首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The DNA sequence of part of the late region of the polyoma virus genome is presented. This sequence of 1,348 nucleotide pairs encompasses the leader region for late mRNA and the coding sequence for the two minor capsid proteins VP2 and VP3. The coding sequence for the N-terminus of the major capsid protein overlaps the C-terminus of VP2/VP3 by 32 nucleotide pairs. From the DNA sequence the sizes and sequences of VP2 and VP3 could be predicted. Potential splicing signals for the processing of late mRNA's could be identified. Comparisons are made between the sequence of polyoma virus DNA and corresponding regions of simian virus 40 DNA.  相似文献   

3.
4.
5.
Structure of the adenovirus 2 early mRNAs   总被引:55,自引:0,他引:55  
A J Berk  P A Sharp 《Cell》1978,14(3):695-711
  相似文献   

6.
The nucleotide sequence of the region of human polyoma virus JC DNA between 0.5 and 0.7 map units from a unique EcoRI cleavage site was determined and compared with those of the corresponding regions of another human polyoma virus, BK, and simian virus 40 DNAs. Within this region consisting of 945 base pairs, we located the origin of DNA replication near 0.7 map units, the entire coding region for small T antigen, and the splice junctions for large-T-antigen mRNA. The deduced amino acid sequences for small T antigen and the part of large T antigen markedly resembled those of polyoma virus BK and simian virus 40. The results strongly suggest that polyoma virus JC has the same organization of early genome as polyoma virus BK and simian virus 40 on the physical map, with the EcoRI site as a reference point.  相似文献   

7.
8.
Transcription of hepatitis B virus by RNA polymerase II.   总被引:22,自引:3,他引:22       下载免费PDF全文
  相似文献   

9.
10.
  相似文献   

11.
12.
The nucleotide sequence of part of the late region of the polyoma virus genome was determined. It contains coding information for the major capsid protein VP1 and the C-terminal region of the minor proteins VP2 and VP3. In the sequence with the same polarity as late mRNA's, all coding frames are blocked by termination codons in a region around 48 units on the physical map. This is the region where the N-terminus of VP1 and the C-termini of VP2 and VP3 have been located (T. Hunter and W. Gibson, J. Virol. 28:240-253, 1978; S. G. Siddell and A. E. Smith, J. Virol. 27:427-431, 1978; Smith et al., Cell 9:481-487, 1976). There are two long uninterrupted coding frames in the late region of polyoma virus DNA. One lies at the 5' end of the sequence and contains potential coding sequences for VP2 and VP3. The other contains 383 consecutive sense codons starting with the ATG at nucleotide position 1,218, extends from 47.5 to 25.8 units counterclockwise on the physical map, and is located where the VP1 gene has been mapped. The VP1 gene overlaps the genes for proteins VP2/VP3 by 32 nucleotides and uses a different coding frame. From the DNA sequence, the amino acid sequence of VP1 was predicted. The proposed VP1 sequence is in good agreement with other data, namely, with the partial N-terminal amino acid sequence and the total amino acid composition. The VP1 coding frame terminates with a TAA codon at 25.8 map units. This is followed by an AATAAA sequence, which may act as a processing signal for the viral late mRNA's. When both nucleotide and amino acid sequences are compared with their counterparts in the related simian virus 40, extensive homologies are found over the entire region of the two viral genomes. Maximum homology appears to occur in those regions which code for the C-termini of the VP1 proteins. The overlap region of VP1 with VP2/VP3 of polyoma virus is shorter by 90 nucleotides than is that of simian virus 40 and shows very limited homology with the simian virus 40 sequence. This leads to the suggestion that the overlap segments of both viruses have been freed from stringency imposed on drifting during evolution and that proteins VP2 and VP3 of polyoma virus may have been truncated by the appearance of a termination codon within the sequence.  相似文献   

