首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Robert Chambers and Thomas Henry Huxley helped popularize science by writing for general interest publications when science was becoming increasingly professionalized. A non-professional, Chambers used his family-owned Chambers' Edinburgh Journal to report on scientific discoveries, giving his audience access to ideas that were only available to scientists who regularly attended professional meetings or read published transactions of such forums. He had no formal training in the sciences and little interest in advancing the professional status of scientists; his course of action was determined by his disability and interest in scientific phenomena. His skillful reporting enabled readers to learn how the ideas that flowed from scientific innovation affected their lives, and his series of article in the Journal presenting his rudimentary ideas on evolution, served as a prelude to his important popular work, Vestiges of the Natural History of Creation. Huxley, an example of the new professional class of scientists, defended science and evolution from attacks by religious spokesmen and other opponents of evolution, informing the British public about science through his lectures and articles in such publications as Nineteenth Century. He understood that by popularizing scientific information, he could effectively challenge the old Tory establishment -- with its orthodox religious and political views -- and promote the ideas of the new class of professional scientists. In attempting to transform British society, he frequently came in conflict with theologians and others on issues in which science and religion seemed to contradict each other but refused to discuss matters of science with non-professionals like Chambers, whose popular writing struck a more resonant chord with working class readers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The advent of genomics, proteomics, and microarray technology has brought much excitement to science, both in teaching and in learning. The public is eager to know about the processes of life. In the present context of the explosive growth of scientific information, a major challenge of modern cell biology is to popularize basic concepts of structures and functions of living cells, to introduce people to the scientific method, to stimulate inquiry, and to analyze and synthesize concepts and paradigms. In this essay we present our experience in mixing science and education in Brazil. For two decades we have developed activities for the science education of teachers and undergraduate students, using microscopy images generated by our work as cell biologists. We describe open-air outreach education activities, games, cell modeling, and other practical and innovative activities presented in public squares and favelas. Especially in developing countries, science education is important, since it may lead to an improvement in quality of life while advancing understanding of traditional scientific ideas. We show that teaching and research can be mutually beneficial rather than competing pursuits in advancing these goals.  相似文献   

3.
Both leading scientific journals and the popular press now regularly report the convincing evidence of massive environmental degradation and decline. Yet despite the seriousness of the problems, despite their anthropogenic nature, and despite their profound implications for present and future population health, such topics are rarely discussed in the leading public health journals. When these issues are mentioned, they are examined in the same limited framework as other questions in public health--questions of models and tests of independent causal associations dominate. This approach will not suffice, for both scientific and ethical reasons. If public health scientists wish to sustain human health in the face of such crises, and to retain our integrity as scholars who speak truthfully about public health matters, we will have to broaden the notions of "health" and "community" to include nonhumans. I draw on recent scholarship in moral philosophy and in the philosophy of science to support my argument. Scholars in the health professions must take seriously the words of theologian Andrew Linzey, who states that the attempt to place human well-being in a special and absolute category of its own is perhaps the primary cause of our ecological travail.  相似文献   

4.
Julian Huxley’s (1887–1975) contribution to twentieth-century biology and science popularisation is well documented. What has not been appreciated so far is that despite Huxley’s eminence as a public scientific figure and the part that he played in the rise of experimental zoology in Britain in the 1920s, his own research was often heavily criticised in this period by his colleagues. This resulted in numerous difficulties in getting his scientific research published in the early 1920s. At this time, Huxley started his popular science career. Huxley’s friends criticised him for engaging in this actively and attributed the publication difficulties to the time that he allocated to popular science. The cause might also have its roots in his self-professed inability to delve deeply into the particularities of research. This affected Huxley’s standing in the scientific community and seems to have contributed to the fact that Huxley failed twice in the late 1920s to be elected to the Royal Society. This picture undermines to some extent Peter J. Bowler’s recent portrayal of Huxley as a science populariser.  相似文献   

5.
It is rare to meet protistologists who are not passionate about their study subject. The vast majority of people, however, never get the chance to hear about the work of these researchers. Although every researcher working on protists is likely to be aware of this situation, efforts made and tools employed for dissemination of knowledge are rarely documented. Following a proposal by the Italian Society of Protistology, a workshop at the 2019 VIII European Congress of Protistology in Rome, Italy, was dedicated to protistological knowledge dissemination. Through the many interventions, we discovered the diversity of efforts to reveal the protistan world to the general public, including museum exhibitions and activities, public understanding of science events, citizen science projects, specific book publications, the use of protists in teaching at all levels from primary school children to university undergraduate students, and to a global audience via social media. The participation of the workshop delegates in the discussions indicated that presentations on the wonderful world of protists to the public not only increase the visibility and accessibility of protistology research but are also very important for the scientific community. Here we report on some of the key aspects of the presentations given in the dissemination workshop.  相似文献   

