首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Class IX myosins are unique among the many classes of known actin-based motors in that the tail region of these myosins contains a GTPase-activating protein domain for the small GTP-binding protein, Rho. Previous studies on human myosin-IXb indicate that this myosin is mechanochemically active and exhibits actin-binding properties similar to the processive motor, myosin-Va. Motility analysis of antibody-tethered myosin-IXb performed using the sliding actin filament assay indicates that this myosin does exhibit properties characteristic of a processive motor. Like myosin-Va, the velocity of myosin-IXb remains constant (38.2 +/- 1.2 nm/s) even at single motor/filament densities. At low motor densities, filaments can be seen passing through and pivoting about single points on the motility surface. Analysis of filament landing rates as a function of motor density also indicates that a single motor is sufficient for filament movement. However, in contrast to myosin-Va, which uses coordinated motion of its two heads to move processively along the filament, hydrodynamic and chemical cross-linking studies indicate that under the conditions tested, myosin-IXb is a single-headed motor consisting of a single heavy chain and associated light chains.  相似文献   

2.
Non-claret disjunctional (Ncd) is a Drosophila kinesin-like motor required for spindle assembly and maintenance in oocytes and early embryos. Ncd has an ATP-independent microtubule binding site in the N-terminal tail domain as well as an ATP-dependent microtubule binding site in the C-terminal motor domain. The Ncd tail domain shares many properties with the microtubule-associated proteins that regulate microtubule assembly, including microtubule binding and bundling activity and an abundance of basic and proline residues. Given these similarities, we examined the ability of Ncd tail domain proteins to promote MT assembly and stability. The results indicate that the Ncd tail domain can promote MT assembly and stabilize MTs against conditions that induce MT disassembly, and suggest that Ncd may influence MT dynamics within the spindle.  相似文献   

3.
We succeeded in expressing the recombinant full-length myosin Va (M5Full) and studied its regulation mechanism. The actin-activated ATPase activity of M5Full was significantly activated by Ca(2+), whereas the truncated myosin Va without C-terminal globular domain is not regulated by Ca(2+) and constitutively active. Sedimentation analysis showed that the sedimentation coefficient of M5Full undergoes a Ca(2+)-induced conformational transition from 14S to 11S. Electron microscopy revealed that at low ionic strength, M5Full showed an extended conformation in high Ca(2+) while it formed a folded shape in the presence of EGTA, in which the tail domain was folded back towards the head-neck region. Furthermore, we found that the motor domain of myosin Va folds back to the neck domain in Ca(2+) while the head-neck domain is more extended in EGTA. It is thought that the association of the motor domain to the neck inhibits the binding of the tail to the neck thus destabilizing a folded conformation in Ca(2+). This conformational transition is closely correlated to the actin-activated ATPase activity. These results suggest that the tail and neck domain play a role in the Ca(2+) dependent regulation of myosin Va.  相似文献   

4.
《The Journal of cell biology》1993,120(6):1393-1403
We have identified, characterized and cloned a novel mammalian myosin-I motor-molecule, called myr 1 (myosin-I from rat). Myr 1 exists in three alternative splice forms: myr 1a, myr 1b, and myr 1c. These splice forms differ in their numbers of putative calmodulin/light chain binding sites. Myr 1a-c were selectively released by ATP, bound in a nucleotide-dependent manner to F-actin and exhibited amino acid sequences characteristic of myosin-I motor domains. In addition to the motor domain, they contained a regulatory domain with up to six putative calmodulin/light chain binding sites and a tail domain. The tail domain exhibited 47% amino acid sequence identity to the brush border myosin-I tail domain, demonstrating that myr 1 is related to the only other mammalian myosin-I motor molecule that has been characterized so far. In contrast to brush border myosin-I which is expressed in mature enterocytes, myr 1 splice forms were differentially expressed in all tested tissues. Therefore, myr 1 is the first mammalian myosin-I motor molecule with a widespread tissue distribution in neonatal and adult tissues. The myr 1a splice form was preferentially expressed in neuronal tissues. Its expression was developmentally regulated during rat forebrain ontogeny and subcellular fractionation revealed an enrichment in purified growth cone particles, data consistent with a role for myr 1a in neuronal development.  相似文献   

