首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
本文对采集于我国西沙群岛的羽枝粉枝藻(Liagora pinnata Harvey),鼓苞粉枝藻(L.setchellii Yamada),和采集于台湾省的密孢粉枝藻(L.boergesenii Yamada),互对粉枝藻(L.decussata Montagne)的果胞受精后生殖系统的发育作了描述;并认为包围丝的着生位置和数量可作为分种的依据。精子囊虽都是由营养细胞分裂出几个小细胞,由此再反复分裂,最后由顶端细胞形成,但由于各种粉枝藻的精子囊母细胞分裂的次数和数量各不相同,因而也可作分种的依据。我们认为 Yamada,Desikachary 和 Balakrishnan 所提出的分组是不合适的。  相似文献   

2.
云南松雌雄配子体的发育   总被引:3,自引:0,他引:3  
云南松(Pinus yunnanensis Fr.)雄配子体于10月在小孢子叶腹面产生二个小孢子囊,内有许多进行分裂的造孢组织细胞。第二年一月下旬至二月初小孢子母细胞进行减数分裂。在分裂期间,细胞内所贮存的淀粉粒的分布发生变化。二月初四分体小孢子形成,绒毡层细胞解体。二日中旬单核花粉粒形成,外壁扩展形成二个异极对称的气囊。三月花粉在四细胞时期散发。 雌配子体于二月上旬在珠心皮下分化出孢原细胞。二月下旬大孢子母细胞进入减数分裂期。三月初直列四分体大孢子形成,珠孔端三个退化,合点端一个功能大孢子进入有丝分裂期,形成约32个游离核的配子体。次年三月初雌配子体形成,四月初中央细胞核分裂,四月底颈卵器成熟,卵核周围产生辐射状原生质纤丝。五月初受精开始。云南松雌雄配子体的发育与亚热带分布的P.roburghii相似。  相似文献   

3.
答:和蕨类植物一样,被子植物也有世代交替。它们从受精卵开始,经胚、成长的植物体至雄蕊花粉囊中的花粉母细胞和雌蕊的珠心中的胚囊母细胞,为孢子体世代。花粉母细胞经减数分裂形成单核花粉粒即小孢子(进入雄配子体世代)。花粉粒的三个细胞时期(包括花粉管)即为退化的雄配子体;雌蕊的胚囊母细胞减数分裂后,形成的四个胚囊细胞即四个大孢子(即雌配子  相似文献   

4.
短命植物条叶车前小孢子发生与雄配子体发育研究   总被引:6,自引:0,他引:6  
条叶车前小孢子发生与雄配子体形成过程如下:花药具4个花粉囊;药壁由表皮、药室内壁、中层、绒毡层等4层细胞组成,发育方式为双子叶型,绒毡层细胞为腺质;小孢子母细胞减数分裂过程中胞质分裂为同时型;小孢子四分体多为四面体型,少数为十字交叉型或两侧对称型;成熟花粉粒为3-细胞,两个精子由原生质丝与营养核联系起来,因此可能存在着“雄性生殖单位”。  相似文献   

5.
运用透射电子显微镜技术,对甜菜无融合生殖单体附加系M14的小孢子发生、雄配子体发育以及相应的花药壁发育过程进行超微结构的观察研究,以阐明甜菜无融合生殖单体附加系M14花粉发生与发育超微结构特点以及花粉败育的时期和败育的细胞学特征.结果显示:(1)小孢子母细胞减数分裂正常,分裂期间细胞质具有明显的"细胞质改组"现象,主要表现在核糖体减少,质体、线粒体的结构发生规律性的变化,有利于孢子体向配子体的转变.M14减数分裂的胞质分裂为同时型,前期Ⅱ和中期Ⅱ形成"细胞器带";正常发育的花粉,小孢子分裂形成营养细胞和生殖细胞;生殖细胞脱离花粉壁,生殖细胞游离于营养细胞的细胞质中,最初具细胞壁,而后消失,且生殖细胞壁成分与花粉内壁成分相似.(2)三细胞型的成熟花粉含有一个营养细胞和两个具有尾突的精子;每个精子通过两层质膜与营养细胞隔开,含有一个大的精核,长尾突内含少量的细胞质以及纤丝状结构.(3)生殖细胞和精子中缺乏质体.(4)花粉的败育起始于小孢子,大部分受阻于单核-二细胞花粉期,其败育特征为花粉内液泡吞噬作用导致细胞器解体,绒毡层细胞过早解体或肥大生长致使营养供应受阻,可能是导致单核-二细胞花粉败育的主要细胞学原因.研究表明,白花甜菜第九号染色体的附加可能是导致M14大量花粉败育的遗传学因素.  相似文献   

