首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
Neurons are highly polarized cells with axonal and somatodendritic membrane surfaces that spatially separate signal-sending from signal-receiving membrane domains. As found in many other cell types, different populations of endosomes are involved in the sorting of synaptic and other membrane cargo in neurons. The exact source of the membrane for neurite extension and process remodelling during neuronal differentiation has remained uncertain, and we do not know exactly how polarized sorting of neuronal membrane proteins is achieved. In the present article, we will provide a brief overview of endosomes and their putative or proven functions in fibroblasts, epithelial cells and neurons. On the basis of insights from non-neuronal cell types and recent studies on the function of recycling endosomes during synaptic plasticity-induced membrane remodelling, we postulate a speculative model regarding the role of recycling endosomes in neuronal differentiation.  相似文献   

3.
Under many apoptotic conditions, Bax undergoes conformational rearrangements, leading to its insertion in the mitochondrial outer membrane as a transmembrane oligomer. At the same time, mitochondria undergo fragmentation and activated Bax was reported to localize to fission sites. We studied how lipid composition and membrane curvature regulate Bax activation. When isolated mitochondria were incubated with phospholipase A2, which led to phosphatidylethanolamine and cardiolipin hydrolysis, tBid and Bax insertion were hindered. We thus studied in liposomes how phosphatidylethanolamine, cardiolipin, and its hydrolysis products affect Bax activation. Whereas phosphatidylethanolamine, a lipid with negative curvature, did not affect Bax insertion, it inhibited Bax oligomerization. Conversely, Bax insertion required cardiolipin, and was not blocked by cardiolipin hydrolysis products. These experiments support a direct role for cardiolipin in the recruitment and activation of Bax. To examine if the increase in membrane curvature that accompanies mitochondrial fission participates in Bax activation, we studied how liposome size affects the process, and observed that it was inhibited in small liposomes (相似文献   

4.
Ulivieri C 《Tissue & cell》2010,42(6):339-347
An essential step in many forms of cell death is the release from mitochondria of “death effectors” which once in the cytoplasm activate signalling pathways leading to cellular demise. In this context mitochondria are known as regulators of cell death functioning as a node where signals are integrated. The discovery that alterations and remodelling of ultrastructural architecture of mitochondria are required to trigger the complete release of cytochrome c in the cytoplasm and the notion that mitochondrial architecture determines/influences the function of this organelle has fostered investigations on mitochondrial dynamics and on the machinery that regulates this process during cell death. In this review I shall summarize the current knowledge of mitochondrial inner membrane remodelling during cell death and discuss the role of mitochondrial proteins in governing structural alterations. I shall then discuss the role of the adaptor protein p66Shc as a regulator of mitochondrial metabolism during apoptosis.  相似文献   

5.
Epithelial cell movements, such as those that occur during cell intercalation, largely contribute to the formation of epithelial structures during the morphogenesis of multicellular organisms. As the architecture of epithelial tissues relies on strong adhesion between cells at adherens junctions (AJs), the intercalation or rearrangements of epithelial cells might be controlled by modulating the adhesion dynamics of the AJs by internal or external forces. In this review, we describe recent progress in understanding cell rearrangements during epithelial tube remodelling and discuss several models that might account for the developmental control of the spatial dynamics of AJs.  相似文献   

6.
Redox-dependent downregulation of Rho by Rac   总被引:1,自引:0,他引:1  
Rac and Rho GTPases function as critical regulators of actin cytoskeleton remodelling during cell spreading and migration. Here we demonstrate that Rac-mediated reactive oxygen species (ROS) production results in the downregulation of Rho activity. The redox-dependent decrease in Rho activity is required for Rac-induced formation of membrane ruffles and integrin-mediated cell spreading. The pathway linking generation of ROS to downregulation of Rho involves inhibition of the low-molecular-weight protein tyrosine phosphatase (LMW-PTP) and then an increase in the tyrosine phosphorylation and activation of its target, p190Rho-GAP. Our findings define a novel mechanism for the coupling of changes in cellular redox state to the control of actin cytoskeleton rearrangements by Rho GTPases.  相似文献   

