首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Molecular mechanisms modulating muscle mass   总被引:8,自引:0,他引:8  
Skeletal muscle atrophy occurs in multiple clinical settings, including cancer, AIDS and sepsis, and is caused in part by an increase in the rate of ATP-dependent ubiquitin-mediated proteolysis. The expression of two recently identified genes encoding ubiquitin-protein ligases, MAFbx/Atrogin-1 and MuRF1, has been shown to increase during muscle atrophy. Mouse knockout studies have demonstrated that MAFbx and MuRF1 are required for muscle atrophy, and thus might be targets for clinical intervention. A second strategy for blocking atrophy involves the stimulation of pathways leading to skeletal muscle hypertrophy. Insulin-like growth factor 1 (IGF-1) is a protein growth factor that can induce skeletal muscle hypertrophy by activating the phosphatidylinositol 3-kinase (PI3K)-Akt pathway. The pathways modulating hypertrophy and atrophy will be further discussed, to highlight potential targets for clinical intervention.  相似文献   

2.
3.
Skeletal muscle atrophy is a severe morbidity caused by a variety of conditions, including cachexia, cancer, AIDS, prolonged bedrest, and diabetes. One strategy in the treatment of atrophy is to induce the pathways normally leading to skeletal muscle hypertrophy. The pathways that are sufficient to induce hypertrophy in skeletal muscle have been the subject of some controversy. We describe here the use of a novel method to produce a transgenic mouse in which a constitutively active form of Akt can be inducibly expressed in adult skeletal muscle and thereby demonstrate that acute activation of Akt is sufficient to induce rapid and significant skeletal muscle hypertrophy in vivo, accompanied by activation of the downstream Akt/p70S6 kinase protein synthesis pathway. Upon induction of Akt in skeletal muscle, there was also a significant decrease in adipose tissue. These findings suggest that pharmacologic approaches directed toward activating Akt will be useful in inducing skeletal muscle hypertrophy and that an increase in lean muscle mass is sufficient to decrease fat storage.  相似文献   

4.
5.
Molecular determinants of skeletal muscle mass: getting the "AKT" together   总被引:5,自引:0,他引:5  
Skeletal muscle is the most abundant tissue in the human body and its normal physiology plays a fundamental role in health and disease. During many disease states, a dramatic loss of skeletal muscle mass (atrophy) is observed. In contrast, physical exercise is capable of producing significant increases in muscle mass (hypertrophy). Maintenance of skeletal muscle mass is often viewed as the net result of the balance between two separate processes, namely protein synthesis and protein degradation. However, these two biochemical processes are not occurring independent of each other but they rather appear to be finely coordinated by a web of intricate signaling networks. Such signaling networks are in charge of executing environmental and cellular cues that will ultimate determine whether muscle proteins are synthesized or degraded. In this review, recent findings are discussed demonstrating that the AKT1/FOXOs/Atrogin-1(MAFbx)/MuRF1 signaling network plays an important role in the progression of skeletal muscle atrophy. These novel findings highlight an important mechanism that coordinates the activation of the protein synthesis machinery with the activation of a genetic program responsible for the degradation of muscle proteins during skeletal muscle atrophy.  相似文献   

6.
The control of muscle cell size is a physiological process balanced by a fine tuning between protein synthesis and protein degradation. MAFbx/Atrogin-1 is a muscle specific E3 ubiquitin ligase up regulated during disuse, immobilization, and fasting or systemic diseases such as diabetes, cancer, SIDA and renal failure. This response is necessary to induce a rapid and functional atrophy. To date, the targets of MAFbx/Atrogin-1 in skeletal muscle remain to be identified. We have recently presented evidence that eIF3-f, a regulatory subunit of the eukaryotic translation factor eIF3 is a key target that accounts for MAFbx/Atrogin-1 function in muscle atrophy. More importantly, we showed that eIF3-f act as a “translational enhancer” that increases the efficiency of the structural muscle proteins synthesis leading to both in vitro and in vivo muscle hypertrophy. We propose that eIF3-f subunit, a mTOR/S6K1 scaffolding protein in the IGF-1/Akt/mTOR dependant control of protein translation, is a positive actor essential to the translation of specific mRNAs probably implicated in the muscle hypertrophy. The central role of eIF3-f in both the atrophic and hypertrophic pathways will be discussed in the light of its promising potential in muscle wasting therapy.  相似文献   

