首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dolphin skin as a natural anisotropic compliant wall   总被引:1,自引:0,他引:1  
Although the success of compliant walls in mimicking dolphin skin is well known, the drag-reducing properties of a dolphin's skin are still unclear. Moreover, little is known about the relation between the 3D structure of the skin and the local flow conditions. To study the role of a dolphin's skin in reducing the drag the skin morphology parameters were compared with the parameters of an anisotropic compliant wall and a possible flow-skin interface was considered. The 3D structure of skin from different locations was modelled using serial histological sections of the skin. The hydrodynamics of the dorsal fin of the harbour porpoise was studied by means of computer simulation of the flow around virtual models of the fin. It was found that the distribution of the skin morphology parameters is correlated with the local flow parameters on the fin surface. The skin structure appears to allow the flow-skin interface to behave similar to an anisotropic compliant wall in the regions of favourable and adverse pressure gradients on the fin. The relation founded between the skin morphology and the local flow parameters could be useful in the design of multipanel anisotropic compliant walls.  相似文献   

2.
The unique pattern of small tubercles on the leading edge of the dorsal fins of harbor porpoises (Phocoena phocoena) has been widely noted in the literature, though their structure or function has never been conclusively identified. We examined external morphology and microanatomy of the tubercles for further understanding of the nature of the tubercles. Measurements were taken of height and peak‐to‐peak distance of the tubercles using scaled photographs. Mean tubercle height was standardized as a percentage of the dorsal fin height and ranged from 0.63 to 0.87%. Mean peak‐to‐peak distance ranged from 4.2 ± 2.0 to 5.6 ± 2.0 mm. The microstructure analysis of the dorsal fin leading edge, trailing edge and tubercles revealed an epidermal thickness of 0.7–2.7 mm with the thickest epidermis at the tubercular apex. The epidermis contained three distinct strata (=layers), including the stratum corneum, spinosum, and basale. The stratum corneum was significantly thickened in tubercles, over four times thicker than in the leading or trailing edge of the fin. The stratum spinosum, composed of lipokeratinocytes and lamellar oil bodies, was significantly thinner in the trailing edge than in the other two sites. There was no significant difference in the stratum basale among the three sites. Volume fraction of lipokeratinocytes was significantly higher at the sides of the leading edge and the apex of the tubercles, while volume fraction of lamellar oil bodies was significantly lower at the apex of the tubercles. Though the function of the tubercles is unknown, their position, hardened structure and increased epidermal stratum corneum suggest that they may have hydrodynamic importance. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
《Journal of morphology》2017,278(12):1716-1725
The dorsal fin is one of the most varied swimming structures in Acanthomorpha, the spiny‐finned fishes. This fin can be present as a single contiguous structure supported by bony spines and soft lepidotrichia, or it may be divided into an anterior, spiny dorsal fin and a posterior, soft dorsal fin. The freshwater fish family Percidae exhibits especially great variation in dorsal fin spacing, including fishes with separated fins of varying gap length and fishes with contiguous fins. We hypothesized that fishes with separated dorsal fins, especially those with large gaps between fins, would have stiffened fin elements at the leading edge of the soft dorsal fin to resist hydrodynamic loading during locomotion. For 10 percid species, we measured the spacing between dorsal fins and calculated the second moment of area of selected spines and lepidotrichia from museum specimens. There was no significant relationship between the spacing between dorsal fins and the second moment of area of the leading edge of the soft dorsal fin.  相似文献   

