fed the 30ML2 diet ad libitum from 23 to 40 d of age. From d 40 to 150, all pups were fed Ralston Rodent Laboratory Chow. The 30ML2 diet was found to be nutritionally efficacious; litter size and pup growth were normal and pup mortality was only 1.2%. Pups (ZD) with access to the 0ML2 diet until 23 d of age and nursed by dams fed the 0ML2 diet, when compared to pups (PF) fed restricted amounts of the 30ML2 diet, exhibited increased mortality and decreased concentrations of tibial zinc but no change in growth. Inadequate zinc nutriture during infancy, despite postlactational zinc repletion, induced imbalances in adult bone mineral metabolism. Thus, at 150 d of age, the ZD pups exhibited increased levels of bone P and Mg and decreased concentrations of K as compared to the PF pups.  相似文献   

7.
Earlier studies reported that mammary ducts grew faster if the 10% fat in the diet was composed of oils containing polyunsaturated fatty acids (corn oil: CO) compared to hydrogenated cottonseed oil (HCTO), which is devoid of such fatty acids. These experiments were primarily carried out in immature mice and left unanswered questions regarding the effects of dietary fats on more differentiated stages of mammary development. The use of transplanted ducts permitted the study of mammary growth rates in adult mice. If the diet was started when the animals were adults, there was no difference in the growth rate of those fed HCTO diet compared to those fed CO diet. However, when the diets were fed to immature mice, the mammary gland grew slower in mice fed the HCTO diet, confirming our earlier observations. The HCTO and CO diets caused no difference in the growth rate or morphology of fine ducts and alveoli that developed during pregnancy. Furthermore, no differences were seen in female mice following 6 weeks of progesterone administration begun at 3 weeks of age. Experiments that used male mice to examine the initial stages of mammary duct growth also showed that the effect of dietary fat was not observed when estrogen (E) or E and progesterone (P) were injected. In addition, there was no effect of dietary fat in ovariectomized 3-week-old females when any dose of E was administered from 0.01 to 1 microgram/day. Examination of the ovaries from mice fed either HCTO or CO diets from 3 to 9 weeks or 3 to 13 weeks of age showed that mice fed HCTO diet did not develop corpora lutea, while those fed CO diet had normal appearing ovaries. The HCTO diet inhibits normal maturation of the follicle and corpus luteum formation. We conclude that the effect of the dietary fat on the developing mouse is on the maturation of the ovary and subsequently on mammary growth.  相似文献   

8.
We have previously reported that essential fatty acid deficiency (EFAD) during suckling in mice resulted in an adult lean phenotype and a resistance to diet-induced obesity. We now hypothesized that postnatal EFAD would cause long-term effects on lipid metabolism. C57BL/6 mice were fed an EFAD or a control diet from the 16th day of gestation and throughout lactation. The pups were weaned to standard diet (STD) and at 15 weeks of age given either high fat diet (HFD) or STD. Lipoprotein profiles, hepatic lipids, fatty acids and mRNA expression were analyzed in 3-week-old and 25-week-old offspring. At weaning, the EFAD pups had higher cholesterol levels in both plasma and liver and 6-fold higher concentrations of hepatic cholesterol esters than control pups. Adult EFAD offspring had higher levels of hepatic cholesterol and linoleic acid, but lower levels of dihomo-γ-linolenic acid and Pparg mRNA expression in the liver. In addition, HFD fed EFAD offspring had lower plasma total cholesterol, lower hepatic triglycerides and lower liver weight compared to controls fed HFD. In conclusion, early postnatal EFAD resulted in short-term alterations with increased hepatic cholesterol accumulation and long-term protection against diet-induced liver steatosis and hypercholesterolemia.  相似文献   