13.
14.
15.
The nucleotide sequence running from the genetic left end of bacteriophage T7 DNA to within the coding sequence of gene 4 is given, except for the internal coding sequence for the gene 1 protein, which has been determined elsewhere. The sequence presented contains nucleotides 1 to 3342 and 5654 to 12,100 of the approximately 40,000 base-pairs of T7 DNA. This sequence includes: the three strong early promoters and the termination site for Escherichia coli RNA polymerase: eight promoter sites for T7 RNA polymerase; six RNAase III cleavage sites; the primary origin of replication of T7 DNA; the complete coding sequences for 13 previously known T7 proteins, including the anti-restriction protein, protein kinase, DNA ligase, the gene 2 inhibitor of E. coli RNA polymerase, single-strand DNA binding protein, the gene 3 endonuclease, and lysozyme (which is actually an N-acetylmuramyl-l-alanine amidase); the complete coding sequences for eight potential new T7-coded proteins; and two apparently independent initiation sites that produce overlapping polypeptide chains of gene 4 primase. More than 86% of the first 12,100 base-pairs of T7 DNA appear to be devoted to specifying amino acid sequences for T7 proteins, and the arrangement of coding sequences and other genetic elements is very efficient. There is little overlap between coding sequences for different proteins, but junctions between adjacent coding sequences are typically close, the termination codon for one protein often overlapping the initiation codon for the next. For almost half of the potential T7 proteins, the sequence in the messenger RNA that can interact with 16 S ribosomal RNA in initiation of protein synthesis is part of the coding sequence for the preceding protein. The longest non-coding region, about 900 base-pairs, is at the left end of the DNA. The right half of this region contains the strong early promoters for E. coli RNA polymerase and the first RNAase III cleavage site. The left end contains the terminal repetition (nucleotides 1 to 160), followed by a striking array of repeated sequences (nucleotides 175 to 340) that might have some role in packaging the DNA into phage particles, and an A · T-rich region (nucleotides 356 to 492) that contains a promoter for T7 RNA polymerase, and which might function as a replication origin.  相似文献   

16.
17.
18.
19.
Factors governing the expression of a bacterial gene in mammalian cells.   总被引:34,自引:13,他引:21       下载免费PDF全文
Cultured monkey kidney cells transfected with simian virus 40 (SV40)-pBR322-derived deoxyribonucleic acid (DNA) vectors containing the Escherichia coli gene (Ecogpt, or gpt) coding for the enzyme xanthine-guanine phosphoribosyltransferase (XGPRT) synthesize the bacterial enzyme. This paper describes the structure of the messenger ribonucleic acids (mRNA's) formed during the expression of gpt and an unexpected feature of the nucleotide sequence in the gpt DNA segment. Analyses of the gpt-specific mRNA's produced during infection of CV1 cells indicate that in addition to the mRNA's expected on the basis of known simian virus 40 RNA splicing patterns, there is a novel SV40-gpt hybrid mRNA. The novel mRNA contains an SV40 leader segment spliced to RNA sequences transcribed from the bacterial DNA segment. The sequence of the 5'-proximal 345 nucleotides of the gpt DNA segment indicates that the only open translation phase begins with an AUG about 200 nucleotides from the end of the gpt DNA. Two additional AUGs as well as translation terminator codons in all three phases precede the XGPRT initiator codon. Deletion of the two that are upstream of the putative start codon increases the level of XGPRT production in transfected cells; deletion of sequences that contain the proposed XGPRT initiator AUG abolishes enzyme production. Based on the location of the XGPRT coding sequence in the recombinants and the structure of the mRNA's, we infer that the bacterial enzyme can be translated from an initiator AUG that is 400 to 800 nucleotides from the 5' terminus of the mRNA and preceded by two to six AUG triplets.  相似文献   

20.
C Prives  Y Beck    H Shure 《Journal of virology》1980,33(2):689-696
Simian virus 40 large T- and small t-antigens have been shown previously to share immunological determinants and common sequences and to have roles in virus-induced cell transformation. However, only large T-antigen is a DNA binding protein. Under all conditions tested, small t-antigen did not interact with DNA. Large T-antigen synthesized in infected cells bound to both native calf thymus and simian virus 40 DNAs. As its binding efficiency was less than 100%, it is likely that there are different forms of T-antigen which vary in their affinity for DNA. Large T-antigen synthesized in cell-free protein-synthesizing systems primed by simian virus 40 mRNA also bound to DNA-cellulose, whereas small t-antigen similarly synthesized in vitro did not. An 82,000-molecular-weight T-antigen polypeptide synthesized in cell-free protein-synthesizing systems primed by simian virus 40 complementary RNA transcribed in vitro from simian virus 40 DNA by Escherichia coli RNA polymerase bound efficiently to simian virus 40 DNA. As this product did not share sequences with the small t-antigen, it can be concluded that the amino-terminal portion of the T-antigen is not required for some of its specific DNA binding properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号