4.
This study investigated the functional morphology of the blubber that forms the caudal keels of the harbor porpoise (Phocoena phocoena). Blubber is a pliant biocomposite formed by adipocytes and structural fibers composed of collagen and elastic fibers. Caudal keels are dorsally and ventrally placed triangular wedges of blubber that define the hydrodynamic profile of the porpoise tailstock. Mechanical tests on carcasses demonstrate that when keels are bent, they strain nonuniformly along their lengths, with highest strains just caudal to the dorsal fin and lowest at the insertion of the flukes. Therefore, caudal keels undergo nonuniform longitudinal deformation while maintaining a stable, triangular cross-sectional shape. Polarizing and transmitted light microscopy techniques were used to investigate blubber's 3D fiber architecture along the length of the dorsal keel. The triangular cross-sectional shape of the keel appears to be maintained by structural fibers oriented to act as tensile stays. The construction of the blubber composite is regionally specific :structural fiber densities and diameters are higher in the relatively stiff caudal region of the keel than in the more deformable cranial keel region. The orientations of structural fibers also change along the length of the keel. Cranially, no fibers are oriented along the long axis, whereas a novel population of longitudinally oriented fibers reinforces the keel at the insertion of the flukes. Thus, differences in the distribution and orientation of structural fibers contribute to the regionally specific mechanical properties of the dorsal keel.  相似文献   

5.
The caudal peduncle and caudal fin of Carcharodon carcharias together form a dynamic locomotory structure. The caudal peduncle is a highly modified, dorsoventrally compressed and rigid structure that facilitates the oscillations of the caudal fin. Its stiffness appears to be principally achieved by a thick layer of adipose tissue ranging from 28-37% of its cross-sectional area, reinforced by cross-woven collagen fibers. Numerous overlying layers of collagen fibers of the stratum compactum, oriented in steep left- and right-handed helices (approximately 65 degrees to the shark's long axis), prevent bowstringing of the perimysial fibers, which lie just below the dermal layer. Perimysial fibers, muscles, and the notochord are restricted to the dorsal lobe of the caudal fin and comprise the bulk of its mass. Adipose tissue reinforces the leading edge of the dorsal lobe of the caudal fin and contributes to maintaining the ideal cross-sectional geometry required of an advanced hydrofoil. Most of the mass of the ventral lobe consists of the ceratotrichia or fin rays separated by thin partitions of connective tissue. Dermal fibers of the stratum compactum of the dorsal lobe occur in numerous distinct layers. The layers are more complex than in other sharks and appear to reflect a hierarchical development in C. carcharias. The fiber layer comprises a number of thick fiber bundles along the height of the layer and the layers get thicker deeper into the stratum compactum. Each of these layers alternates with a layer a single fiber-bundle deep, a formation thought to give stability to the stratum compactum and to enable freer movements of the fiber system. In tangential sections of the stratum compactum the fiber bundles in the dorsal lobe can be seen oriented with respect to the long axis of the shark at approximately 55-60 degrees in left- and right-handed helices. Because of the backward sweep of the dorsal lobe (approximately 55 degrees to the shark's long axis) the right-handed fibers also parallel the lobe's long axis. In the dorsal lobe, ceratotrichia are present only along the leading edge (embedded within connective tissue), apparently as reinforcement. Stratum compactum fiber bundles of the ventral lobe, viewed in transverse section, lack the well-ordered distinctive layers of the dorsal lobe, but rather occur as irregularly arranged masses of tightly compacted fiber bundles of various sizes. In tangential sections the fiber bundles are oriented at angles of approximately 60 degrees, generally in one direction, i.e., lacking the left- and right-handed helical pattern. Tensile load tests on the caudal fin indicate high passive resistance to bending by the skin. The shear modulus G showed that the skin's contribution to stiffness (average values from three specimens at radians 0.52 and 1.05) is 33.5% for the dorsal lobe and 41.8% for the ventral. The load tests also indicate greater bending stiffness of the ventral lobe compared to the dorsal. Overall, the anatomy and mechanics of the dorsal lobe of C. carcharias facilitate greater control of movement compared to the ventral lobe. The helical fiber architecture near the surface of the caudal fin is analogous to strengthening of a thin cylinder in engineering. High fiber angles along the span of the dorsal lobe are considered ideal for resisting the bending stresses that the lobe is subjected to during the locomotory beat cycle. They are also ideal for storing strain energy during bending of the lobe and consequently may be of value in facilitating the recovery stroke. The complex fiber architecture of the caudal fin and caudal peduncle of C. carcharias provides considerable potential for an elastic mechanism in the animal's swimming motions and consequently for energy conservation.  相似文献   