9.
Offspring of rats fed high-fat diets during pregnancy and lactation develop glucose intolerance and islet dysfunction in adulthood. Because other models of developmental programming of glucose intolerance are associated with defective islet development, we investigated whether high-fat exposure during fetal or neonatal life impairs islet development and function, thereby contributing to islet dysfunction in later life. Female rats were fed control or high-fat diets and their pups cross-fostered after birth to represent 4 groups with each combination of control and high-fat diet for the natural and foster mother. In a time course study, pups were kept with the natural mother until weaning. Pancreases were analysed for insulin content, beta cell mass, and islet number. Isolated islets were studied for insulin secretory responses and susceptibility to palmitate-induced apoptosis assessed by caspases 3/9 activity. Pancreatic insulin content and beta cell mass were increased in pups exposed to maternal high-fat diets after birth, whereas glucose-stimulated insulin secretion from islets of high-fat offspring at 5 and 11 days of age was lower than controls. Islets from control rats of 2-14 days of age were resistant to the pro-apoptotic effects of palmitate seen in older animals. The immature beta cell is therefore insensitive to toxic effects of palmitate and may compensate for the inhibitory effects on insulin secretion by increasing beta cell mass. The data suggest that susceptibility to glucose intolerance in offspring of dams fed high-fat diets may not be a consequence of deleterious effects on beta cell mass in early life.  相似文献   

10.
The effects of dietary energy density on the performance of growing, gestating and lactating C57BL/6J mice were determined in order to develop pelleted non-purified practical diets for use in all stages of the mouse life cycle. Experimental diets with 4 levels of energy at 24% crude protein (CP) were pelleted and the nutritional values were determined using adult rats. The nitrogen-corrected metabolizable energy (MEn) values ranged from 2.86 to 3.73 kcal/g and the digestive CP (DCP) contents ranged from 20.5 to 22.6% on a dry matter (DM) basis. Mice responded to decreased dietary energy by increasing their feed intake to maintain MEn intake levels, except for 1 week after weaning and during lactation periods. During these periods, mice fed lower energy diets could not consume as much MEn as those fed higher energy diets. The lowest energy diet, in comparison with the highest energy diet, resulted in approximately a 33% lower weaning weight of pups at 3 weeks of age, a 13.2 to 34.4% slower growth at 3 to 4 weeks of age, and a 9.3 day delay in the onset of vaginal opening in young females. Lower energy diets, however, did not affect the litter size or the birth weight of pups. The DCP intake usually increased with decreases in dietary energy but apparently this did not affect the performance of the mice. It was concluded that an optimal diet should have an MEn value of 3.73 kcal/g DM or more for both the one week post weaning growth period and during lactation, but a diet with an MEn value of 2.86 kcal/g DM was sufficient for growth after 4 weeks of age and during gestation.  相似文献   

11.
Scientific research has yet to conclusively determine the optimal cage size for mice. The authors examined the effect of cage size on mouse breeding performance and on offspring behavior, which can serve as indications of overall well-being. They housed breeding trios of C57BL/6Tac mice in standard or large individually ventilated cages and measured four reproductive parameters: litter size; litter survival to weaning age; average pup weight at 7, 14 and 21 days; and the number of days between litter births. They investigated the behavior of a subset of male and female pups from parents housed in cages of each size in the elevated plus maze test, the open field assay and the acoustic startle test. Cage size had no significant effect on any of the reproductive parameters measured and few or inconsistent effects on behavior in weaned pups.  相似文献   

12.
To determine if prenatal zinc deficiency has a persistent effect on metallothionein (MT) regulation, Swiss-Webster mice were mated and fed a diet containing either control (100 micrograms Zn/g) or low levels of zinc (5 micrograms Zn/g) from Day 7 of gestation to parturition. After birth all mice were given the control diet. Liver zinc and MT levels were 50% lower in newborn pups from dams fed the low zinc diets than in control pups. In control pups, liver zinc and MT concentrations were relatively stable during the first week of postnatal life. In contrast, in pups prenatally deprived of zinc, liver levels of zinc and MT increased such that by Day 3 of postnatal life, the levels were not significantly different from controls. At Day 56, serum IgM concentrations were significantly lower in the low zinc offspring. Liver zinc concentrations in the two groups of mice were similar at Day 70 postnatal, and in both groups liver MT levels were below detection limits. However, when Day 70 mice were given zinc injections to stimulate MT synthesis, the prenatally zinc deprived offspring showed markedly higher liver MT levels than did control mice given similar injections, despite similar liver zinc concentrations in the two groups. These results show that prenatal zinc deficiency has pronounced effects on postnatal MT metabolism which can persist into adulthood.  相似文献   

