首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Graham  Liza  Knight  Richard L. 《Plant Ecology》2004,170(2):223-234
We developed a nested vegetation sampling protocol to sample the plant diversity on south-facing cliffs and cliff bases in Jefferson County, Colorado. The multi-scale plots included three nested spatial scales, 1 m2, 20 m2, and 40 m2. We compared plant species richness and species diversity among large cliffs, medium cliffs, small cliffs, and non-cliff sites using Hill's diversity numbers (N 0, N 1, and N 2) for the 1-m2 quadrats. Species richness (N 0) was calculated for the 20-m2 and 40-m2 plots. Our results indicate that plant species diversity on the cliff faces did not increase with increasing cliff area. This pattern was consistent at all three sampling scales. A model selection was run to determine if plant species diversity values on the cliff faces were associated with cliff variables. None of the cliff variables measured were good predictors of diversity at the 1-m2 scale. However, at the 20-m2 scale, canyon differences and a positive relationship with increasing cliff surface roughness explained 70% of the variability in species richness. Although most plant species sampled on the cliff faces were also found in the base plots, 13 species were sampled only on the cliff faces. Additionally, dry south facing cliffs support a mix of xeric and mesic plants indicating that cliffs may provide unique microenvironments for plant establishment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
4.
    
Two distribution-free permutation techniques are described for the analysis of ecological data. These methods are completely data dependent and provide analyses for the commonly-encountered completely-randomized and randomized-block designs in a multivariate framework. Euclidean distance forms the basis of both techniques, providing consistency with the observed distribution of data in many ecological studies.Abbreviations MRPP= Multiresponse permutation procedure - MRBP= Ibid, randomized block analog  相似文献   

5.
    
Abstract. Numbers of plant species were recorded in species‐rich meadows in the Bílé Karpaty Mts., SE Czech Republic, with the aim to evaluate the sampling error made by well‐trained observers. Five observers recorded vascular plants in seven plots ranging from 9.8 cm2 to 4 m2 independently and were not time‐limited. In larger plots a discrepancy of 10–20% was found between individual estimates, in smaller plots discrepancy increased to 33%, on average. The gain in observed species richness by combining records of individual observers (in comparison with the mean numbers estimated by single observers) decreased from the smallest plot (27–82% for two to five observers) to the largest one (13–25%). However, after misidentified and suspicious records were eliminated, the gain was much lower and became scale‐independent; two observers added 12% species, on average, and the increase by combining species lists made by three or more observers was negligible (3% more on average). It is concluded that most discrepancies between individual observers were caused by misidentification of rare seedlings and young plants. We suggest that in species‐rich meadows plants should be recorded by at least three observers together and that they should consult all problematic plant specimens together in the field, to minimize errors.  相似文献   

6.
    
Binomial and geometric mixtures can be used to model data gathered in capture-recapture surveys of animal populations, removal surveys of harvest populations, registrations of disease populations, ecological species census, and so on. To compute a nonparametric maximum likelihood estimator for the mixing distribution of heterogeneous capture probabilities, we consider a conditional approach and use a reliable and fast integrative procedure which combines the EM algorithm to increase the likelihood and the vertex-exchange method to update the number of support points. A convergent Newtonian algorithm is used in the M-step of the EM algorithm.  相似文献   

7.
8.
    
Abstract. Short-term field experiments are often used to predict and evaluate long-term management effects. Based on a mowing experiment in two calcareous fens near Lake Neuchâtel, Switzerland, we investigated whether short-term treatment effects (i.e. during the first four years) were confirmed by long-term results (13 - 14 yr). Plots were mown in summer or in winter or left unmown. The main long-term trends in overall species composition (based on percentage cover estimates) were already observable in the first four years: mown and unmown plots diverged, whereas summer-cut and winter-cut plots remained similar. At the individual species level, however, short-term and long-term treatment effects differed considerably: many species whose abundance seemed affected by treatments during the first four years showed no response in the long term, and vice versa. These discrepancies were similar when based on cover estimates or on counts of shoots. Species responses did actually depend on the time scale considered. Short-term and long-term treatment effects on species richness were similar (i.e. a decrease in unmown plots), although only long-term effects were significant. Treatment effects on the above-ground biomass varied considerably, and short-term trends (lower biomass in unmown plots) differed from long-term trends (higher biomass in unmown plots). Our sites showed little overall change in species composition during the period investigated, and treatment effects were low compared with other similar experiments. If study sites are less stable or treatment effects more drastic, a short-term evaluation is expected to be even less reliable. Knowledge on species dynamics at a site may help to choose the adequate spatial and temporal scale of investigation, and thus increase the efficiency of management experiments.  相似文献   