6.
Advances in technology typically outpace the public’s understanding of the underlying science, the consequences of which are public distrust and confusion about the actual benefits and risks involved. That popular culture, particularly movies, often misrepresent scientific facts and ideas for the purpose of entertainment is usually viewed as part of the problem. Some movies, however, offer excellent opportunities for teachers to draw connections and parallels between entertaining movie science and exciting real world science. This article illustrates how movies with genetics and developmental biology themes can be used to teach important ideas such as how genes control animal development and evolution, how cloning works, whether DNA is sufficient to create life, and how much genes matter in determining human behavior.  相似文献   

7.
Nonscience majors often do not respond to traditional lecture-only biology courses. However, these students still need exposure to basic biological concepts. To accomplish this goal, forensic science was paired with compatible cell biology subjects. Several topics such as human development and molecular biology were found to fulfill this purpose. Another goal was to maximize the hands-on experience of the nonscience major students. This objective was fulfilled by specific activities such as fingerprinting and DNA typing. One particularly effective teaching tool was a mock murder mystery complete with a Grand Jury trial. Another objective was to improve students' attitudes toward science. This was successful in that students felt more confident in their own scientific abilities after taking the course. In pre/post tests, students answered four questions about their ability to conduct science. All four statements showed a positive shift after the course (p values ranging from.001 to.036, df = 23; n = 24). The emphasis on experiential pedagogy was also shown to increase critical thinking skills. In pre/post testing, students in this course significantly increased their performance on critical thinking assessment tests from 33.3% correct to 45.3% (p =.008, df = 4; n = 24).  相似文献   

8.
Misrepresentation of terminology is a major impediment for attempts at enhancing public conservation literacy. Despite being critically important for improving conservation practice, there have been few systematic analyses of the popular use of conservation terminology. This paper draws from science communication studies and metaphor analysis, to examine how keystone, flagship and umbrella species concepts are used and represented in non-academic contexts. 557 news articles containing these terms were systematically analyzed. Mammals featured in 60% of articles on keystones, 55% on flagships and 63% on umbrella species. Number of articles explaining the terms keystone (35%) and flagship (31%) was low, and keystones were the most misrepresented term. Keystones were metaphorically linked with balance, flagships with representation and umbrella species with protection. These metaphors influenced public interpretation of scientific terminology, oriented actions towards select species, and led to a valuation of such actions. Together, the findings highlight three important aspects of popular use of conservation terminology: (1) communication is largely biased towards mammals, (2) everyday language plays a vital role in the interpretation of concepts, and (3) metaphors influence peoples’ actions and understanding. Conservation biologists need to engage with issues of language if public conservation literacy is to be improved. Further evaluations of concepts with high public and policy relevance, systematic identification of communication shortfalls, and linguistic assessments prior to promoting new terms are potential ways of achieving this.  相似文献   

9.
Protagonists for 'the public understanding of science' still sometimes fail to recognize that there is also a need for 'the scientists' understanding of the public' and that for most of science most of the time we are all public. 'Science' is communicated to 'the public' through popular books, museums, TV, the Internet, but far too often the present state of scientific belief is presented uncritically as the onward march of truth as discovered by Euro-American males. This has contributed to a widespread public concern, if not mistrust, in many areas of science, not least genetics and neuroscience. Although researchers often criticize the media for misrepresenting their work, the hype and simplifications often begin with the press releases put out by the researchers, their institutions and the scientific journals themselves. I conclude by looking more optimistically at the ways in which, by bringing natural science into theatre, novels and other art forms, the fragmentation of our culture may be diminished.  相似文献   

10.
The importance of evolutionary parallelisms and their differences from evolutionary convergences have been historically underappreciated, as recently noticed in Gould's last book `The structure of evolutionary history'. In that book, Gould make an effort to distinguish and to reinterpret these concepts in the light of the new discoveries of the last decades on developmental biology and genetics, presenting the elegant metaphor of `Pharaonic bricks versus Corinthian columns'. In this paper I will briefly discuss these concepts, and will argue that, despite the advances that have been made to define them in theory, it is rather hard to differentiate them in a practical phylogenetic context. In order to do so, I will provide some few examples from my own empirical studies on the last years of one of the most morphologically and taxonomically diverse groups of Vertebrates, the catfishes.  相似文献   

11.
The young investigator award from the Protein Society was a special honor for me because, at its essence, the goal of my laboratory is to define what obscure proteins do. Years ago, I stumbled into mitochondria as a venue for this work, and these organelles continue to define the biological theme of my laboratory. Our approaches are fairly broad, reflecting my own somewhat unorthodox training among diverse scientific fields spanning organic synthesis, chemical biology, mechanistic biochemistry, signal transduction, and systems biology. Yet, whatever the theme or the discipline, we aim to understand how proteins work—especially those that hide in the dark corners of mitochondria. Below, I recount my own path into this arena of protein science, and describe how my experiences along the way have shaped our current multi‐disciplinary efforts to define the inner workings of this complex biological system.  相似文献   