6.
The humpback whale (Megaptera novaeangliae) is reported to use its elongate pectoral flippers during swimming maneuvers. The morphology of the flipper from a 9.02-m whale was evaluated with regard to this hydrodynamic function. The flipper had a wing-like, high aspect ratio plan-form. Rounded tubercles were regularly interspersed along the flipper's leading edge. The flipper was cut into 71 2.5-cm cross-sections and photographed. Except for sections near the distal tip, flipper sections were symmetrical with no camber. Flipper sections had a blunt, rounded leading edge and a highly tapered trailing edge. Placement of the maximum thickness placement for each cross-section varied from 49% of chord at the tip to 19% at mid-span. Section thickness ratio averaged 0.23 with a range of 0.20–0.28. The humpback whale flipper had a cross-sectional design typical of manufactured aerodynamic foils for lift generation. The morphology and placement of leading edge tubercles sugges that they function as enhanced lift devices to control flow over the flipper and maintain lift at high angles of attack. The morphology of the humpback whale flipper suggests that it is adapted for high maneuverability associated with the whale's unique feeding behavior. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Sexing cetaceans usually requires time-consuming observation, or genetic sexing via biopsy sampling or skin swabbing. We developed a method to determine the sex of bottlenose dolphins ( Tursiops sp.) in Doubtful Sound, Fiordland, using laser-metric dorsal fin photographs. From dorsal fin photographs of 43 bottlenose dolphins of known sex (25 females, 18 males) we analyzed the shape, proportion of fin area covered in scarring and epidermal lesions, and the number of fin nicks. Males had significantly higher rates of scarring ( P < 0.001) and dorsal fin nicks ( P < 0.01) than females, whereas the severity of epidermal lesions was higher in females ( P < 0.05). A logistic regression applied to all measured variables, and measurements of dorsal fin size, indicated that the proportion of dorsal fin scarring ( P < 0.001), number of fin nicks ( P < 0.01), and dorsal fin surface area ( P < 0.01) were significant variables and together correctly predicted the sex of 93% (40/43) of the dolphins. The classification function may not be applicable to other populations due to geographic variation in bottlenose dolphin morphology and social structure. The method is quick and noninvasive to apply, and further increases the value of dorsal fin photo-identification pictures.  相似文献   

8.
Harbor porpoises (Phocoena phocoena) are the only cetaceans routinely sighted in Hood Canal, a narrow fjord that comprises the western edge of Puget Sound, Washington, USA. Harbor porpoises are sensitive to anthropogenic sounds, including noise from recreational and commercial vessel traffic, and the United States Navy, which conducts military training and testing within Hood Canal that can include underwater sound sources. This study was funded as part of the Navy monitoring program to assess potential impacts of naval activities on cetaceans. We conducted vessel-based line-transect surveys for harbor porpoises in Hood Canal in 2022–2023 to derive seasonal estimates of abundance and density. We carried out surveys over 37 days and surveyed the entire canal twice per season totaling 2,176 km of on-effort track line. We recorded 809 on-effort harbor porpoise groups and 1,385 individuals. Seasonal abundance estimates were lowest in winter (308 animals, 95% CI = 189–503) and gradually increased through spring and summer to a peak of 1,336 animals (95% CI = 826–2,160) in fall. Overall porpoise density was highest in central Hood Canal, an area that includes a designated United States Navy training range, though porpoise sightings were notably absent in a 21-km2 area adjacent to the naval submarine base within this otherwise high-density region. Though we collected only a single year of data, these results suggest that harbor porpoise abundance in Hood Canal increased significantly since it was last estimated (2013–2015). The notable seasonal fluctuation of harbor porpoise abundance suggests Hood Canal may host a larger percentage of the overall Washington Inland Waters stock during the fall season, raising important management considerations.  相似文献   