5.
Seidel C  Zekert N  Fischer R 《PloS one》2012,7(2):e30976
Posttranslational microtubule modifications (PTMs) are numerous; however, the biochemical and cell biological roles of those modifications remain mostly an enigma. The Aspergillus nidulans kinesin-3 UncA uses preferably modified microtubules (MTs) as tracks for vesicle transportation. Here, we show that a positively charged region in the tail of UncA (amino acids 1316 to 1402) is necessary for the recognition of modified MTs. Chimeric proteins composed of the kinesin-1 motor domain and the UncA tail displayed the same specificity as UncA, suggesting that the UncA tail is sufficient to establish specificity. Interaction between the UncA tail and alpha-tubulin was shown using a yeast two-hybrid assay and in A. nidulans by bimolecular fluorescence complementation. This is the first demonstration of how a kinesin-3 motor protein distinguishes among different MT populations in fungal cells, and how specificity determination depends on the tail rather than the motor domain, as has been demonstrated for kinesin 1 in neuronal cells.  相似文献   

6.
Kinesin-like calmodulin-binding protein (KCBP) is a novel member of the kinesin superfamily that is involved in cell division and trichome morphogenesis. KCBP is unique among all known kinesins in having a myosin tail homology-4 region in the N-terminal tail and a calmodulin-binding region following the motor domain. Calcium, through calmodulin, has been shown to negatively regulate the interaction of KCBP with microtubules. Here we have used the yeast two-hybrid system to identify the proteins that interact with the tail region of KCBP. A protein kinase (KCBP-interacting protein kinase (KIPK)) was found to interact specifically with the tail region of KCBP. KIPK is related to a group of protein kinases specific to plants that has an additional sequence between subdomains VII and VIII of the conserved C-terminal catalytic domain and an extensive N-terminal region. The catalytic domain alone of KIPK interacted weakly with the N-terminal KCBP protein but strongly with full-length KCBP, whereas the noncatalytic region did not interact with either protein. The interaction of KCBP with KIPK was confirmed using coprecipitation assays. Using bacterially expressed full-length and truncated proteins, we have shown that the catalytic domain is capable of phosphorylating itself. The association of KIPK with KCBP suggests regulation of KCBP or KCBP-associated proteins by phosphorylation and/or that KCBP is involved in targeting KIPK to its proper cellular location.  相似文献   

7.
We used a truncated form of human conventional kinesin (K560) and a set of synthetic tail-derived peptides to investigate the mechanism by which the kinesin tail domain inhibits the protein's ATPase and motor activities. A peptide that spans residues 904-933 (C3) exhibited the strongest inhibitory effect on steady-state motility and ATPase activity. This inhibition reflected diminished binding of the ADP-bound kinesin head to the microtubule. Although peptide C3 bound to both K560 and microtubules, gliding assays using subtilisin-treated microtubules suggested that the binding to the microtubule contributes only little to the inhibition if there is sufficient affinity between the peptide and kinesin. We suggest that tail-mediated inhibition of kinesin activity is mainly the product of allosteric inhibition induced by the intramolecular binding of the kinesin tail domain to the motor domain, but simultaneous binding of the tail to the microtubule also may exert a minor effect.  相似文献   

8.
The motor protein dynein is predicted to move the tail domain, a slender rod-like structure, relative to the catalytic head domain to carry out its power stroke. Here, we investigated ATP hydrolysis cycle-dependent conformational dynamics of dynein using fluorescence resonance energy transfer analysis of the dynein motor domain labeled with two fluorescent proteins. We show that dynein adopts at least two conformational states (states I and II), and the tail undergoes ATP-induced motions relative to the head domain during transitions between the two states. Our measurements also suggest that in the course of the ATP hydrolysis cycle of dynein, the tail motion from state I to state II takes place in the ATP-bound state, whereas the motion from state II to state I occurs in the ADP-bound state. The latter tail motion may correspond to the predicted power stroke of dynein.  相似文献   

