首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retrospective epidemiological studies have suggested that chronic treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) provides some degree of protection from Alzheimer's disease (AD). Although most NSAIDs inhibit the activity of cyclooxygenase (COX), the rate-limiting enzyme in the production of prostanoids from arachidonic acid (AA), the precise mechanism through which NSAIDs act upon AD pathology remains to be elucidated. Classical NSAIDs like indomethacin inhibit both the constitutive COX-1 and the inducible COX-2 enzymes. In the present work, we characterize the protective effect of the indomethacin on the neurotoxicity elicited by amyloid-β protein (Aβ, fragments 25–35 and 1–42) alone or in combination with AA added exogenously as well as its effects on COX-2 expression. We also compared the neuroprotective effects of indomethacin with the selective COX-1, COX-2 and 5-LOX inhibitors, SC-560, NS-398 and NDGA, respectively. Our results show that indomethacin protected from Aβ and AA toxicity in naive and differentiated human neuroblastoma cells with more potency than SC-560 while, NS-398 only protected neurons from AA-mediated toxicity. Present results suggest that Aβ toxicity can be reversed more efficiently by the non-selective COX inhibitor indomethacin suggesting its role in modulating the signal transduction pathway involved in the mechanism of Aβ neurotoxicity.  相似文献   

2.
Molecular pathological studies of Alzheimer disease (AD) brain have revealed the presence of a spectrum of inflammatory mediators. Epidemiological studies have indicated that the use of anti-inflammatory agents, especially non-steroidal anti-inflammatory drugs (NSAIDs), results in a substantially reduced risk of contracting the disease. It is possible that well targeted anti-inflammatory agents will also be useful in treating established AD. Inhibitors of cyclooxygenase-2 have been unsuccessful in this regard, and traditional NSAIDs have produced mixed results. The complement system, which is strongly activated in AD brain, is an attractive target for therapeutic intervention, particularly through inhibition of the autodestructive action of the membrane attack complex. The complement system works in conjunction with activated microglia, which express high levels of complement receptors. Overactive microglia secrete many toxic materials. Inhibition of microglial activation is another potential therapeutic target.  相似文献   

3.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment of arthritis and pain. However, their long-term use is limited by gastrointestinal (GI) side effects such as gastric ulcers. NSAIDs act by inhibiting an enzyme called cyclooxygenase. Cyclooxygenase (COX) catalyses the generation of prostaglandins from arachidonic acid. Two isoforms of the enzyme exist--COX-1 and COX-2--both of which are targets for NSAIDs. Although they are associated with GI toxicity, NSAIDs have important antithrombotic and anti-inflammatory effects. The GI injury has been attributed to COX-1 inhibition and the anti-inflammatory effects to COX-2 inhibition. As COX-2 is traditionally viewed as an inducible enzyme, selective inhibition of COX-2 by 'coxibs' (selective COX-2 inhibitors) has been employed to achieve anti-inflammatory and analgesic effects without GI side effects. However, recently there have been suggestions that chronic administration of coxibs might increase the risk of cardiovascular events, such as atherosclerosis, compared with traditional NSAIDs. In vascular disease, there is increased expression of both COX-1 and COX-2, resulting in enhanced prostaglandin generation. The specific role of COX-1 and COX-2 in vascular regulation is still unknown but such knowledge is essential for the effective use of coxibs. Although more evidence is pointing to selective COX-1 inhibition as a therapeutic measure in inflammatory atherosclerosis, there are some studies that suggest that inhibition of COX-2 might have a potential benefit on atherosclerosis.  相似文献   

4.
The cyclooxygenase (COX) superfamily of prostaglandin synthase genes encode a constitutively expressed COX-1, an inducible, highly regulated COX-2, and a COX-3 isoform whose RNA is derived through the retention of a highly structured, G + C-rich intron 1 of the COX-1 gene. As generators of oxygen radicals, lipid mediators, and the pharmacological targets of nonsteroidal anti-inflammatory drugs (NSAIDs), COX enzymes potentiate inflammatory neuropathology in Alzheimer's disease (AD) brain. Because COX-2 is elevated in AD and COX-3 is enriched in the mammalian CNS, these studies were undertaken to examine the expression of COX-3 in AD and in [IL-1beta + Abeta42]-triggered human neural (HN) cells in primary culture. The results indicate that while COX-2 remains a major player in propagating inflammmation in AD and in stressed HN cells, COX-3 may play ancillary roles in membrane-based COX signaling or when basal levels of COX-1 or COX-2 expression persist.  相似文献   