13.
Pyrroloquinoline quinone (PQQ), a putative essential nutrient and redox modulator in microorganisms, cell and animal models, has been recognized as a growth promoter in rodents. Growth performance, carcass yield and antioxidant status were evaluated on broiler chickens fed different levels of PQQ disodium (PQQ.Na2). A total of 784 day-old male Arbor Acres (AA) broilers were randomly allotted into seven dietary groups: negative control group (NC) fed a basal diet without virginiamycin (VIR) or PQQ.Na2; a positive control group (PC) fed a diet with 15 mg of VIR/kg diet; and PQQ.Na2 groups fed with 0.05, 0.10, 0.20, 0.40 or 0.80 mg PQQ.Na2/kg diet. Each treatment contained eight replicates with 14 birds each. The feeding trial lasted for 6 weeks. The results showed that chicks fed 0.2 mg PQQ.Na2/kg diet significantly improved growth performance comparable to those in PC group, and the feed efficiency enhancement effects of dietary PQQ.Na2 was more apparent in grower phase. Dietary addition of PQQ.Na2 had the potential to stimulate immune organs development, and low level dietary addition (<0.1 mg/kg) increased plasma lysozyme level. Broilers fed 0.2 mg PQQ.Na2/kg diet gained more carcasses at day 42, and had lower lipid peroxide malondialdehyde content and higher total antioxidant power in plasma. The results indicated that dietary PQQ.Na2 (0.2 mg/kg diet) had the potential to act as a growth promoter comparable to antibiotic in broiler chicks.  相似文献   

14.
Pyrroloquinoline quinone (PQQ) functions as a cofactor for prokaryotic oxidoreductases, such as methanol dehydrogenase and glucose dehydrogenase. When chemically-defined diets without PQQ are fed to animals, lathyritic changes are observed. In previous studies, it was assumed that PQQ was produced by the intestinal microflora; consequently, antibiotics were routinely added to diets. In the present study this assumption is tested further in mice by: (i) examining the effects of dietary antibiotics on fecal PQQ excretion, (ii) isolating the intestinal flora to identify bacteria known to synthesize PQQ and (iii) determining in vitro if the intestinal microflora synthesizes PQQ from radio-chemically labeled precursors. The results of these experiments indicate that little if any PQQ is synthesized by the intestinal microflora. Rather, when PQQ is present in the intestine, the diet is a more obvious source.  相似文献   

15.
Physiologic importance of pyrroloquinoline quinone.   总被引:2,自引:0,他引:2  
Pyrroloquinoline quinone (PQQ, methoxatin) is a dissociable cofactor for a number of bacterial dehydrogenases. The compound is unusual because of its ability to catalyze redox cycling reactions at a high rate of efficiency and it has the potential of catalyzing various carbonyl amine reactions as well. In methylotrophic bacteria, PQQ is derived from the condensation of L-tyrosine with L-glutamic acid. Whether or not PQQ serves as a cofactor in higher plants and animals remains controversial. Nevertheless, a strong case may be made that PQQ and related quinoids have nutritional and pharmacologic importance. In highly purified, chemically defined diets, PQQ stimulates animal growth. Furthermore, PQQ deprivation appears to impair connective tissue maturation, particularly when initiated in utero and throughout perinatal development.  相似文献   

16.
This study was conducted to determine the effects of feeding endophyte-infected (Acremonium coenophialum ) tall fescue (Festuca arundinacea ) seed on the growth and reproductive performance of female CD-1 mice via competitive breeding. One hundred sixty female mice were randomly allocated to groups of ten and fed one of two diets. Diet 1 consisted of 50% mouse chow and 50% noninfected Ky-31 tall fescue seed (w/w). Diet 2 contained 50% chow and 50% tall fescue seed that was 80% infected with A. coenophialum . After 50 d of preconditioning on their respective diets, a single male was introduced into each group of 10 females and allowed to cohabitate for 96 h. The males were removed after the cohabitation period and the females continued through gestation on their respective diets. Body weight of dams and litter weights were recorded at parturition. There were no differences (P>0.05) in pregnancy rates between dietary Treatments 1 and 2 (50% vs 48.8%, respectively). However, the average number of pups born per litter (11.10 pups) and average total litter weight (17.21 g) was greater for those females consuming Diet 1 than for females consuming Diet 2 (9.33 pups per litter and 13.97 g total litter weight). The incidence of dead and cannibalized pups was more frequent with Diet 2 than Diet 1 (0.13 vs 0.0 dead; 0.21 vs 0.03 cannibalized, respectively). The obtained data suggest that although the pregnancy rate was similar between the two dietary treatments, the reproductive capacity (litter size and litter weight) of female CD-1 mice was affected by the consumption of endophyte infected fescue seed.  相似文献   