9.
We report the identification and characterization of myr 4 (myosin from rat), the first mammalian myosin I that is not closely related to brush border myosin I. Myr 4 contains a myosin head (motor) domain, a regulatory domain with light chain binding sites and a tail domain. Sequence analysis of myosin I head (motor) domains suggested that myr 4 defines a novel subclass of myosin I''s. This subclass is clearly different from the vertebrate brush border myosin I subclass (which includes myr 1) and the myosin I subclass(es) identified from Acanthamoeba castellanii and Dictyostelium discoideum. In accordance with this notion, a detailed sequence analysis of all myosin I tail domains revealed that the myr 4 tail is unique, except for a newly identified myosin I tail homology motif detected in all myosin I tail sequences. The Ca(2+)-binding protein calmodulin was demonstrated to be associated with myr 4. Calmodulin binding activity of myr 4 was mapped by gel overlay assays to the two consecutive light chain binding motifs (IQ motifs) present in the regulatory domain. These two binding sites differed in their Ca2+ requirements for optimal calmodulin binding. The NH2-terminal IQ motif bound calmodulin in the absence of free Ca2+, whereas the COOH-terminal IQ motif bound calmodulin in the presence of free Ca2+. A further Ca(2+)-dependent calmodulin binding site was mapped to amino acids 776-874 in the myr 4 tail domain. These results demonstrate a differential Ca2+ sensitivity for calmodulin binding by IQ motifs, and they suggest that myr 4 activity might be regulated by Ca2+/calmodulin. Myr 4 was demonstrated to be expressed in many cell lines and rat tissues with the highest level of expression in adult brain tissue. Its expression was developmentally regulated during rat brain ontogeny, rising 2-3 wk postnatally, and being maximal in adult brain. Immunofluorescence localization demonstrated that myr 4 is expressed in subpopulations of neurons. In these neurons, prominent punctate staining was detected in cell bodies and apical dendrites. A punctate staining that did not obviously colocalize with the bulk of F- actin was also observed in C6 rat glioma cells. The observed punctate staining for myr 4 is reminiscent of a membranous localization.  相似文献   

10.
Myosin V is a single-molecule motor that moves organelles along actin. When myosin V pulls loads inside the cell in a highly viscous environment, the force on the motor is unlikely to be constant. We propose that the tether between the single-molecule motor and the cargo (i.e., the extended tail domain of the molecule) must be able to absorb the sudden mechanical motions of the motor and allow smooth relaxation of the motion of the cargo to a new position. To test this hypothesis, we compared the elastic properties of the extended tail domains of processive (mouse myosin Va) and nonprocessive (Drosophila myosin V) molecular motors. The extended tail domain of these myosins consists of mechanically strong coiled-coil regions interspersed with flexible loops. In this work we explored the mechanical properties of coiled-coil regions using atomic force microscopy. We found that the processive and nonprocessive coiled-coil fragments display different unfolding patterns. The unfolding of coiled-coil structures occurs much later during the atomic force microscopy stretch cycle for processive myosin Va than for nonprocessive Drosophila myosin V, suggesting that this elastic tether between the cargo and motor may play an important role in sustaining the processive motions of this single-molecule motor.  相似文献   

11.
Karabay A  Walker RA 《Biochemistry》1999,38(6):1838-1849
Nonclaret disjunctional (Ncd) is a minus end-directed, C-terminal motor protein that is required for spindle assembly and maintenance during meiosis and early mitosis in Drosophila oocytes and early embryos. Ncd has an ATP-independent MT binding site in the N-terminal tail domain, and an ATP-dependent MT binding site in the C-terminal motor domain. The ability of Ncd to cross-link MTs through the action of these binding sites may be important for Ncd function in vivo. To identify the region(s) responsible for ATP-independent MT interactions of Ncd, 12 cDNAs coding various regions of Ncd tail domain were expressed in E. coli as C-terminal fusions to thioredoxin (Trx). Ncd tail fusion proteins (TrxNT) were purified by ion exchange (S-Sepharose) and/or Talon metal affinity chromatography. Purified TrxNT and NT proteins were analyzed in microtubule (MT) cosedimentation and bundling assays to identify which tail proteins were able to bind and bundle MTs. Based on the results of these experiments, all TrxNT and NT proteins that showed MT binding activity also bundled MTs, and there are two ATP-independent MT interaction sites in the tail region: one within amino acids 83-100 that exhibits conformation-independent, high-affinity MT binding activity; and another within amino acids 115-187 that exhibits conformation-dependent, lower affinity MT binding activity. It is possible that both of these MT interacting sites combine in the native protein to form a single MT binding site that allows the Ncd tail to bind cargo MTs in vivo.  相似文献   