5.
OBJECTIVE. To make recommendations for the long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs) in primary care practice, particularly for patients at high risk for NSAID-induced complications. OPTIONS. The use of misoprostol to prevent gastrointestinal ulceration and other unwanted NSAIDs effects was considered. The role of cyclooxygenase-2 (COX-2) versus COX-1 inhibiting agents was also examined. OUTCOMES. Reduction of complications associated with long-term use of NSAIDs. EVIDENCE. Evidence was gathered in late 1995 from published research studies and reviews. Position papers were prepared by faculty and advisory board members and discussed at the Canadian NSAID Consensus Symposium in Cambridge, Ont., Jan. 26 and 27, 1996. VALUES. Recommendations were based on randomized, placebo-controlled clinical trials (level I evidence) and case-control studies (level II evidence) involving NSAID use when such evidence was available. When the scientific literature was incomplete or inconsistent in a particular area, recommendations reflect the consensus of the participants at the symposium (level III evidence). Physicians were recruited from across Canada for their expertise in rheumatology, gastroenterology, epidemiology, gerontology, family practice, and clinical and basic scientific research. BENEFITS, HARMS AND COSTS. Although a reduction in complications due to inappropriate NSAID use should reduce costs of additional investigations, admissions to hospital and time lost from work, definitive cost analysis studies are not yet available. RECOMMENDATIONS. Currently, no NSAID is available that lacks potential for serious toxicity; therefore, long-term use of NSAIDs should be avoided whenever possible, particularly in high-risk patients (e.g., those who are elderly, suffer from hypertension, congestive heart failure, renal or hepatic impairment or volume depletion, take certain concomitant medications or have a history of peptic ulcer disease) (level I evidence). If NSAIDs are to be used in patients with gastric or nephrotoxic risk factors, the lowest effective dose of NSAID should be used (level III evidence); NSAIDs that are weak COX-1 inhibitors may be preferred (level II evidence). In addition, concomitant administration of misoprostol is recommended in patients at increased risk for upper gastrointestinal complications (level I evidence). However, the clinical judgement of the practising clinician must always be part of any therapeutic decision. VALIDATION. These recommendations are based on the consensus of Canadian experts in rheumatology, gastroenterology and epidemiology, and have been subjected to external peer review.  相似文献   

6.
Alzheimer disease (AD) is characterized by cerebral deposits of beta-amyloid (Abeta) peptides, which are surrounded by neuroinflammatory cells. Epidemiological studies have shown that prolonged use of non-steroidal anti-inflammatory drugs (NSAIDs) reduces the risk of developing AD. In addition, biological data indicate that certain NSAIDs specifically lower Abeta42 levels in cultures of peripheral cells independently of cyclooxygenase (COX) activity and reduce cerebral Abeta levels in AD transgenic mice. Whether other NSAIDs, including COX-selective compounds, modulate Abeta levels in neuronal cells remains unexploited. Here, we investigated the effects of compounds from every chemical class of NSAIDs on Abeta40 and Abeta42 secretion using both Neuro-2a cells and rat primary cortical neurons. Among non-selective NSAIDs, flurbiprofen and sulindac sulfide concentration-dependently reduced the secretion not only of Abeta42 but also of Abeta40. Surprisingly, both COX-2 (celecoxib; sc-125) or COX-1 (sc-560) selective compounds significantly increased Abeta42 secretion, and either did not alter (sc-560; sc-125) or reduced (celecoxib) Abeta40 levels. The levels of betaAPP C-terminal fragments and Notch cleavage were not altered by any of the NSAIDs, indicating that gamma-secretase activity was not overall changed by these drugs. The present findings show that only a few non-selective NSAIDs possess Abeta-lowering properties and therefore have a profile potentially relevant to their clinical use in AD.  相似文献   

