首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neural stem cells (NSCs) constitute the cellular basis for embryonic brain development and neurogenesis.The processis regulated by NSC niche including neighbor cells such as vascular and glial cells.Since both vascular and glial cellssecrete vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF),we assessed the effect ofVEGF and bFGF on NSC proliferation using nearly homogeneous NSCs that were differentiated from mouse embryonicstem cells.VEGF alone did not have any significant effect.When bFGF was added,however,VEGF stimulated NSCproliferation in a dose-dependent manner,and this stimulation was inhibited by ZM323881,a VEGF receptor (Flk-1)-specific inhibitor.Interestingly,ZM323881 also inhibited cell proliferation in the absence of exogenous VEGF,suggestingthat VEGF autocrine plays a role in the proliferation of NSCs.The stimulatory effect of VEGF on NSC proliferationdepends on bFGF,which is likely due to the fact that expression of Flk-1 was upregulated by bFGF via phosphoryla-tion of ERK1/2.Collectively,this study may provide insight into the mechanisms by which mieroenvironmental nichesignals regulate NSCs.  相似文献   

2.
3.
Xiao Z  Kong Y  Yang S  Li M  Wen J  Li L 《Cell research》2007,17(1):73-79
Neural stem cells (NSCs) constitute the cellular basis for embryonic brain development and neurogenesis. The process is regulated by NSC niche including neighbor cells such as vascular and glial cells. Since both vascular and glial cells secrete vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), we assessed the effect of VEGF and bFGF on NSC proliferation using nearly homogeneous NSCs that were differentiated from mouse embryonic stem cells. VEGF alone did not have any significant effect. When bFGF was added, however, VEGF stimulated NSC proliferation in a dose-dependent manner, and this stimulation was inhibited by ZM323881, a VEGF receptor (Flk-1)- specific inhibitor. Interestingly, ZM323881 also inhibited cell proliferation in the absence of exogenous VEGF, suggesting that VEGF autocrine plays a role in the proliferation of NSCs. The stimulatory effect of VEGF on NSC proliferation depends on bFGF, which is likely due to the fact that expression of Flk-1 was upregulated by bFGF via phosphorylation of ERK1/2. Collectively, this study may provide insight into the mechanisms by which microenvironmental niche signals regulate NSCs.  相似文献   

4.
Essentially, three neuroectodermal-derived cell types make up the complex architecture of the adult CNS: neurons, astrocytes and oligodendrocytes. These elements are endowed with remarkable morphological, molecular and functional heterogeneity that reaches its maximal expression during development when stem/progenitor cells undergo progressive changes that drive them to a fully differentiated state. During this period the transient expression of molecular markers hampers precise identification of cell categories, even in neuronal and glial domains. These issues of developmental biology are recapitulated partially during the neurogenic processes that persist in discrete regions of the adult brain. The recent hypothesis that adult neural stem cells (NSCs) show a glial identity and derive directly from radial glia raises questions concerning the neuronal-glial relationships during pre- and post-natal brain development. The fact that NSCs isolated in vitro differentiate mainly into astrocytes, whereas in vivo they produce mainly neurons highlights the importance of epigenetic signals in the neurogenic niches, where glial cells and neurons exert mutual influences. Unravelling the mechanisms that underlie NSC plasticity in vivo and in vitro is crucial to understanding adult neurogenesis and exploiting this physiological process for brain repair. In this review we address the issues of neuronal/glial cell identity and neuronal-glial interactions in the context of NSC biology and NSC-driven neurogenesis during development and adulthood in vivo, focusing mainly on the CNS. We also discuss the peculiarities of neuronal-glial relationships for NSCs and their progeny in the context of in vitro systems.  相似文献   