9.
The Irrawaddy dolphin is an endangered marine mammal species; therefore, there is an urgent need to take protective measures, especially in terms of population breeding and evolution. To address this, it is important to understand the age group structure of populations. Unlike biological individual identification and biological object detection based on pattern classification methods, a new age-group classification (AGC) method was developed to classify Irrawaddy dolphins into three age groups: older, middle-aged, and juvenile. Taking into account the relation between the dorsal fin shape features of Irrawaddy dolphins and their age, the AGC method constructed several dorsal fin geometric morphological features, such as leading edge length and dorsal fin height, using edge extraction and curve fitting of dolphin images. After performing a multicollinearity test on these features, nine effective features were obtained. A model was then trained to classify Irrawaddy dolphins according to their age groups. The experimental results demonstrated that the AGC method has a high classification accuracy of 80.20% for older dolphins. In contrast to individual identification and object detection methods, the proposed AGC method facilitates the analysis of population structure stability and dynamics by classifying Irrawaddy dolphins by age.  相似文献   

10.
11.
Photographs of 99 humpback whales of known age were analyzed to assess the temporal variability and recognizability of individually distinctive fluke and dorsal fin features used for photo-identification. Stable features tended to be morphological in nature (dorsal fin shape and edges, the trailing edge of the fluke, and the raised bumps on the caudal peduncle termed "knobs"). Transitory features typically were superficial marks (scarring, scratching, and pigmentation). The variability of several features was found to be age-dependent as well. Young animals sometimes experienced substantial change to their fluke coloration patterns, though this feature stabilized with age. Dorsal fin edges and fluke serration peaks tended to undergo more change in males than in females, with most changes occurring following sexual maturation. Peduncle knobs were the most stable feature, with no documented change in any age interval. Given the extreme stability (and hence recognizability) of dorsal fin shape and peduncle knobs, we suggest that photographs combining the dorsal fin and the caudal peduncle provide the most consistent way to reidentify humpback whales, particularly calves following weaning.  相似文献   

12.
This study characterized the morphology, density and orientation of the dermal denticles along the body of a shortfin mako shark Isurus oxyrinchus and identified the hydrodynamic parameters of its body through a computational fluid‐dynamics model. The study showed a great variability in the morphology, size, shape, orientation and density of dermal denticles along the body of I. oxyrinchus. There was a significant higher density in dorsal and ventral areas of the body and their highest angular deviations were found in the lower part of the mouth and in the areas between the pre‐caudal pit and the second dorsal and pelvic fins. A detailed three‐dimensional geometry from a scanned body of a shark was carried out to evaluate the hydrodynamic properties such as drag coefficient, lift coefficient and superficial (skin) friction coefficient of the skin together with flow velocity field, according to different roughness coefficients simulating the effect of the dermal denticles. This preliminary approach contributed to detailed information of the denticle interactions. As the height of the denticles was increased, flow velocity and the effect of lift decreased whereas drag increased. The highest peaks of skin friction coefficient were observed around the pectoral fins.  相似文献   

13.
Labriform locomotion is the primary swimming mode for many fishesthat use the pectoral fins to generate thrust across a broadrange of speeds. A review of the literature on hydrodynamics,kinematics, and morphology of pectoral fin mechanisms in fishesreveals that we lack several kinds of morphological and kinematicdata that are critical for understanding thrust generation inthis mode, particularly at higher velocities. Several needsinclude detailed three-dimensional kinematic data on speciesthat are pectoral fin swimmers across a broad range of speeds,data on the motor patterns of pectoral fin muscles, and thedevelopment of a mechanical model of pectoral fin functionalmorphology. New data are presented here on pectoral fin locomotionin Gomphosus varius, a labrid fish that uses the pectoral finsat speeds of 1 –6 total body lengths per second. Three-dimensionalkinematic data for the pectoral fins of G. varius show thata typical "drag-based" mechanism is not used in this species.Instead, the thrust mechanics of this fish are dominated bylift forces and acceleration reaction forces. The fin is twistedlike a propeller during the fin stroke, so that angles of attackare variable along the fin length. Electromyographic data onsix fin muscles indicate the sequence of muscle activity thatproduces antagonistic fin abduction and adduction and controlsthe leading edge of the fin. EMG activity in abductors and adductorsis synchronous with the start of abduction and adduction, respectively,so that muscle mechanics actuate the fin with positive work.A mechanical model of the pectoral fin is proposed in whichfin morphometrics and computer simulations allow predictionsof fin kinematics in three dimensions. The transmission of forceand motion to the leading edge of the fin depends on the mechanicaladvantage of fin ray levers. An integrative program of researchis suggested that will synthesize data on morphology, physiology,kinematics, and hydrodynamics to understand the mechanics ofpectoral fin swimming.  相似文献   