9.
If specialization influences species presence, then high tropical tree and shrub diversity should correspond with high environmental heterogeneity. Such heterogeneity may be found among different successional communities (i.e., canopy types). We explore species associations in three forest-dominated canopy types, forest, gap, and edge, in Kibale National Park, Uganda and determine environmental, soil and light, differences among canopy types. To determine the strength of differences among forested canopy types, they are also compared to grasslands. Tree and shrub density and species richness using rarefaction analysis were determined based on data from 24 small plots (5 × 5 m) in all four canopy types and 16 large plots (10 × 50 m) in forest and grassland canopy types. Environmental variables were determined along 10 (20 m) transects in the four canopy types. Using analysis of variance and principal components analysis, we demonstrate that forest and gap environments had similar soils, but forest had lower light levels than gap. We also found that grassland and edge were more similar to one another than to forest and gap, but differed in a number of important biotic and abiotic factors controlling soil water availability (e.g., edge had higher root length density of small roots < 2 mm diameter in the top 20 cm than grassland). Using principal components analysis to assess similarities in community composition, we demonstrate that gap and forest had indistinguishable communities and that edge was similar to but distinct from both communities. Complete species turnover only occurred between grassland and the three forested canopy types. Even though overall community composition was similar in the three forested canopy types, in analyses of individual species using randomization tests, many common species were most frequently found in only one canopy type; these patterns held across size classes. These results suggest that despite differences among environments, community composition was similar among forested canopy types, which are likely intergrading into one another. Interestingly, individual species are more frequently found in a single canopy type, indicating species specialization.  相似文献   

10.
Questions: What is the relative influence of size, connectivity and disturbance history on plant species richness and assemblages of fragmented grasslands? What is the contribution of small fragments to the conservation of native species pool of the region? Location: Tandilia's Range, Southern Pampa, Argentina. Methods: Cover of plants was registered within 24 fragments of tall‐tussock grassland remnants within an agricultural landscape using modified Whittaker nested sampling. We analysed the influence of site variables related to disturbance history (canopy height, litter thickness) and fragment variables (size, connectivity) on species richness (asymptotic species richness, slope of the species–area curve) as well as on species assemblages by multiple regressions analysis and canonical correspondence analyses, respectively. Cumulative area was used for analysing whether small fragments or large fragments are more important to species diversity in the landscape. Results: Asymptotic species richness was significantly influenced by site variables, in particular by Paspalum quadrifarium's canopy height, but not by fragment variables. Species assemblages were also affected by site variables (12.2% of total variation), but no additional portion of the species assemblage variability was significantly explained by fragment size and connectivity. Sampling of several small fragments rendered more exotic and native species than sampling of few large fragments of the same total area. Conclusions: Our results agree with previous studies reporting low sensitivity of species diversity to size and isolation of grassland fragments in fragmented landscapes and high sensitivity of species diversity to local variables. The higher capture of regional native species pool by small grassland fragments than by few larger ones of equivalent accumulated area highlights the value of small fragments for conservation.  相似文献   

11.
Association of species abundance with a continuous environmental variable is frequently tested with regression or correlation analyses. However, because these methods ignore the range and frequency distribution of levels of the variable occurring in the study area, they may generate misleading results. We give examples to illustrate the argument. A better approach to test the association between species abundance and a continuous variable should compare levels of the variable in the study area to levels of the variable occurring in sites occupied by the species. If a particular species abundance is not associated with a given continuous variable, then the frequency distribution of levels of this variable measured where individuals of the species occur should mirror the frequency distribution of levels of the variable measured over the study area. We explain how to use the one- and two-sample Kolmogorov-Smirnov statistics to compare the cumulative relative frequencies of levels of the variable where individuals are present with points in the study area. We discuss the statistics, assumptions, limitations, and advantages of these tests.  相似文献   

12.
    