6.
海带无性繁殖系的形成及孢子体诱导   总被引:12,自引:0,他引:12  
海带无性繁殖系的形成及孢子体诱导周志刚吴超元(中国科学院海洋研究所青岛266071)海带(Laminaria)是具异型世代交替的大型经济褐藻,在生活史中出现一至数个细胞组成的雌、雄配子体阶段,再由雌配子体的卵囊受精长成孢子体[1]。现行的育苗法是于初...  相似文献   

7.
运用压片-透明法对短葶飞蓬(Erigeron breviscapus)小孢子母细胞减数分裂、雄配子体的发育过程进行了观察,并探讨了它们与花部形态特征的关系。结果表明,短葶飞蓬小孢子母细胞减数分裂的胞质分裂为同时型,四分体主要为四面体型,成熟花粉为3-细胞型;花序和花蕾形态变化与减数分裂、雄配子体的发育时期具有一定相关性,其中花蕾的长度可有效确定该花蕾中减数分裂与雄配子体发育时期。  相似文献   

8.
运用压片-透明法对短葶飞蓬(Erigeron breviscapus)小孢子母细胞减数分裂、雄配子体的发育过程进行了观察,并探讨了它们与花部形态特征的关系。结果表明,短葶飞蓬小孢子母细胞减数分裂的胞质分裂为同时型,四分体主要为四面体型,成熟花粉为3-细胞型;花序和花蕾形态变化与减数分裂、雄配子体的发育时期具有一定相关性,其中花蕾的长度可有效确定该花蕾中减数分裂与雄配子体发育时期。  相似文献   

9.
樟子松发育成熟的雄配子体中的精子6月15日左右在颈卵器中上部与卵细胞结合,进行受精作用,其后,受精卵进行游离核分裂,形成8个子核时,开始形成细胞壁。它们再分裂1次,形成16个细胞的原胚。接着胚柄细胞层迅速生长、伸长,把下面的原胚送出颈卵器基部的细胞壁,进入胚乳中的溶蚀腔。原胚吸收溶蚀腔中的营养,生长发育。初期,胚的数目往往很多,但常常只有1个发育成熟。  相似文献   

10.
采用光学显微镜对旱生金毛裸蕨(Gymnopteris vestita)配子体发育的全过程进行了观察。结果显示,(1)旱生金毛裸蕨孢子三裂缝,成熟时黄褐色,接种后10~15d萌发,萌发类型为书带蕨型。原叶体母细胞首先形成单列的丝状体,其后配子体发育明显区别于非旱生的蕨类,金毛裸蕨配子体发育最明显的特征是形成大量的分枝,通常单列的丝状体基部细胞可通过细胞纵分裂形成丝状分枝,这些分枝又可进一步产生新的分枝,分枝的末端可形成片状体,这些片状体又可产生分枝丝状体或片状体,最终整个配子体可发育为群丛。有时,单列的丝状体也可直接发育为片状体,然而这些片状体并不发育为原叶体而是产生大量的丝状分枝。当群丛形成时,在丝状体或片状体表面可产生数量较多的精子器,但在人工培养条件下并没有发现颈卵器。如果培养条件适宜,配子体可进行营养繁殖,持续较长时间,老的片状体上可产生新的丝状体。金毛裸蕨位于群丛外的大型心形原叶体可进行无配子生殖产生孢子体。金毛裸蕨的配子体发育特征,包括多分枝、发达的营养繁殖及无配子生殖现象的发生,表明了金毛裸蕨配子体群丛的形成是对于旱生环境的一种适应性。  相似文献   