7.
Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. To address this problem, we used a systems-based discovery strategy to search for a small molecule whose mRNA expression signature negatively correlates to mRNA expression signatures of human skeletal muscle atrophy. This strategy identified a natural small molecule from tomato plants, tomatidine. Using cultured skeletal myotubes from both humans and mice, we found that tomatidine stimulated mTORC1 signaling and anabolism, leading to accumulation of protein and mitochondria, and ultimately, cell growth. Furthermore, in mice, tomatidine increased skeletal muscle mTORC1 signaling, reduced skeletal muscle atrophy, enhanced recovery from skeletal muscle atrophy, stimulated skeletal muscle hypertrophy, and increased strength and exercise capacity. Collectively, these results identify tomatidine as a novel small molecule inhibitor of muscle atrophy. Tomatidine may have utility as a therapeutic agent or lead compound for skeletal muscle atrophy.  相似文献   

8.
Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3',5'-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets.  相似文献   

9.
Skeletal muscle wasting is a major human morbidity, and contributes to mortality in a variety of clinical settings, including denervation and cancer cachexia. In this study, we demonstrate that the expression level and autoubiquitination of tumor necrosis factor (α) receptor adaptor protein 6 (TRAF6), a protein involved in receptor-mediated activation of several signaling pathways, is enhanced in skeletal muscle during atrophy. Skeletal muscle-restricted depletion of TRAF6 rescues myofibril degradation and preserves muscle fiber size and strength upon denervation. TRAF6 mediates the activation of JNK1/2, p38 mitogen-activated protein kinase, adenosine monophosphate-activated protein kinase, and nuclear factor κB, and induces the expression of muscle-specific E3 ubiquitin ligases and autophagy-related molecules in skeletal muscle upon denervation. Inhibition of TRAF6 also preserves the orderly pattern of intermyofibrillar and subsarcolemmal mitochondria in denervated muscle. Moreover, depletion of TRAF6 prevents cancer cachexia in an experimental mouse model. This study unveils a novel mechanism of skeletal muscle atrophy and suggests that TRAF6 is an important therapeutic target to prevent skeletal muscle wasting.  相似文献   

10.
In response to cancer, AIDS, sepsis and other systemic diseases inducing muscle atrophy, the E3 ubiquitin ligase Atrogin1/MAFbx (MAFbx) is dramatically upregulated and this response is necessary for rapid atrophy. However, the precise function of MAFbx in muscle wasting has been questioned. Here, we present evidence that during muscle atrophy MAFbx targets the eukaryotic initiation factor 3 subunit 5 (eIF3-f) for ubiquitination and degradation by the proteasome. Ectopic expression of MAFbx in myotubes induces atrophy and degradation of eIF3-f. Conversely, blockade of MAFbx expression by small hairpin RNA interference prevents eIF3-f degradation in myotubes undergoing atrophy. Furthermore, genetic activation of eIF3-f is sufficient to cause hypertrophy and to block atrophy in myotubes, whereas genetic blockade of eIF3-f expression induces atrophy in myotubes. Finally, eIF3-f induces increasing expression of muscle structural proteins and hypertrophy in both myotubes and mouse skeletal muscle. We conclude that eIF3-f is a key target that accounts for MAFbx function during muscle atrophy and has a major role in skeletal muscle hypertrophy. Thus, eIF3-f seems to be an attractive therapeutic target.  相似文献   

11.
Starvation, like many other catabolic conditions, induces loss of skeletal muscle mass by promoting fiber atrophy. In addition to the canonical processes, the starvation-induced response employs many distinct pathways that make it a unique atrophic program. However, in the multiplex of the underlying mechanisms, several components of starvation-induced atrophy have yet to be fully understood and their roles and interplay remain to be elucidated. Here we unveiled the role of tumor necrosis factor receptor-associated factor 6 (TRAF6), a unique E3 ubiquitin ligase and adaptor protein, in starvation-induced muscle atrophy. Targeted ablation of TRAF6 suppresses the expression of key regulators of atrophy, including MAFBx, MuRF1, p62, LC3B, Beclin1, Atg12, and Fn14. Ablation of TRAF6 also improved the phosphorylation of Akt and FoxO3a and inhibited the activation of 5' AMP-activated protein kinase in skeletal muscle in response to starvation. In addition, our study provides the first evidence of the involvement of endoplasmic reticulum stress and unfolding protein response pathways in starvation-induced muscle atrophy and its regulation through TRAF6. Finally, our results also identify lysine 63-linked autoubiquitination of TRAF6 as a process essential for its regulatory role in starvation-induced muscle atrophy.  相似文献   