Chang Xuan Mao  Jun Li 《Biometrics》2009,65(4):1063-1067
Summary Comparing species assemblages given incidence‐based data is of importance in ecological studies, often done by a visual inspection of estimated species accumulation curves or by an ad hoc use of 95% pointwise confidence bands of these curves. It is shown that comparing species assemblages is a challenging problem. A χ2 test is proposed. An adjustment using an eigenvalue decomposition is proposed to overcome computational difficulties. The bootstrap method is also suggested to approximate the distribution of the proposed test statistic. The eigenvalue adjusted (Eva) χ2 test and the Eva‐bootstrap test are assessed by a simulation study. Both the Eva‐χ2 and the Eva‐bootstrap tests are applied to a study that involves two woody seedling species assemblages.  相似文献   

13.
In riparian meadows, narrow zonation of the dominant vegetation frequently occurs along the elevational gradient from the stream edge to the floodplain terrace. We measured plant species composition and above- and belowground biomass in three riparian plant communities—a priori defined as wet, moist, and dry meadow—along short streamside topographic gradients in two montane meadows in northeast Oregon. The objectives were to: (1) compare above- and belowground biomass in the three meadow communities; (2) examine relations among plant species richness, biomass distribution, water table depth, and soil redox potential along the streamside elevational gradients. We installed wells and platinum electrodes along transects (perpendicular to the stream; n=5 per site) through the three plant communities, and monitored water table depth and soil redox potential (10 and 25 cm depth) from July 1997 to August 1999. Mean water table depth and soil redox potential differed significantly along the transects, and characterized a strong environmental gradient. Community differences in plant species composition were reflected in biomass distribution. Highest total biomass (live+dead) occurred in the sedge-dominated wet meadows (4,311±289 g/m2), intermediate biomass (2,236±221 g/m2) was seen in the moist meadow communities, dominated by grasses and sedges, and lowest biomass (1,403±113 g/m2) was observed in the more diverse dry meadows, dominated by grasses and forbs. In the wet and moist communities, belowground biomass (live+dead) comprised 68–81% of the totals. Rhizome-to-root ratios and distinctive vertical profiles of belowground biomass reflected characteristics of the dominant graminoid species within each community. Total biomass was positively correlated with mean water table depth, and negatively correlated with mean redox potential (10 cm and 25 cm depths; P <0.01) and species richness (P <0.05), indicating that the distribution of biomass coincided with the streamside edaphic gradient in these riparian meadows.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

14.
A nonparametric analysis for the two period cross-over design has first been suggested by Koch (1972) and has been discussed by Hills and Armitage (1979). As known rank tests on sums or differences of the data are applied in this procedure, the results on the one hand are not invariant under monotonous transformations and on the other hand the procedure is only correct for models with additive effects. Therefore, in the present article generalized effects will first be defined in the 2-period cross-over design without the assumption of a linear model and then rank test will be presented which test tese effects without the need of sums or differences of the data. In the appendix the equivalence of the hypothesis for the generalized effects to the known hypotheses for the effects in the linear model will be shown. The application of the procedures will be demonstrated by means of an example in literature.  相似文献   

15.
    
Species richness, composition and abundance of the bryophyte diaspore bank of Central European temperate mixed forests were compared with the forest-floor bryophyte assemblage. The impact of environmental variables and anthropogenic disturbances, including tree species composition, stand structure, microclimate, light conditions, soil and litter properties, management history, and landscape properties, potentially influencing bryophyte diaspore bank assemblages were explored. Thirty-four, 70–100 years old mixed stands with differing tree species composition were examined in the ?rség National Park, Western Hungary. The diaspore bank was studied by soil collection and cultivation, and data were analysed by multivariate methods. Contrary to the forest-floor bryophyte assemblage, where substrate availability, tree species composition and stand structure were the most influential environmental variables, the composition and abundance of the diaspore bank was mainly affected by site conditions (microclimate, litter and soil properties). Species richness of the bryophyte diaspore bank was lower than that of the forest-floor bryophyte assemblage. Short-lived mosses (colonists, short-lived shuttles) were dominant in the diaspore bank, as opposed to the forest-floor bryophyte community, where perennial mosses dominated. In the studied forests, the importance of the bryophyte diaspore bank was relatively low in the regeneration and maintenance of the forest-floor bryophyte vegetation.  相似文献   