5.
6.
7.
Several recent studies have proposed that astrocytes may contribute to neurogenesis, not only as a source of trophic substances regulating it, but also as stem cells themselves. In order to better understand these mechanisms, primary astrocyte cultures were established from human fetal brain. After 3-4 weeks in culture, astrocytes (about 95% GFAP+; neurofilament, NF-; neuro-specific enolase, NSE-) were treated with a cocktail of protein kinase activators and FGF-1. After 5 h of treatment, most cells showed morphological changes that increased progressively up to 24-48 h, exhibiting a round cell body with long processes. Immunocytochemistry showed that treatment-induced NF and NSE expression in about 40% of cells. Nestin expression increased after treatment, whereas GFAP immunostaining was not significantly modified. Western blot and RT-PCR confirmed the results. No neuronal electrophysiological properties were observed after treatment, suggesting an incomplete maturation under these experimental conditions. Understanding the regenerative capability and neurogenic potential of astrocytes might be useful in devising therapeutic approaches for a variety of neurological disorders.  相似文献   

8.
Downregulation of insulin-like growth factor (IGF) pathways prolongs lifespan in various species, including mammals. Still, the cellular mechanisms by which IGF signaling controls the aging trajectory of individual organs are largely unknown. Here, we asked whether suppression of IGF-I receptor (IGF-1R) in adult stem cells preserves long-term cell replacement, and whether this may prevent age-related functional decline in a regenerating tissue. Using neurogenesis as a paradigm, we showed that conditional knockout of IGF-1R specifically in adult neural stem cells (NSC) maintained youthful characteristics of olfactory bulb neurogenesis within an aging brain. We found that blocking IGF-I signaling in neural precursors increased cumulative neuroblast production and enhanced neuronal integration into the olfactory bulb. This in turn resulted in neuro-anatomical changes that improved olfactory function. Interestingly, mutants also displayed long-term alterations in energy metabolism, possibly related to IGF-1R deletion in NSCs throughout lifespan. We explored Akt and ERK signaling cascades and revealed differential regulation downstream of IGF-1R, with Akt phosphorylation preferentially decreased in IGF-1R−/− NSCs within the niche, and ERK pathway downregulated in differentiated neurons of the OB. These challenging experimental results were sustained by data from mathematical modeling, predicting that diminished stimulation of growth is indeed optimal for tissue aging. Thus, inhibiting growth and longevity gene IGF-1R in adult NSCs induced a gain-of-function phenotype during aging, marked by optimized management of cell renewal, and enhanced olfactory sensory function.  相似文献   

9.
Astrogliosis, a cellular response characterized by astrocytic hypertrophy and accumulation of GFAP, is a hallmark of all types of central nervous system (CNS) injuries. Potential signaling mechanisms driving the conversion of astrocytes into “reactive” phenotypes differ with respect to the injury models employed and can be complicated by factors such as disruption of the blood-brain barrier (BBB). As denervation tools, neurotoxicants have the advantage of selective targeting of brain regions and cell types, often with sparing of the BBB. Previously, we found that neuroinflammation and activation of the JAK2-STAT3 pathway in astrocytes precedes up regulation of GFAP in the MPTP mouse model of dopaminergic neurotoxicity. Here we show that multiple mechanistically distinct mouse models of neurotoxicity (MPTP, AMP, METH, MDA, MDMA, KA, TMT) engender the same neuroinflammatory and STAT3 activation responses in specific regions of the brain targeted by each neurotoxicant. The STAT3 effects seen for TMT in the mouse could be generalized to the rat, demonstrating cross-species validity for STAT3 activation. Pharmacological antagonists of the neurotoxic effects blocked neuroinflammatory responses, pSTAT3tyr705 and GFAP induction, indicating that damage to neuronal targets instigated astrogliosis. Selective deletion of STAT3 from astrocytes in STAT3 conditional knockout mice markedly attenuated MPTP-induced astrogliosis. Monitoring STAT3 translocation in GFAP-positive cells indicated that effects of MPTP, METH and KA on pSTAT3tyr705 were localized to astrocytes. These findings strongly implicate the STAT3 pathway in astrocytes as a broadly triggered signaling pathway for astrogliosis. We also observed, however, that the acute neuroinflammatory response to the known inflammogen, LPS, can activate STAT3 in CNS tissue without inducing classical signs of astrogliosis. Thus, acute phase neuroinflammatory responses and neurotoxicity-induced astrogliosis both signal through STAT3 but appear to do so through different modules, perhaps localized to different cell types.  相似文献   