14.
Shark skin denticles (scales) are diverse in morphology both among species and across the body of single individuals, although the function of this diversity is poorly understood. The extremely elongate and highly flexible tail of thresher sharks provides an opportunity to characterize gradients in denticle surface characteristics along the length of the tail and assess correlations between denticle morphology and tail kinematics. We measured denticle morphology on the caudal fin of three mature and two embryo common thresher sharks (Alopias vulpinus), and we compared thresher tail denticles to those of eleven other shark species. Using surface profilometry, we quantified 3D-denticle patterning and texture along the tail of threshers (27 regions in adults, and 16 regions in embryos). We report that tails of thresher embryos have a membrane that covers the denticles and reduces surface roughness. In mature thresher tails, surfaces have an average roughness of 5.6 μm which is smoother than some other pelagic shark species, but similar in roughness to blacktip, porbeagle, and bonnethead shark tails. There is no gradient down the tail in roughness for the middle or trailing edge regions and hence no correlation with kinematic amplitude or inferred magnitude of flow separation along the tail during locomotion. Along the length of the tail there is a leading-to-trailing-edge gradient with larger leading edge denticles that lack ridges (average roughness = 9.6 μm), and smaller trailing edge denticles with 5 ridges (average roughness = 5.7 μm). Thresher shark tails have many missing denticles visible as gaps in the surface, and we present evidence that these denticles are being replaced by new denticles that emerge from the skin below.  相似文献   

15.
《Journal of morphology》2017,278(6):848-864
The median fins in extant actinopterygians are the product of millions of years of evolution. During this time, different developmental patterns for the dorsal and anal fins emerged leading to a high variation in median fin morphology and ontogeny. In this study, the development of anal and dorsal fins in atheriniforms is described and its consequences for the current phylogenetic hypothesis are discussed. Developmental series of five atheriniform species were investigated using clearing and staining as well as antibody staining. The skeletal elements of the second dorsal fin and the anal fin emerge in a bidirectional pattern. The first dorsal fin, however, arises separately in front of the second dorsal fin after this one is almost completely formed. The pterygiophores of the first dorsal fin, including the interdorsal pterygiophores, develop from caudal to rostral, but the fin‐spines of the first dorsal fin form in the opposite direction. This new mode of fin development has been found in all examined atheriniform species with two dorsal fins. Several morphological characters of atheriniforms, including interdorsal pterygiophores, are also found in one other taxon: the Mugiliformes. Thus, several dorsal fin characteristics may provide evidence for a closer relationship of these two taxa.  相似文献   

16.
This study investigated how skin contributes to buoyancy control in the Florida manatee ( Trichechus manatus latirostris ), harbor porpoise ( Phocoena phocoena ), and bottlenose dolphin ( Tursiops truncatus ). Manatees are shallow divers and control their position in the water column hydrostatically. The two cetaceans are relatively deep divers that control their buoyancy hydrodynamically. Although the cetacean skin had been hypothesized to lower total body density ( e. g. , Dearolf et al. 2000, Nowacek et al. 2001), its buoyant force had not been calculated. The density of manatee skin, and its contribution to buoyancy, was unknown. Skin densities of 27 manatees, five harbor porpoises, and five bottlenose dolphins were measured volumetrically. Skin mass and density were used to calculate buoyant force. Harbor porpoise (952 kg/m3) and bottlenose dolphin (969 kg/m3) skins were less dense than seawater, and added 9 and 25 N of positive buoyant force, respectively, to total body buoyancy. By contrast, manatee skin (1,121 kg/m3) contributed 56 N of negative buoyant force, which equaled 70% of the negative buoyant force of their dense, pachyosteosclerotic ribs. Calculation of buoyant forces of the skeleton, skin and lungs demonstrates that the manatee is positively buoyant at the surface and negatively buoyant at depths of less than 10 m.  相似文献   