7.
Alzheimer's disease (AD) is characterized by cerebral deposits of beta-amyloid (A beta) peptides and neurofibrillary tangles (NFT) which are surrounded by inflammatory cells. Epidemiological studies have shown that prolonged use of non-steroidal anti-inflammatory drugs (NSAIDs) reduces the risk of developing AD and delays the onset of the disease. It has been postulated that some NSAIDs target pathological hallmarks of AD by interacting with several pathways, including the inhibition of cyclooxygenases (COX) and activation of the peroxisome proliferator-activated receptor gamma. A variety of experimental studies indicate that a subset of NSAIDs such as ibuprofen, flurbiprofen, indomethacin and sulindac also possess A beta-lowering properties in both AD transgenic mice and cell cultures of peripheral, glial and neuronal origin. While COX inhibition occurs at low concentrations in vitro (nM-low microm range), the A beta-lowering activity is observed at high concentrations (< or = 50 microm). Nonetheless, studies with flurbiprofen or ibuprofen in AD transgenic mice show that the effects on A beta levels or deposition are attained at plasma levels similar to those achieved in humans at therapeutic dosage. Still, it remains to be assessed whether adequate concentrations are reached in the brain. This is a crucial aspect that will allow defining the dose-window and the length of treatment in future clinical trials. Here, we will discuss how the combination of anti-amyloidogenic and anti-inflammatory activities of certain NSAIDs may produce a profile potentially relevant to their clinical use as disease-modifying agents for the treatment of AD.  相似文献   

8.
Prostaglandins (PGs) are generated by the enzymatic activity of cyclooxygenase-1 and -2 (COX-1/2) and modulate several functions in the CNS such as the generation of fever, the sleep/wake cycle, and the perception of pain. Moreover, the induction of COX-2 and the generation of PGs has been linked to neuroinflammatory aspects of Alzheimer's disease (AD). Non-steroidal anti-inflammatory drugs (NSAIDs) that block COX enzymatic activity have been shown to reduce the incidence of AD in various epidemiological studies. While several reports investigated the expression of COX-2 in neurons and microglia, expression of COX-2 in astroglial cells has not been investigated in detail. Here we show that amyloid β peptide 25–35 (Aβ25–35) induces COX-2 mRNA and protein synthesis and a subsequent release of prostaglandin E2 (PGE2) in primary midbrain astrocytes. We further demonstrate that protein kinase C (PKC) is involved in Aβ25–35-induced COX-2/PGE2 synthesis. PKC-inhibitors prevent Aβ25–35-induced COX-2 and PGE2 synthesis. Furthermore Aβ25–35 rapidly induces the phosphorylation and enzymatic activation of PKC in primary rat midbrain glial cells and in primary human astrocytes from post mortem tissue. Our data suggest that the PKC isoforms and/or β are most probably involved in Aβ25–35-induced expression of COX-2 in midbrain astrocytes. The potential role of astroglial cells in the phagocytosis of amyloid and the involvement of PGs in this process suggests that a modulation of PGs synthesis may be a putative target in the prevention of amyloid deposition.  相似文献   

9.
Conventional 'nonselective' nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used for the treatment of pain and inflammation; however, the potential gastrointestinal risks associated with their use can be a cause for concern. In response to the adverse effects that can accompany nonselective NSAID use, selective cyclo-oxygenase (COX)-2 inhibitors were developed to target the COX-2 isoenzyme, thus providing anti-inflammatory and analgesic benefits while theoretically sparing the gastroprotective activity of the COX-1 isoenzyme. Data from large-scale clinical trials have confirmed that the COX-2 inhibitors are associated with substantial reductions in gastrointestinal risk in the majority of patients who do not receive aspirin. However, some or all of the gastrointestinal benefit of COX-2 inhibitors may be lost in patients who receive low, cardioprotective doses of aspirin, and recent evidence suggests that some of these agents, at some doses, may be associated with an increased risk for cardiovascular adverse events compared with no therapy. The risks and benefits of conventional NSAIDs and of COX-2 inhibitors must be weighed carefully; in clinical practice many patients who might benefit from NSAID or COX-2 therapy are likely to be elderly and at relatively high risk for gastrointestinal and cardiovascular adverse events. These patients are also more likely to be taking low-dose aspirin for cardiovascular prophylaxis and over-the-counter NSAIDs for pain. Identifying therapies that provide relief from arthritis related symptoms, confer optimum cardioprotection, and preserve the gastrointestinal mucosa is complex. Factors to consider include the interference of certain NSAIDs with the antiplatelet effects of aspirin, differences in the adverse gastrointestinal event rates among nonselective NSAIDs and selective COX-2 inhibitors, emerging data regarding the relative risks for cardiovascular events associated with these drugs, and the feasibility and cost of co-therapy with proton pump inhibitors.  相似文献   