12.
Myosin VI is involved in membrane traffic and dynamics and is the only myosin known to move towards the minus end of actin filaments. Splice variants of myosin VI with a large insert in the tail domain were specifically expressed in polarized cells containing microvilli. In these polarized cells, endogenous myosin VI containing the large insert was concentrated at the apical domain co-localizing with clathrin- coated pits/vesicles. Using full-length myosin VI and deletion mutants tagged with green fluorescent protein (GFP) we have shown that myosin VI associates and co-localizes with clathrin-coated pits/vesicles by its C-terminal tail. Myosin VI, precipitated from whole cytosol, was present in a protein complex containing adaptor protein (AP)-2 and clathrin, and enriched in purified clathrin-coated vesicles. Over-expression of the tail domain of myosin VI containing the large insert in fibroblasts reduced transferrin uptake in transiently and stably transfected cells by >50%. Myosin VI is the first motor protein to be identified associated with clathrin-coated pits/vesicles and shown to modulate clathrin-mediated endocytosis.  相似文献   

13.
Myosin VI moves processively along actin with a larger step size than expected from the size of the motor. Here, we show that the proximal tail (the approximately 80-residue segment following the IQ domain) is not a rigid structure but, rather, a flexible domain that permits the heads to separate. With a GCN4 coiled coil inserted in the proximal tail, the heads are closer together in electron microscopy (EM) images, and the motor takes shorter processive steps. Single-headed myosin VI S1 constructs take nonprocessive 12 nm steps, suggesting that most of the processive step is covered by a diffusive search for an actin binding site. Based on these results, we present a mechanical model that describes stepping under an applied load.  相似文献   

14.
Binding of chara Myosin globular tail domain to phospholipid vesicles   总被引:1,自引:0,他引:1  
Binding of Chara myosin globular tail domain to phospholipid vesicles was investigated quantitatively. It was found that the globular tail domain binds to vesicles made from acidic phospholipids but not to those made from neutral phospholipids. This binding was weakened at high KCl concentration, suggesting that the binding is electrostatic by nature. The dissociation constant for the binding of the globular tail domain to 20% phosphatidylserine vesicles (similar to endoplasmic reticulum in acidic phospholipid contents) at 150 mM KCl was 273 nM. The free energy change due to this binding calculated from the dissociation constant was -37.3 kJ mol(-1). Thus the bond between the globular tail domain and membrane phospholipids would not be broken when the motor domain of Chara myosin moves along the actin filament using the energy of ATP hydrolysis (DeltaG degrees ' = -30.5 kJ mol(-1)). Our results suggested that direct binding of Chara myosin to the endoplasmic reticulum membrane through the globular tail domain could work satisfactorily in Chara cytoplasmic streaming. We also suggest a possible regulatory mechanism of cytoplasmic streaming including phosphorylation-dependent dissociation of the globular tail domain from the endoplasmic reticulum membrane.  相似文献   

15.
We succeeded in expressing a chimeric myosin that comprises the motor domain of characean algal myosin, (the fastest known motor protein), and the neck and tail domains of Dictyostelium myosin II. Although the chimeric myosin showed an ATPase activity comparable to that of muscle myosin (15 times higher than that of the wild-type Dictyostelium myosin II), the motile activity of the chimera was only 1.3 times higher than that of the wild-type. However, this is the first chimeric myosin that showed motile activity faster than at least one of the parent myosins. It was suggested, therefore, that the motor domain of Chara myosin has the potential for performing fast sliding movement.  相似文献   

16.
Kinesin-like calmodulin-binding protein (KCBP), a novel kinesin-like protein from plants, is unique among kinesins and kinesin-like proteins in having a calmodulin-binding domain adjacent to its motor domain. KCBP localizes to mitotic microtubule (MT) arrays including the preprophase band, the spindle apparatus, and the phragmoplast, suggesting a role for KCBP in establishing these MT arrays by bundling MTs. To determine if KCBP bundles MTs, we expressed C-terminal motor and N-terminal tail domains of KCBP, and used the purified proteins in MT bundling assays. The 1.5 C protein with the motor and calmodulin-binding domains induced MT bundling. The 1.5 C-induced bundles were dissociated in the presence of Ca(2+)/calmodulin. Similar results were obtained with a 1.4 C protein, which lacks much of the coiled-coil region present in 1.5 C protein and does not form dimers. The N-terminal tail of KCBP, which contains an ATP-independent MT binding site, is also capable of bundling MTs. These results, together with the KCBP localization data, suggest the involvement of KCBP in establishing mitotic MT arrays during different stages of cell division and that Ca(2+)/calmodulin regulates the formation of these MT arrays.  相似文献   