11.
The cell of Caloglossa leprieurli is a polycaryon. The sexual thalli are usually dioecious. Its life cycle involves the alternation of three generations. In the reproductive season, the appearance of tetrasporophyte and female and male gametophyte shows evident difference. The tetrasporophyte is big and flat. The branches are sparse. Many small red spots, i.e. tetrasporogial groups, can be seen with the naked eyes in the upper part of the branch. The terminal part of the female gametophyte is a little twisted with thick branches. The cystocarps are spherical and most of them are located in ventral side of the upper branch points. The male gametophyte is smaller with less branches. Its terminal part is a little twisted with pale colour. The pit connections of the vegetative cells of every thallus are all well developed. The carpogonial branch consists of four cells. Generally, it is formed by the division of the pericentral cell. After fertilization of the carpogonium, an auxiliary cell is formed by the division of supporting cell. Usually five to seven, even more than ten young procarps can be formed at the apical part of the reproductive branch. The procarps often occur on consecutive segments of pericentral ceils. But among most of them only a carpogonium is fertilized and developes into cystocarp. When a carpogonium is fertilized, the other one on this branch usually cease further development. The spermatangia are formed on the lateral wing cells of both sides of the upper part midrib of a reproductive branch and distributed on both dorsal and ventral surfaces. A vegetative cell is divided into three cells in parallel to the surface of the thallus. The cortical cells under the two outer surfaces forms three to four permatangial mother cells. Each spermatangial mother cell divides into two to four spermatangia. After the sperm dispersal of the mature spermatangia, the spermatangial mother cells are still retained on both sides of the middle discoid cells.  相似文献   

12.
Culture and morphological studies showed that Galaxaura oblongata (Ellis et Solander) Lamouroux has a triphasic life history with conspicuous gametophytes and small filamentous tetrasporophytes. Development of male and female reproductive structures is very similar and both begin with the enlargement of a terminal cell of a filament branch occupying a normal vegetative position within the apical pit of a thallus branch. In male thalli this modified branch forms a conceptacle in which spermatangia are produced. In female thalli, this modified branch forms a three-celled carpogonial branch consisting of a carpogonium, hypogynous cell and basal cell. Filament branches from the basal cell form a pericarp and the gonimoblast develops directly from the carpogonium. Carposporangia are produced in conceptacles which resemble the male conceptacles. About the time the first carposporangia are produced, the carpogonium, hypogynous cell and basal cell form a large fusion cell. Released carpospores germinate in a unipolar or bipolar manner and form small filamentous thalli. Under short day conditions, cruciate tetrasporangia are produced in small clusters. Tetraspores germinate similarly to carpospores and also form small filamentous thalli. Under low nutrient conditions, small cylindrical thalli develop on the filaments and these appear similar to gametophytes collected in nature.  相似文献   

13.
Halosaccion americanum, a member of Palmariaceae, was grown in culture from spores and the life history was critically examined by the use of scanning EM and light microscopy. A mature tetrasporangium of H. americanum produces four spores that germinate to form two male and two female gametophytes. The male gametophytes grow to maturity in approximately eight months and macroscopically resemble the tetrasporophyte. Following the first division of the tetraspore, the two-celled female gametophyte consists of a vegetative cell and a carpogonium with trichogynes. Fertilization is accomplished by spermatia from male plants of the preceding generation, as male plants of the same season are immature. Spermatia are formed in a continuous layer over the surface of the mature male gametophytes and, when released, are entrained in long strands of mucous. Spermatia adhere to and fuse with trichogynes and, nuclear fusions presumably follow. The carposporophyte is absent; the new tetrasporophyte develops directly from the fertilized carpogonium. Growth of the sporophyte eventually obliterates the female gametophyte, and development into a mature tetrasporophyte proceeds over a period of approximately eight months. The development of H. americanum, with its extremely abbreviated female gametophyte stage and direct development of the tetrasporophyte from the zygote, indicates that this rhodophyte has the same life history as reported for other members of the Palmariales.  相似文献   