7.
Summry— Interactions between cells and extracellular matrix play a crucial role during development by controlling tissue remodelling and cell migration. Integrins are the main family of cell surface receptors for extracellular matrix. The knockout of integrin genes in mouse embryos has provided new insights into the function of these receptors during embryonic development and morphogenesis. The lethality observed either during embryonic life or after birth suggests that many integrins are essential.  相似文献   

8.
Although many organ functions rely on epithelial tubes with correct dimensions, mechanisms underlying tube size control are poorly understood. We analyse the cellular mechanism of tracheal tube elongation in Drosophila, and describe an essential role of the conserved tyrosine kinase Src42A in this process. We show that Src42A is required for polarized cell shape changes and cell rearrangements that mediate tube elongation. In contrast, diametric expansion is controlled by apical secretion independently of Src42A. Constitutive activation of Src42A induces axial cell stretching and tracheal overelongation, indicating that Src42A acts instructively in this process. We propose that Src42A-dependent recycling of E-Cadherin at adherens junctions is limiting for cell shape changes and rearrangements in the axial dimension of the tube. Thus, we define distinct cellular processes that independently control axial and diametric expansion of a cylindrical epithelium in a developing organ. Whereas exocytosis-dependent membrane growth drives circumferential tube expansion, Src42A is required to orient membrane growth in the axial dimension of the tube.  相似文献   

9.
Cadherin cell-cell adhesion molecules are important determinants of morphogenesis and tissue patterning. C-cadherin plays a key role in the cell-upon-cell movements seen during Xenopus gastrulation. In particular, regulated changes in C-cadherin adhesion critically influence convergence-extension movements, thereby determining organization of the body plan. It is also predicted that remodelling of cadherin adhesive contacts is important for such cell-on-cell movements to occur. The recent demonstration that Epithelial (E-) cadherin is capable of undergoing endocytic trafficking to and from the cell surface presents a potential mechanism for rapid remodelling of such adhesive contacts. To test the potential role for C-cadherin endocytosis during convergence-extension, we expressed in early Xenopus embryos a dominantly-inhibitory mutant of the GTPase, dynamin, a key regulator of clathrin-mediated endocytosis. We report that this dynamin mutant significantly blocked the elongation of animal cap explants in response to activin, accompanied by inhibition of C-cadherin endocytosis. We propose that dynamin-dependent endocytosis of C-cadherin plays an important role in remodelling adhesive contacts during convergence-extension movements in the early Xenopus embryo.  相似文献   

10.
Apoptosis and mammary gland involution: reviewing the process   总被引:4,自引:0,他引:4  
Apoptosis is a process of programmed cell death. Mammary gland involution is a tissue remodelling process. Mammary epithelial cell apoptosis is an integral component of tissue remodelling but it is only one element. Equally important are the factors which degrade basement membrane and extracellular matrix. Both operations are required for completion of mammary gland involution. The primary apoptotic process occurs first and is temporally distinct from the second stage of involution typified by lobular-alveolar collapse. Local factors related to milk accumulation trigger the first stage, but loss of systemic hormonal stimulation governs the second stage. Changes in the expression patterns of cell cycle control genes and bcl-2 family member genes are found in the first stage. Proteinase gene activation dominates the second stage. These findings support a two stage model of mammary gland involution. Both mammary epithelial cell apoptosis and mammary gland remodelling advance through a process which includes both loss of survival factors and gain of death factors. This review focuses on signalling pathways and genetic controls which are activated and repressed during mammary gland involution.  相似文献   

11.
Development of the mammary gland requires the coordinated action of proteolytic enzymes during two phases of remodelling. Firstly, new ducts and side-branches thereof need to be established during pregnancy to generate an extensive ductal tree allowing the secretion and transport of milk. A second wave of remodelling occurs during mammary involution after weaning. We have analysed the role of the cell surface protease aminopeptidase N (Anpep, APN, CD13) during these processes using Anpep deficient and Anpep over-expressing mice. We find that APN deficiency significantly delays mammary gland morphogenesis during gestation. The defect is characterised by a reduction in alveolar buds and duct branching at mid-pregnancy. Conversely over-expression of Anpep leads to accelerated ductal development. This indicates that Anpep plays a critical role in the proteolytic remodelling of mammary tissue during adult mammary development.  相似文献   