12.
13.
The insulin-like growth factors (IGF-I and IGF-II), working through the type 1 IGF receptor (IGF-1R), are key mediators of skeletal muscle fiber growth and hypertrophy. These processes are largely dependent on stimulation of proliferation and differentiation of muscle precursor cells, termed myoblasts. It has not been rigorously determined whether the IGFs can also mediate skeletal muscle hypertrophy in a myoblast-independent fashion. Similarly, although the phosphatidylinositol 3-kinase (PI3K) and calcineurin signaling pathways have been implicated in skeletal muscle hypertrophy, these pathways are also involved in skeletal myoblast differentiation. To determine whether the IGFs can stimulate skeletal muscle hypertrophy in a myoblast-independent fashion, we developed and validated a retroviral expression vector that mediated overexpression of the human IGF-1R in rat L6 skeletal myotubes (immature muscle fibers), but not in myoblasts. L6 myotubes transduced with this vector accumulated significantly higher amounts of myofibrillar proteins, in a ligand- and receptor-dependent manner, than controls and demonstrated significantly increased rates of protein synthesis. Stimulation of myotube hypertrophy was independent of myoblast contributions, inasmuch as these cultures did not exhibit increased levels of myoblast proliferation or differentiation. Experiments with PI3K and calcineurin inhibitors indicated that myoblast-independent myotube hypertrophy was mediated by PI3K, but not calcineurin, signaling. This study demonstrates that IGF can mediate skeletal muscle hypertrophy in a myoblast-independent fashion and suggests that muscle-specific overexpression of the IGF-1R or stimulation of its signaling pathways could be used to develop strategies to ameliorate muscle wasting without stimulating proliferative pathways leading to carcinogenesis or other pathological sequelae.  相似文献   

14.
15.
骨骼肌是人体氨基酸和蛋白质的主要贮存、代谢库,其正常功能和代谢过程受到多种病理因素的影响。骨骼肌萎缩发生于骨骼肌稳态严重失衡状态下,对患者生活和社会医疗造成了沉重负担。近年来,由于世界肥胖人群数量激增,肥胖诱导的骨骼肌萎缩正日益成为公共卫生的严峻挑战之一。肥胖诱导的骨骼肌萎缩过程涉及多种信号分子或通路的改变,如泛素蛋白酶系统、自噬溶酶体系统、胰岛素/IGF1-PI3K-Akt、肌肉生长抑制素、白细胞介素-6、肿瘤坏死因子等;这些信号分子或通路在肥胖状态下被激活或抑制后,可共同影响蛋白质合成/分解平衡进而造成骨骼肌萎缩。基于上述信号分子或通路,系统总结并讨论了肥胖诱导的骨骼肌萎缩机制,以期为寻找缓解/治疗肥胖诱导的肌萎缩靶点和进一步开发利用天然植物化学物提供理论依据。  相似文献   

16.
In response to extended periods of stretch, skeletal muscle typically exhibits cell hypertrophy associated with sustained increases in mRNA and protein synthesis. Several soluble hypertrophic agonists have been identified, yet relatively little is known as to how mechanical load is converted into intracellular signals regulating gene expression or how increased cell size is maintained. In skeletal muscle, hypertrophy is generally regarded as a beneficial adaptive response to increased workload. In some cases, however, hypertrophy can be detrimental as seen in long-term cardiac hypertrophy. Skeletal muscle wasting (atrophy) is a feature of both inherited and acquired muscle disease and normal aging. Elucidating the molecular regulation of cell size is a fundamental step toward comprehending the complex molecular systems underlying muscle hypertrophy and atrophy. Subtractive hybridization between passively stretched and control murine skeletal muscle tissue identified an mRNA that undergoes increased expression in response to passive stretch. Encoded within the mRNA is an open reading frame of 311 amino acids containing a highly conserved type 1 peroxisomal targeting signal and a serine lipase active center. The sequence shows identity to a family of serine hydrolases and thus is named serine hydrolase-like (Serhl). The predicted three-dimensional structure displays a core alpha/beta-hydrolase fold and catalytic triad characteristic of several hydrolytic enzymes. Endogenous Serhl protein immunolocalizes to perinuclear vesicles as does Serhl-FLAG fusion protein transiently expressed in muscle cells in vitro. Overexpression of Serhl-FLAG has no effect on muscle cell phenotype in vitro. Serhl's expression patterns and its response to passive stretch suggest that it may play a role in normal peroxisome function and skeletal muscle growth in response to mechanical stimuli.  相似文献   

17.
PW1 is a mediator of p53 and TNFalpha signaling pathways previously identified in a screen to isolate muscle stem cell regulators. We generated transgenic mice carrying a C-terminal deleted form of PW1 (DeltaPW1) which blocks p53-mediated cell death and TNFalpha-mediated NFkappaB activation fused to the myogenin promoter. Embryonic/fetal muscle development appears normal during transgene expression, however, postnatal transgenic pups display severe phenotypes including runtism, reduced muscle mass and fiber diameters resembling atrophy. Atrogin-1, a marker of skeletal muscle atrophy, is expressed postnatally in transgenic mice. Electron microscopic analyses of transgenic muscle reveal a marked decrease in quiescent muscle satellite cells suggesting a deregulation of postnatal stem cells. Furthermore, transgenic primary myoblasts show a resistance to the effects of TNFalpha upon differentiation. Taken together, our data support a role for PW1 and related stress pathways in mediating skeletal muscle stem cell behavior which in turn is critical for postnatal muscle growth and homeostasis. In addition, these data reveal that postnatal stem cell behavior is likely specified during early muscle development.  相似文献   