14.
The Myriogramme group of Kylin was found to contain two distinct clusters of genera that merit recognition at the tribal level. In this paper, we establish the tribe Myriogrammae based on a study of the type species of Myriogramme, M. livida, from the Southern Hemisphere. The Myriogrammae is characterized by 1) marginal and diffuse intercalary meristems; 2) nuclei arranged in a ring bordering the side walls of vegetative cells; 3) microscopic veins absent; 4) procarps scattered, formed opposite one another on both sides of the blade posterior to one or more vegetative pericentral cells (cover cells) and consisting of a carpogonial branch, a one-/to two-celled lateral sterile group and a one-celled basal sterile group; 5) auxiliary cell diploidized by a connecting cell cut off posteriolaterally from the fertilized carpogonium; 6) gonimoblast initial cut off distally from the auxiliary cell, generating one distal and one to two lateral gonimoblast filaments that branch in the plane of the expanding cystocarp cavity and later fuse to from an extensive, branched fusion cell; 7) spermatangial and tatrasporangial sori formed inside the margin on both sides of the blade by resumption of meristematic activity; and 8) tetrasporangia produced primarily from the central cells. The Myriogrammae currently includes Myriogramme Kylin , Gonimocolax Kylin , Haraldiophyllum A. Zinova , Hideophyllum A. Zinova, and a possible undescribed genus from Pacific North and South America. Genera are separated based primarily on features of gonimoblast and carposporangial development .  相似文献   

15.
Vegetative and reproductive development of Neosiphonia flavimarina gen. et sp. nov. (Rhodomelaceae, Ceramiales) from Bangpo on the western coast of Korea was investigated. This species is superficially similar to Polysiphonia, but differs distinctly from the latter in vegetative and reproductive structures. The plants attach by a solid disk composed of a dense cluster of rhizoids cut off from the pericentral cell wall, and bear erect indeterminate branches producing the lateral-branch initials from successive segments in a spiral arrangement. The procarps have a three-celled carpo-gonial branch. Spermatangial branches are formed on a primary branch of the trichoblasts, terminating in a single or occasionally two large, sterile cells. Tetra-sporangia are produced from the second pericentral cell adjacent to the trichoblast basal cell on indeterminate branches, and arranged spirally. Comparing several taxonomic characters among related genera, Neosiphonia occupies an independent phylogenetic position from Polysiphonia and leads to the conclusion that the genus may have a strong link with Fernandosiphonia which has a unilateral branching system. Relevant nomenclatural changes for several Polysiphonia species are also proposed.  相似文献   

16.
A minute parasite of Neosiphonia poko (Hollenberg) Abbott from a shallow lagoon on the central-Pacific Johnston Atoll is described as Neotenophycus ichthyosteus Kraft et Abbott, gen. et sp. nov. The infective parasite cell first connects to a central-axial cell of the host, then emerges from between host pericentral cells at a node before dividing into a three- or four-celled primary axis. Epibasal cells of the parasite divide to form three pericentral cells whose derivatives produce a globular head on the basal cell and on which reproductive structures differentiate almost immediately. Trichoblasts on any life-history stage are completely lacking. Spermatangia are borne on mother cells across the whole thallus surface. Procarps consist of four pericentral cells that encircle a subapical fertile-axial cell in an ampullar configuration, one of the pericentral cells serving as the supporting cell and bearing a four-celled carpogonial branch and a single sterile cell. Diploidization results in a longitudinal/concave division of the auxiliary cell and formation of an arching linear series of inner gonimoblast cells, each dividing toward the thallus surface into gonimoblast filaments of very narrow, horizontally aligned cells terminated by initially monopodial, later by sympodial, carposporangia, the whole of the mature female gametophyte consisting of an amalgam of several cystocarps within a lax jacket of sterile gametophytic tissue. Tetrasporophytes are composed of lobes of pericentral-cell-derived filaments, each axial cell of which is ringed by three pericentral cells producing tetrahedral tetrasporangia enclosed by two pre-sporangial cover cells. Affinities of the new genus are discussed and comparison is made particularly to the enigmatic parasite Episporium centroceratis Möbius. It is concluded that relationships with any previously described tribe are so remote or obscure that the new tribe Neotenophyceae should be proposed for it.  相似文献   