17.
2012年9月,在中国南沙群岛渚碧礁采集到猪齿鱼属标本1尾,经鉴定为中国新纪录种——腰纹猪齿鱼(Choerodon zosterophorus)。本种的主要鉴别特征为:吻稍突出;背鳍ⅩⅢ-6;臀鳍Ⅲ-10;体被中大圆鳞,侧线完全,侧线鳞片27;从最后几个背鳍鳍棘基部下侧至胸鳍基部上侧之间有1条较宽白带;背侧有1较大黑色斑点,白斑背鳍后端处腹鳍位置上背部也有1较大黑点,通常在白斑处以黑色边缘线形式向前腹端延伸至腹部后侧;成体尾鳍为灰色。  相似文献   

18.
Between 2007 and 2009, we witnessed three aggressive interactions between harbor porpoises and bottlenose dolphins in Monterey Bay, California. This is the first time such aggression has been documented in the Pacific, and the first time a harbor porpoise was collected immediately after witnessing its death, inflicted by bottlenose dolphins. Of the bottlenose dolphins present, 92% were males either confirmed (61%) or putative (31%). Since 2005, 44 harbor porpoise deaths inflicted by bottlenose dolphins were documented in California. Aberrant behavior was rejected as a cause of aggression, based on widespread documentation of similar behaviors in other populations of free‐ranging bottlenose dolphins. The evidence for interspecies territoriality as a form of competition for prey was weak: there is little dietary overlap and there are differences in bottlenose dolphin and harbor porpoise distribution patterns in California. Object‐oriented play was plausible as a form of practice to maintain intraspecific infanticidal skills or a form of play to maintain fighting skills between male associates. Contributing factors could be high‐testosterone levels, as attacks occurred at the height of the breeding season, and/or a skewed operational sex ratio. Ultimately, we need more information about bottlenose dolphin social structure at the time of the aggression.  相似文献   

19.
To evaluate and quantify sexual dimorphism of skull shape and assess the ontogenetic background for differences, samples of 134 harbor porpoise (Phocoena phocoena) and 85 Dall's porpoise (Phocoenoides dalli) were compared in terms of cranial shape and shape ontogeny using three-dimensional geometric morphometrics. After correction for allometry, no sexual differences were detected in harbor porpoise, while Dall's porpoise showed statistically significant sexual dimorphism of skull shape. Since no sex-specific differences were detected in the directionalities of the ontogenetic vectors, we cannot reject that the dimorphism is innate. Based on the different mating systems of the two species and the lack of sexual dimorphism in the harbor porpoise, the dimorphism in Dall's porpoise is most likely a result of sexual selection in relation physical competition for mates given that male skulls provide room for larger neck muscles with a more favorable lever arm.  相似文献   

20.
Although the ray‐finned fishes are named for their bony, segmented lepidotrichia (fin rays), we are only beginning to understand the morphological and functional diversity of this key vertebrate structure. Fin rays support the fin web, and their material properties help define the function of the entire fin. Many earlier studies of fin ray morphology and function have focused on isolated rays, or on rays from only one or two fins. At the same time, relatively little is known about how different preservation techniques affect the material properties of many vertebrate structures, including fin rays. Here, we use three‐point bending tests to examine intra‐ and inter‐fin variation in the flexural stiffness of fin rays from yellow perch, Perca flavescens. We sampled fin rays from individuals that were assigned to one of three preservation treatments: fresh, frozen, and preserved with formalin. The flexural stiffness of the fin rays varied within and among fins. Pelvic‐fin rays were the stiffest, and pectoral fin rays the least stiff. The fin rays of the dorsal, anal, and caudal fins all had similar stiffness values, which were intermediate relative to those from the paired fins. The flexural stiffness of the fin rays was higher in rays that were at the leading edge of the fin. This variation in flexural stiffness was associated with variation in joint density and the relative length of the unsegmented proximal base of the fin rays. There was no significant difference in flexural stiffness between fresh and frozen specimens. In specimens preserved with formalin, there is a small but significant effect on stiffness in smaller fin rays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号