10.
Fibroblast growth factors and their receptors in the central nervous system   总被引:22,自引:0,他引:22  
Fibroblast growth factors (FGFs) and their receptors constitute an elaborate signaling system that participates in many developmental and repair processes of virtually all mammalian tissues. Among the 23 FGF members, ten have been identified in the brain. Four FGF receptors (FGFRs), receptor tyrosine kinases, are known so far. Ligand binding of these receptors greatly depends on the presence of heparan sulfate proteoglycans, which act as low affinity FGFRs. Ligand binding specificity of FGFRs depends on the third extracellular Ig-like domain, which is subject to alternative splicing. Activation of FGFRs triggers several intracellular signaling cascades. These include phosphorylation of src and PLC leading finally to activation of PKC, as well as activation of Crk and Shc. SNT/FRS2 serves as an alternative link of FGFRs to the activation of PKC and, in addition, activates the Ras signaling cascade. In the CNS, FGFs are widely expressed; FGF-2 is predominantly synthesized by astrocytes, whereas other FGF family members, e.g., FGF-5, FGF-8, and FGF-9, are primarily synthesized by neurons. During CNS development FGFs play important roles in neurogenesis, axon growth, and differentiation. In addition, FGFs are major determinants of neuronal survival both during development and during adulthood. Adult neurogenesis depends greatly on FGF-2. Finally, FGF-1 and FGF-2 seem to be involved in the regulation of synaptic plasticity and processes attributed to learning and memory.  相似文献   

11.
Bone morphogenetic protein (BMP) and leukemia inhibitory factor (LIF) signaling both promote the differentiation of neural stem/progenitor cells into glial fibrillary acidic protein (GFAP) immunoreactive cells. This study compares the cellular and molecular characteristics, and the potentiality, of GFAP(+) cells generated by these different signaling pathways. Treatment of cultured embryonic subventricular zone (SVZ) progenitor cells with LIF generates GFAP(+) cells that have a bipolar/tripolar morphology, remain in cell cycle, contain progenitor cell markers and demonstrate self-renewal with enhanced neurogenesis - characteristics that are typical of adult SVZ and subgranular zone (SGZ) stem cells/astrocytes. By contrast, BMP-induced GFAP(+) cells are stellate, exit the cell cycle, and lack progenitor traits and self-renewal--characteristics that are typical of astrocytes in the non-neurogenic adult cortex. In vivo, transgenic overexpression of BMP4 increases the number of GFAP(+) astrocytes but depletes the GFAP(+) progenitor cell pool, whereas transgenic inhibition of BMP signaling increases the size of the GFAP(+) progenitor cell pool but reduces the overall numbers of astrocytes. We conclude that LIF and BMP signaling generate different astrocytic cell types, and propose that these cells are, respectively, adult progenitor cells and mature astrocytes.  相似文献   

12.
Neural stem cells (NSCs) reside in a unique microenvironment called the neurogenic niche and generate functional new neurons. The neurogenic niche contains several distinct types of cells and interacts with the NSCs in the subventricular zone (SVZ) of the lateral ventricle. While several molecules produced by the niche cells have been identified to regulate adult neurogenesis, a systematic profiling of autocrine/paracrine signaling molecules in the neurogenic regions involved in maintenance, self-renewal, proliferation, and differentiation of NSCs has not been done. We took advantage of the genetic inducible fate mapping system (GIFM) and transgenic mice to isolate the SVZ niche cells including NSCs, transit-amplifying progenitors (TAPs), astrocytes, ependymal cells, and vascular endothelial cells. From the isolated cells and microdissected choroid plexus, we obtained the secretory molecule expression profiling (SMEP) of each cell type using the Signal Sequence Trap method. We identified a total of 151 genes encoding secretory or membrane proteins. In addition, we obtained the potential SMEP of NSCs using cDNA microarray technology. Through the combination of multiple screening approaches, we identified a number of candidate genes with a potential relevance for regulating the NSC behaviors, which provide new insight into the nature of neurogenic niche signals.  相似文献   