10.
Non-steroidal anti-inflammatory drugs (NSAIDs) are used primarily for the treatment of inflammatory diseases. However, certain NSAIDs also have a chemopreventive effect on the development of human colorectal and other cancers. NSAIDs inhibit cyclooxygenase-1 (COX-1) and/or cyclooxygenase-2 (COX-2) activity and considerable evidence supports a role for prostaglandins in cancer development. However, the chemopreventive effect of NSAIDs on colorectal and other cancers appears also to be partially independent of COX activity. COX inhibitors also alter the expression of a number of genes that influence cancer development. One such gene is NAG-1 (NSAID-Activated Gene), a critical gene regulated by a number of COX inhibitors and chemopreventive chemicals. Therefore, this article will discuss the evidence supporting the conclusion that the chemo-preventive activity of COX inhibitors is mediated, in part, by altered gene expression with an emphasis on NAG-1 studies. This review may also provide new insights into how chemicals and environmental factors influence cancer development. In view of the cardiovascular and gastrointestinal toxic side effects of COX-2 inhibitors and non-selective COX inhibitors, respectively, the results presented here may provide the basis for the development of a new family of anti-tumorigenic compounds acting independent of COX inhibition.  相似文献   

11.
Cyclooxygenase-2 (COX-2) is frequently overexpressed and enhances colorectal cancer (CRC) tumorigenesis, including cancer stem cell (CSC) regulation. Accordingly, nonsteroidal anti-inflammatory drugs (NSAIDs), inhibiting COX-1/2 activity, are viewed as potential drugs for CRC treatment. Accumulated evidence indicates that celecoxib has the most potency for antitumor growth among NSAIDs and the underlying mechanism is only partly dependent on COX-2 inhibition. However, the potency of these NSAIDs on CSC inhibition is still not known. In this study, we found that among these NSAIDs, celecoxib has the most potency for CSC inhibition of CRC cells, largely correlating to inhibition of c-Met, not COX-2. Further analysis reveals that c-Met activity was required for basal CSC property. Silence of c-Met blocked whereas overexpression of c-Met enhanced the celecoxib-inhibited CSC property. Collectively, these results not only first elucidate the mechanism underlying celecoxib-inhibited CSC but also indicate c-Met as a critical factor for the CSC property of CRC cells.  相似文献   

12.
Cerebrovascular gene linked to Alzheimer's disease pathology   总被引:1,自引:0,他引:1  
There is already considerable evidence from epidemiological, pathological and clinical reports that vascular factors are crucial in the pathogenesis of Alzheimer's disease (AD). Cerebral hypoperfusion has been shown to be a preclinical condition and a most accurate indicator for predicting whether people will develop AD. Now, a new study by Zlokovic and colleagues reveals that the vascular gene MEOX2 has a low expression in cultured brain endothelial cells from AD patients. This, together with evidence linking a dysfunctional cerebrovasculature to the pathogenesis of AD, suggests that the homeobox gene MEOX2 downregulation provides a therapeutic target to AD and a better understanding of this disorder.  相似文献   

13.
Inhibitors of prostaglandin production, designated as classical non-steroidal anti-inflammatory drugs (NSAIDs) and acting on the base of non-selective inhibition of cyclooxygenases, have been found in numerous studies to potentiate recovery of perturbed haematopoiesis by removing the negative feedback control mediated by prostaglandins. However, classical NSAIDs show pronounced undesirable gastrointestinal side effects, which limits the possibility of their utilization for various pathophysiological states including myelosuppression. Specific cyclooxygenase-2 (COX-2) inhibitors, targeted at selective inhibition of this inducible cyclooxygenase isoform and having much better gastrointestinal side effect profile, have been found in recent studies to retain the haematopoiesis-stimulating effects of classical NSAIDs. These results suggest that the indication spectrum of selective COX-2 inhibitors may be extended to the indication of myelosuppression of various etiology. Combining the anti-tumour and haematopoiesis-stimulating activities in a single COX-2 inhibitor may have a positive clinical impact.  相似文献   