17.
Kinesins, as a kind of microtubule-based motor proteins, have a conserved microtubule-binding site in their motor domain. Here we report that two homologous kinesins in Arabidopsis thaliana, KatB and KatC, contain a second microtubule-binding site in their tail domains. The prokaryotic-expressed N-terminal tail domain of the KatC heavy chain can bind to microtubules in an ATP-insensitive manner. To identify the precise region responsible for the binding, a serious of truncated KatC cDNAs encoding KatC N-terminal regions in different lengths, KatC1-128, KatC1-86, KatC1-73 and KatC1-63, fused to Histidine-tags, were expressed in E. coli and affinity-purified. Microtubule cosedimentation assays show that the site at amino acid residues 74-86 in KatC is important for microtubulebinding. By similarity, we obtained three different lengths of KatB N-terminal regions, KatB1-384, KatB1-77, and KatB1-63, and analyzed their microtubule-binding ability. Cosedimentation assays indicate that the KatB tail domain can also bind to microtubules at the same site as and in a similar manner to KatC. Fluorescence microscopic observations show that the microtubule-binding site at the tail domain of KatB or KatC can induce microtubules bundling only when the stalk domain is present. Through pull-down assays, we show that KatB1-385 and KatC1-394 are able to interact specifically with themselves and with each other in vitro. These findings are significant for identifying a previously uncharacterized microtubule-binding site in the two kinesin proteins, KatB and KatC, and the functional relations between them.  相似文献   

18.
ncd is a minus-end directed, kinesin-like motor, which binds to microtubules with its motor domain and its cargo domain as well. Typical of retrograde motors, the motor domain of ncd locates to the C-terminal end of the polypeptide chain, and hence, the cargo domain constitutes the N-terminal region. To date, several studies have investigated the interaction properties of the motor domain with microtubules, but very few structural data are available about the tail itself or its interaction with microtubules as cargo. Here, we applied cryo-electron microscopy and helical 3D image reconstruction to 15 protofilament microtubules decorated with an ncd tail fragment (N-terminal residues 83-187, named NT6). In our study, the ncd tail shows a behaviour resembling filamentous MAPs such as tau protein, exhibiting a highly flexible structure with no large globular domains. NT6 binds to four different sites on the outer side of microtubules within the proximity of the kinesin motor-binding site. Two of these sites locate within the groove between two neighbouring protofilaments, and appear as strong binding sites, while the other two sites, located at the outer rim, appear to play a secondary role. In addition, the ncd tail fragment induces the formation of large protofilament sheets, suggesting a tail-induced modification of lateral protofilament contacts.  相似文献   

19.
Metaphase chromosome positioning depends on Kif18A, a kinesin-8 that accumulates at and suppresses the dynamics of K-MT plus ends. By engineering Kif18A mutants that suppress MT dynamics but fail to concentrate at K-MT plus ends, we identify a mechanism that allows Kif18A to accumulate at K-MT plus ends to a level required to suppress chromosome movements. Enrichment of Kif18A at K-MT plus ends depends on its C-terminal tail domain, while the ability of Kif18A to suppress MT growth is conferred by the N-terminal motor domain. The Kif18A tail contains a second MT-binding domain that diffuses along the MT lattice, suggesting that it tethers the motor to the MT track. Consistently, the tail enhances Kif18A processivity and is crucial for it to accumulate at K-MT plus ends. The heightened processivity of Kif18A, conferred by its tail domain, thus promotes concentration of Kif18A at K-MT plus ends, where it suppresses their dynamics to control chromosome movements.  相似文献   

20.
We isolated a cDNA encoding a novel unconventional myosin from scallop mantle tissue (scallop unconventional myosin: ScunM) and determined the nucleotide sequence. It comprises 2,739 bp with 5' and 3'-noncoding sequences and has an open reading frame of 2,334 bp that encodes 778 amino acids. While ScunM has a motor domain and a short tail domain without having light chain-binding IQ motifs like myosin XIV, the deduced amino acid sequence exhibits low homology, 30-36%, to known myosins. Phylogenetic analysis of the motor domain suggested that ScunM belongs to a novel unconventional myosin class. ScunM has an insertion of 67 amino acids in the putative actin-binding site (loop2 site). Western blot analysis with an antibody produced against the N-terminal region revealed that ScunM was strongly expressed in the mantle and mantle pallial cell layer of scallop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号