12.
13.
Perspective: Teaching evolution in higher education   总被引:7,自引:1,他引:6  
Abstract.— In the past decade, the academic community has increased considerably its activity concerning the teaching and learning of evolution. Despite such beneficial activity, the state of public understanding of evolution is considered woefully lacking by most researchers and educators. This lack of understanding affects evolution/science literacy, research, and academia in general. Not only does the general public lack an understanding of evolution but so does a considerable proportion of college graduates. However, it is not just evolutionary concepts that students do not retain. In general, college students retain little of what they supposedly have learned. Worse yet, it is not just students who have avoided science and math who fail to retain fundamental science concepts. Students who have had extensive secondary-level and college courses in science have similar deficits. We examine these issues and explore what distinguishes effective pedagogy from ineffective pedagogy in higher education in general and evolution education in particular. The fundamental problem of students' prior conceptions is considered and why prior conceptions often underpin students' misunderstanding of the evolutionary concepts being taught. These conceptions can often be discovered and addressed. We also attend to concerns about coverage of course content and the influence of religious beliefs, and provide helpful strategies to improve college-level teaching of evolution.  相似文献   

14.
This review discusses the inherent challenge of linking "reductionist" approaches to decipher the information encoded in protein sequences with burgeoning efforts to explore protein folding in native environments-"postreductionist" approaches. Because the invitation to write this article came as a result of my selection to receive the 2010 Dorothy Hodgkin Award of the Protein Society, I use examples from my own work to illustrate the evolution from the reductionist to the postreductionist perspective. I am incredibly honored to receive the Hodgkin Award, but I want to emphasize that it is the combined effort, creativity, and talent of many students, postdoctoral fellows, and collaborators over several years that has led to any accomplishments on which this selection is based. Moreover, I do not claim to have unique insight into the topics discussed here; but this writing opportunity allows me to illustrate some threads in the evolution of protein folding research with my own experiences and to point out to those embarking on careers how the twists and turns in anyone's scientific path are influenced and enriched by the scientific context of our research. The path my own career has taken thus far has been shaped by the timing of discoveries in the field of protein science; together with our contemporaries, we become part of a knowledge evolution. In my own case, this has been an epoch of great discovery in protein folding and I feel very fortunate to have participated in it.  相似文献   

15.
Since the 1990s, there have appeared numerous articles in scholarly journals and the popular press that deny the risks posed by non-native species and claim that the field of invasion biology is biased, uninformative and pseudoscientific. Unlike normal scientific debates, which are evidence based, this discourse typically uses rhetorical arguments to disregard, misrepresent or reject evidence in attempt to cast doubt on the scientific consensus that species introductions pose significant risks to biodiversity and ecosystems; thus, it is similar to the denialism that has affected climate science and medical science. Invasive species denialism, like science denialism in general, is typically expressed in forums where it avoids expert peer review. Denialist articles have increased exponentially over the past three decades, most notably in the mainstream popular press. This burgeoning phenomenon could impede development and implementation of policies designed to safeguard against invasive species spread and impact.  相似文献   

16.
In the late 1940s and early 1950s, the leaders of the Genetics Society of America (GSA) struggled to find an appropriate group response to Trofim Lysenko’s scientific claims and the Soviet treatment of geneticists. Although some of the leaders of the GSA favored a swift, critical response, procedural and ideological obstacles prevented them from following this path. Concerned about establishing scientific orthodoxy on one hand and politicizing the content of their science on the other, these American geneticists drew on democratic language and concepts as they engaged in this political issue. The relatively weak statements that did emerge from the GSA attracted little attention in the scientific or popular press. The intensely politicized atmosphere of American science complicated the GSA’s task, as domestic concerns about protecting democracy were beginning to constrain academic freedom. In the context of American Cold War culture, Lysenko became just one example of the dangers the Cold War world presented to scientific freedom.  相似文献   

17.
The National Aeronautics and Space Administration (NASA) Astrobiology Institute (NAI) conducted two "Workshops Without Walls" during 2010 that enabled global scientific exchange--with no travel required. The second of these was on the topic "Molecular Paleontology and Resurrection: Rewinding the Tape of Life." Scientists from diverse disciplines and locations around the world were joined through an integrated suite of collaborative technologies to exchange information on the latest developments in this area of origin of life research. Through social media outlets and popular science blogs, participation in the workshop was broadened to include educators, science writers, and members of the general public. In total, over 560 people from 31 US states and 30 other nations were registered. Among the scientific disciplines represented were geochemistry, biochemistry, molecular biology and evolution, and microbial ecology. We present this workshop as a case study in how interdisciplinary collaborative research may be fostered, with substantial public engagement, without sustaining the deleterious environmental and economic impacts of travel.  相似文献   