14.
Ovulation constitutes the central event in ovarian physiology, and ovulatory disfunction is a relevant cause of female infertility. Non-steroidal anti-inflammatory drugs (NSAIDs), widely used due to their analgesic and anti-inflammatory properties, consistently inhibit ovulation in all mammalian species investigated so far, likely due to the inhibition of cyclooxygenase 2 (COX-2), the inducible isoform of COX, that is the rate-limiting enzyme in prostaglandin (PG) synthesis. COX-2 inhibition has major effects on ovulation, fertilization and implantation, and NSAID therapy is likely implicated in human infertility and could be an important, frequently overlooked, cause of ovulatory disfunction in women. Although there is compelling evidence for a role of PGs in ovulation, the molecular targets and the precise role of these compounds in the ovulatory process are not fully understood. Morphological studies from rats treated with indomethacin (INDO), a potent inhibitor of PG synthesis, provide evidence on the actions of NSAIDs in ovulation, as well as on the possible roles of PGs in the ovulatory process. Cycling rats treated with INDO during the preovulatory period show abnormal ovulation, due to disruption of the spatial targeting of follicle rupture at the apex. Noticeably, gonadotropin-primed immature rats (widely used as a model for the study of ovulation) show age-dependent ovulatory defects similar to those of cycling rats treated with INDO. These data suggest that NSAID treatment disrupts physiological mechanisms underlying spatial targeting of follicle rupture at the apex, which are not fully established in very young rats. We summarize herein the ovulatory defects after pharmacologic COX-2 inhibition, and discuss the possible mechanisms underlying the anti-ovulatory actions of NSAIDs.  相似文献   

15.
Nonsteroidal anti-inflammatory drugs (NSAIDs), including both traditional nonselective NSAIDs and the selective cyclo-oxygenase (COX)-2 inhibitors, are among the most widely used medications in the USA. Traditional NSAIDs, although effective at relieving pain and inflammation, are associated with a significant increase in the risk for gastrointestinal adverse events. Throughout the 1990s these events were estimated to result in approximately 100,000 hospitalizations and 16,500 deaths each year nationally. Recent studies have indicated that the risk for serious NSAID gastropathy has declined substantially during the past decade as a result of a number of factors, including lower doses of NSAIDs, the use of gastroprotective agents such as proton pump inhibitors and misoprostol, and the introduction of the selective COX-2 inhibitors. One therapeutic approach that may reduce the risk for gastrointestinal side effects associated with traditional NSAIDs while retaining their efficacy is the inclusion of co-therapy with a proton pump inhibitor; these agents inhibit acid secretion and have been demonstrated to promote ulcer healing in patients with NSAID-related gastric ulcers. Alternatively, COX-2 selective agents have been used to treat patients at high risk for such events. Both nonselective and selective COX-2 inhibitors have now been shown to be associated with an increased risk for cardiovascular events. These studies, together with the outcomes of the recent US Food and Drug Administration decision to require 'black box' warnings regarding potential cardiovascular risks associated with NSAIDs, suggest that the use of COX-2 inhibitors as the sole strategy for gastroprotection in patients with arthritis and other pain syndromes must be reconsidered, particularly among those at risk for cardiovascular events.  相似文献   

16.
Nonsteroidal anti-inflammatory drugs (NSAIDs) belong to the most frequently used drugs. The discovery of an inducible isoform of cyclo-oxygenase (COX-2) has led to an intensive worldwide search and the introduction of selective COX-2 inhibitors. In this review, recent advances in understanding the mechanism of action of NSAIDs and, in this context, clinical findings on NSAID-induced gastrointestinal side effects are summarized. This knowledge is important for the effective treatment of pain and inflammation, as well as for preventing serious and sometimes lethal gastrointestinal side effects.  相似文献   

17.
Non-steroidal anti-inflammatory drugs (NSAIDs) achieve their anti-inflammatory actions through an inhibitory effect on cyclooxygenase (COX). Two COX subtypes, COX-1 and COX-2, are responsible for the majority of COX activity at the gastrointestinal mucosa and in tissues with inflammation, respectively. We previously suggested that both gastric mucosal cell death due to the membrane permeabilization activity of NSAIDs and COX-inhibition at the gastric mucosa are involved in NSAID-induced gastric lesions. We have also reported that loxoprofen has the lowest membrane permeabilization activity among the NSAIDs we tested. In this study, we synthesized a series of loxoprofen derivatives and examined their membrane permeabilization activities and inhibitory effects on COX-1 and COX-2. Among these derivatives, 2-{4'-hydroxy-5-[(2-oxocyclopentyl)methyl]biphenyl-2-yl}propanoate 31 has a specificity for COX-2 over COX-1. Compared to loxoprofen, oral administration of 31 to rats produced fewer gastric lesions but showed an equivalent anti-inflammatory effect. These results suggest that 31 is likely to be a therapeutically beneficial and safer NSAID.  相似文献   