12.
Development is punctuated by morphogenetic rearrangements of epithelial tissues, including detachment of motile cells during epithelial–mesenchymal transition (EMT). Dramatic actin rearrangements occur as cell–cell junctions are dismantled and cells become independently motile during EMT. Characterizing dynamic actin rearrangements and identifying actin machinery driving these rearrangements is essential for understanding basic mechanisms of cell–cell junction remodeling. Using immunofluorescence and live cell imaging of scattering MDCK cells we examine dynamic actin rearrangement events during EMT and demonstrate that zyxin–VASP complexes mediate linkage of dynamic medial actin networks to adherens junction (AJ) membranes. A functional analysis of zyxin in EMT reveals its role in regulating disruption of actin membrane linkages at cell–cell junctions, altering cells' ability to fully detach and migrate independently during EMT. Expression of a constitutively active zyxin mutant results in persistent actin‐membrane linkages and cell migration without loss of cell–cell adhesion. We propose zyxin functions in morphogenetic rearrangements, maintaining collective migration by transducing individual cells' movements through AJs, thus preventing the dissociation of individual migratory cells. J. Cell. Physiol. 222: 612–624, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
The biogenesis of mitochondria requires the integration of many proteins into the inner membrane from the matrix side. The inner membrane protein Oxa1 plays an important role in this process. We identified Mba1 as a second mitochondrial component that is required for efficient protein insertion. Like Oxa1, Mba1 specifically interacts both with mitochondrial translation products and with conservatively sorted, nuclear-encoded proteins during their integration into the inner membrane. Oxa1 and Mba1 overlap in function and substrate specificity, but both can act independently of each other. We conclude that Mba1 is part of the mitochondrial protein export machinery and represents the first component of a novel Oxa1-independent insertion pathway into the mitochondrial inner membrane.  相似文献   

14.
In mammalian cells, most integral membrane proteins are initially inserted into the endoplasmic reticulum membrane by the so-called Sec61 translocon. However, recent predictions suggest that many transmembrane helices (TMHs) in multispanning membrane proteins are not sufficiently hydrophobic to be recognized as such by the translocon. In this study, we have screened 16 marginally hydrophobic TMHs from membrane proteins of known three-dimensional structure. Indeed, most of these TMHs do not insert efficiently into the endoplasmic reticulum membrane by themselves. To test if loops or TMHs immediately upstream or downstream of a marginally hydrophobic helix might influence the insertion efficiency, insertion of marginally hydrophobic helices was also studied in the presence of their neighboring loops and helices. The results show that flanking loops and nearest-neighbor TMHs are sufficient to ensure the insertion of many marginally hydrophobic helices. However, for at least two of the marginally hydrophobic helices, the local interactions are not enough, indicating that post-insertional rearrangements are involved in the folding of these proteins.  相似文献   

15.
Angiogenic growth factors are a class of molecules which exert a fundamental role in the process of blood vessel formation. Besides vasculogenic and angiogenic properties, these compounds mediate a complex series of patterning activities during organogenesis. Angiogenic factors cooperate in the growth and development of embryo tissues in a cross-talk between endothelial cells and tissue cells. It is well established that many tissue-derived factors are involved in blood vessel formation, but there is now emerging evidence that angiogenic factors and endothelial cells themselves represent a crucial source of instructive signals to non-vascular tissue cells during organ development. Thus, angiogenic factors and endothelial cell signalling are currently believed to provide fundamental cues for cell fate specification, embryo patterning, organ differentiation and postnatal tissue remodelling. This review article will summarize some of the recent advances in our understanding of the role of angiogenic factors and endothelial cells as effectors in organ formation.  相似文献   