17.
This study was conducted to assess the effects of endophyte-infected Acremonium coenophialum tall fescue (KY-31) seed (80% infected) on lactation in CD-1 dams and suckling performance of pups as measured by pup survival and growth rates. Twenty-four pairs of mature CD-1 mice were randomly allocated to four dietary treatments: 1) 100% mouse chow ad libitum; 2) 40% endophyte-infected tall fescue seed and 60% mouse chow (w/w); 3) reduced intake (100% chow), adjusted daily to the intake level of Treatment 2; and 4) 60% infected tall fescue seed and 40% chow. The mice were preconditioned on their respective diets for 100 d prior to 96 h of cohabitation between pairs of males and females. At parturition the litters were removed, and each dam was given a litter of six pups of equal weight, size and sex ratio to suckle for 15 days. All pups given to all the dams were born to other mice that were not part of the study and had not been exposed to endophyte-containing diets. Dams and litter weights were measured daily for 15 consecutive days. The combined body weight measurements of litters from dams fed the tall fescue containing diets (Treatments 2 and 4) were significantly lower (2.07 +/- 0.41 g/d) than that of litters from dams fed the chow containing diets (Treatments 1 and 3) during the suckling trial (P<0.05). Similarly, nine of ten (90%) dams fed the chow containing diets maintained five or more pups (5.5 +/- 0.2) throughout the study as compared to five of nine (55.6%) dams fed the tall fescue containing diets that maintained less than five pups (4.5 +/- 0.2).  相似文献   

18.
19.
The effect of nil (control), 1% (CH-l) and 5% (CH-5) dietary cholesterol on the myelination of mouse brain, and its deposition in the heart and liver were investigated during infancy. Swiss Webstar female mice were given formulated diets from early gestation, and their pups were weaned on the same diet as that of the individual mothers up to 60 days after birth. The test diets increased the liver weight and cholesterol content compared to the control even in suckling pups (20 days), but did not significantly influence the heart weight until 60 days. The cholesterol content of the heart was not increased by the CH-l diet throughout the feeding period, but it did increase the mole ratio of major myelin lipids and hastened its maturation. Myelin cholesterol was 10% higher in 20-day-old suckling pups in the CH-5 group compared to the control. Data indicate that dietary cholesterol altered the brain myelination rate of weaning mice, and that the mother’s dietary cholesterol influenced myelination of the suckling pups.  相似文献   

20.
Maternal obesity has been shown to impact the offspring health during childhood and adult life. This study aimed to evaluate whether maternal obesity combined with postnatal exposure to an obesogenic diet could induce metabolic alterations in offspring. Female CD1 mice were fed a control diet (CD, 11.1% of energy from fat) or with a high-fat diet (HFD, 44.3% of energy from fat) for 3 months. After weaning, pups born from control and obese mothers were fed with CD or HFD for 3 months. Both mothers and offspring were weighted weekly and several blood metabolic parameters levels were evaluated. Here, we present evidence that the offspring from mothers exposed to a HFD showed increased acetylation levels of histone 3 on lysine 9 (H3K9) in the liver at postnatal Day 1, whereas the levels of acetylation of H4K16, dimethylation of H3K27, and trimethylation of H3K9 showed no change. We also observed a higher perinatal weight and increased blood cholesterol levels when compared to the offspring on postnatal Day 1 born from CD-fed mothers. When mice born from obese mothers were fed with HFD, we observed that they gained more weight, presented higher blood cholesterol levels, and abdominal adipose tissue than mice born to the same mothers but fed with CD. Collectively, our results point toward maternal obesity and HFD consumption as a risk factor for epigenetic changes in the liver of the offspring, higher perinatal weight, increased weight gain, and altered blood cholesterol levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号