18.
Muscle disuse produces severe atrophy and a slow-to-fast phenotype transition in the postural Soleus (Sol) muscle of rodents. Antioxidants, amino-acids and growth factors were ineffective to ameliorate muscle atrophy. Here we evaluate the effects of nandrolone (ND), an anabolic steroid, on mouse skeletal muscle atrophy induced by hindlimb unloading (HU). Mice were pre-treated for 2-weeks before HU and during the 2-weeks of HU. Muscle weight and total protein content were reduced in HU mice and a restoration of these parameters was found in ND-treated HU mice. The analysis of gene expression by real-time PCR demonstrates an increase of MuRF-1 during HU but minor involvement of other catabolic pathways. However, ND did not affect MuRF-1 expression. The evaluation of anabolic pathways showed no change in mTOR and eIF2-kinase mRNA expression, but the protein expression of the eukaryotic initiation factor eIF2 was reduced during HU and restored by ND. Moreover we found an involvement of regenerative pathways, since the increase of MyoD observed after HU suggests the promotion of myogenic stem cell differentiation in response to atrophy. At the same time, Notch-1 expression was down-regulated. Interestingly, the ND treatment prevented changes in MyoD and Notch-1 expression. On the contrary, there was no evidence for an effect of ND on the change of muscle phenotype induced by HU, since no effect of treatment was observed on the resting gCl, restCa and contractile properties in Sol muscle. Accordingly, PGC1α and myosin heavy chain expression, indexes of the phenotype transition, were not restored in ND-treated HU mice. We hypothesize that ND is unable to directly affect the phenotype transition when the specialized motor unit firing pattern of stimulation is lacking. Nevertheless, through stimulation of protein synthesis, ND preserves protein content and muscle weight, which may result advantageous to the affected skeletal muscle for functional recovery.  相似文献   

19.
Skeletal muscle LIM protein 1 (SLIM1/FHL1) contains four and a half LIM domains and is highly expressed in skeletal and cardiac muscle. Elevated SLIM1 mRNA expression has been associated with postnatal skeletal muscle growth and stretch-induced muscle hypertrophy in mice. Conversely, SLIM1 mRNA levels decrease during muscle atrophy. Together, these observations suggest a link between skeletal muscle growth and increased SLIM1 expression. However, the precise function of SLIM1 in skeletal muscle, specifically the role of SLIM1 during skeletal muscle differentiation, is not known. This study investigated the effect of increased SLIM1 expression during skeletal muscle differentiation. Western blot analysis showed an initial decrease followed by an increase in SLIM1 expression during differentiation. Overexpression of SLIM1 in Sol8 or C2C12 skeletal muscle cell lines, at levels observed during hypertrophy, induced distinct effects in differentiating myocytes and undifferentiated reserve cells, which were distinguished by differential staining for two markers of differentiation, MyoD and myogenin. In differentiating skeletal myocytes, SLIM1 overexpression induced hyperelongation, which, by either plating cells on poly-L-lysine or using a series of peptide blockade experiments, was shown to be specifically dependent on ligand binding to the 51-integrin, whereas in reserve cells, SLIM1 overexpression induced the formation of multiple cytoplasmic protrusions (branching), which was also integrin mediated. These results suggest that SLIM1 may play an important role during the early stages of skeletal muscle differentiation, specifically in 51-integrin-mediated signaling pathways. myoblast; proteins and differentiation  相似文献   

20.
Skeletal muscle is a tissue that adapts to increased use by increasing contractile protein gene expression and ultimately skeletal muscle mass (hypertrophy). To identify hypertrophy-inducing agents that may be potentially useful in the treatment of age-related muscle loss (sarcopenia) and to better understand hypertrophy signal transduction pathways, we have created a skeletal muscle cell-based hypertrophy-responsive system. This system was created by permanently modifying the relatively undifferentiated C2C12 cell line so that it contains the beta-myosin heavy chain (beta-MHC) gene promoter and enhancer regions fused to a luciferase reporter gene. This cell line responds, by increasing luciferase expression, to a variety of skeletal muscle hypertrophy-inducing agents, including insulin, insulin-like growth factor I, testosterone, and the beta-adrenergic receptor agonist isoproterenol, in both the undifferentiated and differentiated states. This cell-based system should be useful for identifying novel hypertrophy-inducing agents as well as understanding hypertrophy signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号