17.
Dicroglossum gen. nov. (Delesseriaceae, Ceramiales) is a monotypic genus based on Delesseria crispatula, a species originally described by Harvey for plants collected from southwestern Western Australia. Distinctive features of the new genus include exogenous indeterminate branches; growth by means of a single transversely dividing, apical cell; absence of intercalary divisions in the primary, secondary, and tertiary cell rows; lateral pericentral cells not transversely divided; not all cells of the secondary cell rows producing tertiary cells rows; all tertiary initials reaching the thallus margin; midrib present but lateral nerves absent; determinate lateral bladelets arising endogenously; blades monostromatic, except, at the midrib; carpogonial branches restricted to primary cell rows, on both surfaces of unmodified blades; procarps produced on both blade surfaces, each procarp consisting of a supporting cell that bears two four-celled carpogonial branches and one sterile-cell group of three to four cells; and tetrasporangia borne in two layers, separated by a central row of sterile cells. The combination of exogenous indeterminate branching and bicarpogonial procarps is considered to warrant the recognition of a new tribe, the Dicroglosseae, within the subfamily Delesserioideae.  相似文献   

18.
The red alga Cubiculosporum koronicarpis gen. et sp. nov. is described from material collected during 1968 in the Philippines. The species differs substantially in regard to its carposporophyte development from other red algae in the order Gigartinales, and a new family is created based on its unique combination of reproductive features. A single, short, connecting filament is formed between the fertilized carpogonium and a nearby auxiliary cell. The latter produces several ramifying gonimoblast filaments towards the interior of the thallus. No fusion cell is formed and the gonimoblast filaments grow inward among the cells of the central axis, form secondary connections to them, and give rise to outwardly directed carposporangial filaments that develop within peripheral chambers formed between elongating inner cortical cells. The alga is a low, clump-forming species of well-washed intertidal reef platforms at the one Philippine locality where it has been found. There it contributed a uniform but very minor amount to the wet weight of the standing crops that were studied during two separate seasons of the year.  相似文献   

19.
Hybrid cells were obtained from somatic cell fusion among male, female, and tetrasporangial plants in Griffithsia japonica Okamura by a wound-healing process. Isolated fusion cells regenerated new mature plants with mixed reproductive structures. The plants regenerated from hybrid cells between male and female plants developed into 1) spermatangiate, 2) carpogonial, 3) bisexual with spermatangia and carpogonial branches, 4) mixed-phase with spermatangia and tetrasporangia, or 5) bisexual/mixed-phase plants with spermatangia, carpogonial branches, and tetrasporangia. About 70% of the plants regenerated from hybrid cells between male and female plants produced tetrasporangia that were always formed with spermatangia on a single cell. Some of those tetrasporangia released tetraspores, six of which gave rise to mature plants. The plants regenerated from hybrid cells between male and tetrasporangial plants developed into spermatangiate, tetrasporangiate, or mixed-phase plants with spermatangia and tetrasporangia. The plants regenerated from hybrid cells between female and tetrasporangial plants developed into carpogonial, tetrasporangiate, or mixed-phase plants with carpogonial branches and tetrasporangia. All types of reproductive structures we re functional.  相似文献   

20.
The South African marine alga Amphithallia crassiuscula, previously subsumed in the widely reported Synarthrophyton patena, is here re-described as a distinct species and genus. Thalli grow as obligate epiphytes on Gelidium capense in the upper sublittoral zone (while S. patena grows on Ballia callitricha). Gametophytes are monoecious with four-celled carpogonial branches and sterile cells are borne on supporting cells (dioecious or hermaphroditic with two or three-celled carpogonial branches and sterile cells borne on hypogynous cells in Synarthrophyton). Postfertilization stages involve a connecting filament linking the carpogonium to several putative auxiliary cells, demonstrating a non-procarpic condition with apparent absence of a fusion cell. Gonimoblast filaments develop at the level of basal cells of carpogonial branches. Spermatangial mother cells remain either unbranched (cutting off spermatangia only) or develop dendroid (branched) filaments with terminal spermatangia (as in Synarthrophyton). Multiporate conceptacles develop straight pore canals lined by non-differentiated cells (conical canals with differentiated pore cells along the base in Synarthrophyton). The here described pre- and post-fertilization characters are new for the order Corallinales motivating the establishment of the new genus Amphithallia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号