16.
The Bacillus subtilis spoIIIJ gene, which has been proven to be vegetatively expressed, has also been implicated as a sporulation gene. Recent genome sequencing information in many organisms reveals that spoIIIJ and its paralogous gene, yqjG, are conserved from prokaryotes to humans. A homologue of SpoIIIJ/YqjG, the Escherichia coli YidC is involved in the insertion of membrane proteins into the lipid bilayer. On the basis of this similarity, it was proposed that the two homologues act as translocase for the membrane proteins. We studied the requirements for spoIIIJ and yqjG during vegetative growth and sporulation. In rich media, the growth of spoIIIJ and yqjG single mutants were the same as that of the wild type, whereas spoIIIJ yqjG double inactivation was lethal, indicating that together these B. subtilis translocase homologues play an important role in maintaining the viability of the cell. This result also suggests that SpoIIIJ and YqjG probably control significantly overlapping functions during vegetative growth. spoIIIJ mutations have already been established to block sporulation at stage III. In contrast, disruption of yqjG did not interfere with sporulation. We further show that high level expression of spoIIIJ during vegetative phase is dispensable for spore formation, but the sporulation-specific expression of spoIIIJ is necessary for efficient sporulation even at the basal level. Using green fluorescent protein reporter to monitor SpoIIIJ and YqjG localization, we found that the proteins localize at the cell membrane in vegetative cells and at the polar and engulfment septa in sporulating cells. This localization of SpoIIIJ at the sporulation-specific septa may be important for the role of spoIIIJ during sporulation.  相似文献   

17.
18.
Listeria monocytogenes is a food-borne pathogen able to invade non-phagocytic cells. InlA, a L. monocytogenes surface protein, interacts with human E-cadherin to promote bacterial entry. L. monocytogenes internalization is a dynamic process involving co-ordinated actin cytoskeleton rearrangements and host cell membrane remodelling at the site of bacterial attachment. Interaction between E-cadherin and catenins is required to promote Listeria entry, and for the establishment of adherens junctions in epithelial cells. Although several molecular factors promoting E-cadherin-mediated Listeria internalization have been identified, the proteins regulating the transient actin polymerization required at the bacterial entry site are unknown. Here we show that the Arp2/3 complex acts as an actin nucleator during the InlA/E-cadherin-dependent internalization. Using a variety of approaches including siRNA, expression of dominant negative derivatives and pharmacological inhibitors, we demonstrate the crucial role of cortactin in the activation of the Arp2/3 complex during InlA-mediated entry. We also show the requirement of the small GTPase Rac1 and that of Src-tyrosine kinase activity to promote Listeria internalization. Together, these data suggest a model in which Src tyrosine kinase and Rac1 promote recruitment of cortactin and activation of Arp2/3 at Listeria entry site, mimicking events that occur during adherens junction formation.  相似文献   

19.
Neurones are highly specialised cells that can extend over great distances, enabling the complex networking of the nervous system. We are beginning to understand in detail the molecular mechanisms that control the shape of neurones during development. One family of proteins that are clearly essential are the Rho GTPases which have a pivotal role in regulating the actin cytoskeleton in all cell types. The Rho GTPases are responsible for the activation and downregulation of many downstream kinases. This review discusses individual kinases that are regulated by three members of the Rho GTPases, Rac, Rho and Cdc42 and their function during neurite outgrowth and remodelling.  相似文献   

20.
DM20 is an abundant CNS myelin-specific protein whose role in myelinogenesis is unknown. We have cloned the DM20 cDNA from adult mouse brain total RNA using the polymerase chain reaction and expressed it in HeLa cells. DM20, detected by immunofluorescence in stable transfectants, is present in some cells in large, intensely fluorescent intracellular clumps that probably represent elements of the rough endoplasmic reticulum and Golgi apparatus. Frequently, intense DM20 fluorescence could be detected at the plasma membrane. These findings are consistent with previous studies demonstrating that an intracellular "pool" of DM20 and its larger isoform, proteolipid protein, exists and that a substantial lag occurs between synthesis and insertion of these proteins into the expanding myelin membrane. Permanent DM20 expressors in contact with one another do not display any ultrastructural rearrangements at regions of cell-cell contact, in contrast to what we have previously reported for P0, a PNS-specific protein shown to mediate adhesion of the extracellular faces of the Schwann cell during PNS myelinogenesis. We believe that these results indicate that if DM20 is indeed an adhesion molecule, this property is likely to be significantly more subtle than P0-mediated adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号