16.
  总被引:1,自引:0,他引:1  
Spiders were sampled using insecticide knockdown in an African montane forest in the Uzungwa Mountains of Tanzania. The results are used to discuss the faunal composition at the site and in comparison to other sites, and the implications of the results for estimating spider diversity in Africa are discussed. A total of 5233 adults comprising 149 species were collected from 11 samples covering a total of 906 m2 of projected area. Three species contributed 45% of the sample. Previous insecticide knockdown studies of tropical lowland forest canopies have shown a dominance of Theridiidae, Salticidae and Araneidae. In the present study Linyphiidae dominated in abundance and were the second most diverse in terms of species richness. Other abundant families were Oonopidae and Pholcidae, while Theridiidae, Salticidae and Araneidae were rich in species. This supports a previous study, which indicated that the importance of linyphiids increases with altitude. Species richness was predicted using a number of estimators, which produced relatively similar results. Using the abundance-based estimator, Chao 1, the predicted richness for the total area sampled is 183 ± 15 species. This indicates that at least 20% of the area's spider community remains unsampled. A high ratio of undescribed species (approximately 80%) and a relatively high species turnover compared to a site 20 km away within the same forest complex suggests that the number of spiders in Africa could well be much higher than the current, published estimate of 20000 species.  相似文献   

17.
  总被引:3,自引:0,他引:3  
Patterns of community development vary among studied glacier forelands around the world. However, there have been few studies of primary succession on glacial forelands in temperate regions of North America. We described patterns in community composition, vegetation cover, diversity, and vegetation heterogeneity during primary succession on the foreland of Coleman Glacier, in Washington State, USA. Community composition changed rapidly with high turnover between age classes. Cover increased through succession as expected. Species richness and diversity were highest in early succession at small scales and in late succession at larger scales. At small scales, heterogeneity decreased in early succession but increased in mature sites. At larger scales, heterogeneity reached its lowest point earlier in succession. These scale-dependent patterns in diversity and heterogeneity differ from results of other studies of glacier forelands. We hypothesize that these patterns arise due to the development of a dense canopy of the deciduous shrub Alnus viridis followed by a dense canopy of Abies amabilis, Tsuga heterophylla, and Pseudotsuga menziesii.  相似文献   

18.
    
A survey was conducted in the 2001 growing season to examine the leafhopper diversity and abundance among trees of 17 red maple (Acer rubrum) clones. Yellow sticky traps were used to qualify and quantify the number of aerial leafhoppers from 1 May 2001 until 4 September 2001. A total of 45 species from eight different leafhopper subfamilies, for a total of 6055 individuals, were considered in this study. The mean number of leafhoppers collected, mean species richness, diversity and evenness were significantly lower on traps of trees for October Glory than for the other clones. Yet, none of the leafhopper species dominated the weekly samples. Species similarity among clones ranged from 56 to 90%. No two clones had complete similarity. Franksred and trees of a controlled cross between October Glory × Autumn Flame shared the highest degree of species similarity, while clones from PA, USA and RI, USA were the least similar. The development of new clones did not create new pest problems, but suppressed populations of damaging pests, and maintained the diversity of low abundance species.  相似文献   

19.
    
Abstract. It is not simple to predict how environmental changes may impact tropical forest species diversity. Published hypotheses are almost invariably too incomplete, too poorly specified and too dependent upon unrealistic assumptions to be useful. Ecologists have sought theoretical simplicity, and while this has provided many elegant abstract concepts, it has hindered the attainment of more practical goals. The problem is not how to judge the individual hypotheses and arguments, but rather how to build upon and combine the many hard-won facts and principles into an integrated science. Controversy is inevitable when the assumptions, definitions and applications of a given hypothesis are unclear. Elegance, as an end in itself, has too often been used to justify abstract simplification and a lack of operational definition. Clarifying and combining hypotheses while avoiding assumptions provides a potentially more useful, if less elegant, standpoint. An appraisal of Connell's intermediate disturbance hypothesis, and its application to long-term observations from a Ugandan forest illustrates these concerns. Current emphases encourage ecologists to exclude consideration of environmental instability and non-pristine ecosystems. In reality, many environmental changes and ecological processes contribute to both the accumulation and erosion of diversity, at all spatial and temporal scales. Site histories, contexts, long-term processes, species-pool dynamics, and the role of people require greater emphasis. These considerations reveal that many environmental changes, even those associated with degradation, can lead to a transient rise in species densities. Drawing on related studies, such as forest yield prediction, suggests that the formulation and calibration of simulation models provides the most tractable means to address the complexity of real vegetation. Simulation-based approaches will become increasingly useful both in unifying the study of vegetation dynamics and in providing improved predictive capacity. Quantification of the processes, scales and sensitivities of the dynamics of tropical forest communities remains a major challenge.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号