18.
Cumulative evidence has shown that nonsteroidal anti-inflammatory drugs (NSAIDs) can induce acute renal failure and nephrotic-range proteinuria. Cyclooxygenase-2 (COX-2) inhibitors have less nephrotoxicity; however, recent data indicate that they may cause the same renal problems as NSAIDs do. Herein, we present a case of celecoxib-associated minimal change disease (MCD) with profound urinary protein loss and acute renal failure. Renal function and nephrotic syndrome in this patient resolved completely after discontinuation of celecoxib and treatment with methylprednisolone. Clinicians should keep high index of suspicions in patients developing nephrotic syndrome and acute renal failure after taking COX-2 inhibitors since secondary MCD responds well to timely cessation of COX-2 inhibitors and administration of steroid therapy.  相似文献   

19.
Epidemiological, clinical and animal studies indicate non-steroidal anti-inflammatory drugs (NSAIDs) to be chemopreventive for colorectal cancer. The best established target for NSAIDs are the two isoforms of cyclooxygenase (COX), a key enzyme in the biosynthesis of prostaglandins. Recent investigations using human colorectal tumor cell lines have focused on the cellular and molecular mechanisms potentially underlying the chemopreventive effect of NSAIDs. These studies have used traditional NSAIDs and their metabolites which either do not inhibit COX, are non-selective for the COX isoforms or selectively inhibit COX-1 over COX-2, and recently developed NSAIDs that are highly selective for COX-2. In vitro, apoptosis is the dominant anti-proliferative effect of each of these classes of NSAID and sensitivity to NSAID-induced apoptosis increases with the malignant potential of the tumor cells. Limited in vivo evidence backs up these findings. Cell cycle arrest also contributes to the in vitro growth inhibitory effect of traditional NSAIDs. The induction of apoptosis by NSAIDs may result from the inhibition of the COX isoforms but other as yet undefined paths to NSAID-induced apoptosis clearly exist. A member of each class of NSAID is under trial as a chemopreventive agent for colorectal cancer.  相似文献   

20.
Réti A 《Magyar onkologia》2010,54(4):377-381
The elevated cyclooxygenase-2 (COX-2) expression has been shown to affect the carcinogenesis and tumor progression processes, including cell proliferation, motility and angiogenesis. COX-2 is overexpressed in approximately 80% of sporadic colorectal carcinomas and COX-2 enzyme is the best defined target of non-steroidal anti-inflammatory drugs (NSAIDs). In the chemotherapy of colorectal carcinomas 5-fluorouracil (5-FU) has been the most important of the basic drugs for more than 40 years. In order to improve the effectiveness of 5-FU therapy different biological modifiers i.e. inhibitors of its catabolism or activators of anabolism have been studied recently. The rate-limiting enzyme of 5-FU catabolism is dihydropyrimidine dehydrogenase (DPD) since more than 80% of the administered 5-FU is catabolized by DPD. Tumoral DPD has become of clinical interest because elevated intratumoral DPD can decrease the tumor response to 5-FU therapy. The main purpose of our experiments was to investigate the effect of COX inhibitors on the efficacy of 5-FU on high and low COX-2 expressing HCA-7 and HT-29 human colon adenocarcinoma cell lines, respectively, and also on xenografts derived from HT-29 cells. The cytotoxic and antitumor effects of 5-FU in the presence of low doses of indomethacin (non-selective COX-2 inhibitor) and that of NS-398 (highly selective COX-2 inhibitor) on HT-29 and HCA-7 cells and also on the HT-29 xenograft were investigated. In addition, our intention was to understand the mechanism(s) by which NSAIDs could enhance the cytotoxic effect of 5-FU. Our data indicated that the elevated COX-2 expression of HCA-7, the collagen-induced HT-29-C cells and of the HT-29 xenograft were associated with reduced 5-FU sensitivity. Based on the fact that at the same time DPD activity was also increased it might be conceivable that a possible explanation for the decrease of 5-FU sensitivity is the co-existence of high COX-2 and DPD activity. Indomethacin or NS-398 enhanced in a simultaneous and significant manner the sensitivity and cytotoxic effect of 5-FU on high COX-2 expressing cells and xenografts through the modulation of DPD - decrease of its mRNA expression and/or enzyme activity. Based on our results it could be presumable that 5-FU efficacy is limited by the COX-2 associated high DPD expression and activity in patients with colorectal cancer as well, therefore further clinical studies are warranted to decide if NSAIDs in the therapeutic protocol might improve the antitumor potency of 5-FU. Réti A. Application of non-steroidal anti-inflammatory drugs to enhance 5-fluorouracil efficacy in experimental systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号