18.
The transition from bench science to science policy is not always a smooth one, and my journey stretched as far as the unemployment line to the hallowed halls of the U.S. Capitol. While earning my doctorate in microbiology, I found myself more interested in my political activities than my experiments. Thus, my science policy career aspirations were born from merging my love of science with my interest in policy and politics. After receiving my doctorate, I accepted the Henry Luce Scholarship, which allowed me to live in South Korea for 1 year and delve into the field of science policy research. This introduction into science policy occurred at the South Korean think tank called the Science and Technology Policy Institute (STEPI). During that year, I used textbooks, colleagues, and hands-on research projects as my educational introduction into the social science of science and technology decision-making. However, upon returning to the United States during one of the worst job markets in nearly 80 years, securing a position in science policy proved to be very difficult, and I was unemployed for five months. Ultimately, it took more than a year from the end of the Luce Scholarship to obtain my next science policy position with the American Society for Microbiology Congressional Fellowship. This fellowship gave me the opportunity to work as the science and public health advisor to U.S. Senator Harry Reid. While there were significant challenges during my transition from the laboratory to science policy, those challenges made me tougher, more appreciative, and more prepared to move from working at the bench to working in the field of science policy.  相似文献   

19.
This paper explores whether we can interpret the notion of ‘forensic culture’ as something akin to what Knorr-Cetina called an ‘epistemic culture’. Can we speak of a ‘forensic culture’, and, if so, how is it similar to, or different from, other epistemic cultures that exist in what is conventionally called ‘science’? This question has important policy implications given the National Academy Science’s (NAS) recent identification of ‘culture’ as one of the problems at the root of what it identified as ‘serious deficiencies’ in U.S. forensic science and ‘scientific culture’ as an antidote to those problems. Finding the NAS’s characterisation of ‘scientific culture’ overly general and naïve, this paper offers a preliminary exploration of what might be called a ‘forensic culture’. Specifically, the paper explores the way in which few of the empirical findings accumulated by sociologists of science about research science seem to apply to forensic science. Instead, forensic science seems to have developed a distinct culture for which a sociological analysis will require new explanatory tools. Faithful sociological analysis of ‘forensic culture’ will be a necessary prerequisite for the kind of culture change prescribed by external reformist bodies like the NAS.  相似文献   

20.
Blackawton bees     
BACKGROUND: Real science has the potential to not only amaze, but also transform the way one thinks of the world and oneself. This is because the process of science is little different from the deeply resonant, natural processes of play. Play enables humans (and other mammals) to discover (and create) relationships and patterns. When one adds rules to play, a game is created. THIS IS SCIENCE: the process of playing with rules that enables one to reveal previously unseen patterns of relationships that extend our collective understanding of nature and human nature. When thought of in this way, science education becomes a more enlightened and intuitive process of asking questions and devising games to address those questions. But, because the outcome of all game-playing is unpredictable, supporting this 'messyness', which is the engine of science, is critical to good science education (and indeed creative education generally). Indeed, we have learned that doing 'real' science in public spaces can stimulate tremendous interest in children and adults in understanding the processes by which we make sense of the world. The present study (on the vision of bumble-bees) goes even further, since it was not only performed outside my laboratory (in a Norman church in the southwest of England), but the 'games' were themselves devised in collaboration with 25 8- to 10-year-old children. They asked the questions, hypothesized the answers, designed the games (in other words, the experiments) to test these hypotheses and analysed the data. They also drew the figures (in coloured pencil) and wrote the paper. Their headteacher (Dave Strudwick) and I devised the educational programme (we call 'i,scientist'), and I trained the bees and transcribed the childrens' words into text (which was done with smaller groups of children at the school's local village pub). So what follows is a novel study (scientifically and conceptually) in 'kids speak' without references to past literature, which is a challenge. Although the historical context of any study is of course important, including references in this instance would be disingenuous for two reasons. First, given the way scientific data are naturally reported, the relevant information is simply inaccessible to the literate ability of 8- to 10-year-old children, and second, the true motivation for any scientific study (at least one of integrity) is one's own curiousity, which for the children was not inspired by the scientific literature, but their own observations of the world. This lack of historical, scientific context does not diminish the resulting data, scientific methodology or merit of the discovery for the scientific and 'non-scientific' audience. On the contrary, it reveals science in its truest (most naive) form, and in this way makes explicit the commonality between science, art and indeed all creative activities. PRINCIPAL FINDING: 'We discovered that bumble-bees can use a combination of colour and spatial relationships in deciding which colour of flower to forage from. We also discovered that science is cool and fun because you get to do stuff that no one has ever done before. (Children from Blackawton)'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号