13.
A main neurogenic niche in the adult human brain is the subventricular zone (SVZ). Recent data suggest that the progenitors that are born in the human SVZ migrate via the rostral migratory stream (RMS) towards the olfactory bulb (OB), similar to what has been observed in other mammals. A subpopulation of astrocytes in the SVZ specifically expresses an assembly‐compromised isoform of the intermediate filament protein glial fibrillary acidic protein (GFAP‐δ). To further define the phenotype of these GFAP‐δ expressing cells and to determine whether these cells are present throughout the human subventricular neurogenic system, we analysed SVZ, RMS and OB sections of 14 aged brain donors (ages 74‐93). GFAP‐δ was expressed in the SVZ along the ventricle, in the RMS and in the OB. The GFAP‐δ cells in the SVZ co‐expressed the neural stem cell (NSC) marker nestin and the cell proliferation markers proliferating cell nuclear antigen (PCNA) and Mcm2. Furthermore, BrdU retention was found in GFAP‐δ positive cells in the SVZ. In the RMS, GFAP‐δ was expressed in the glial net surrounding the neuroblasts. In the OB, GFAP‐δ positive cells co‐expressed PCNA. We also showed that GFAP‐δ cells are present in neurosphere cultures that were derived from SVZ precursors, isolated postmortem from four brain donors (ages 63‐91). Taken together, our findings show that GFAP‐δ is expressed in an astrocytic subpopulation in the SVZ, the RMS and the OB. Importantly, we provide the first evidence that GFAP‐δ is specifically expressed in longterm quiescent cells in the human SVZ, which are reminiscent of NSCs.  相似文献   

14.
DIX domain containing 1 (Dixdc1), a positive regulator of Wnt signaling pathway, is recently reported to play a role in the neurogenesis. However, the distribution and function of Dixdc1 in the central nervous system (CNS) after brain injury are still unclear. We used an acute traumatic brain injury (TBI) model in adult rats to investigate whether Dixdc1 is involved in CNS injury and repair. Western blot analysis and immunohistochemistry showed a time-dependent up-regulation of Dixdc1 expression in ipsilateral cortex after TBI. Double immunofluorescent staining indicated a colocalization of Dixdc1 with astrocytes and neurons. Moreover, we detected a colocalization of Ki-67, a cell proliferation marker with GFAP and Dixdc1 after TBI. In primary cultured astrocytes stimulated with lipopolysaccharide, we found enhanced expression of Dixdc1 in parallel with up-regulation of Ki-67 and cyclin A, another cell proliferation marker. In addition, knockdown of Dixdc1 expression in primary astrocytes with Dixdc1-specific siRNA transfection induced G0/G1 arrest of cell cycle and significantly decreased cell proliferation. In conclusion, all these data suggest that up-regulation of Dixdc1 protein expression is potentially involved in astrocyte proliferation after traumatic brain injury in the rat.  相似文献   

15.
16.
Neuropathological aging is associated with memory impairment and cognitive decline, affecting several brain areas including the neurogenic niche of the dentate gyrus of the hippocampus (DG). In the healthy brain, homeostatic mechanisms regulate neurogenesis within the DG to facilitate the continuous generation of neurons from neural stem cells (NSC). Nevertheless, aging reduces the number of activated neural stem cells and diminishes the number of newly generated neurons. Strategies that promote neurogenesis in the DG may improve cognitive performance in the elderly resulting in the development of treatments to prevent the progression of neurological disorders in the aged population. Our work is aimed at discovering targeting molecules to be used in the design of pharmacological agents that prevent the neurological effects of brain aging. We study the effect of age on hippocampal neurogenesis using the SAMP8 mouse as a model of neuropathological aging. We show that in 6-month-old SAMP8 mice, episodic and spatial memory are impaired; concomitantly, the generation of neuroblasts and neurons is reduced and the generation of astrocytes is increased in this model. The novelty of our work resides in the fact that treatment of SAMP8 mice with a transforming growth factor-alpha (TGFα) targeting molecule prevents the observed defects, positively regulating neurogenesis and improving cognitive performance. This compound facilitates the release of TGFα in vitro and in vivo and activates signaling pathways initiated by this growth factor. We conclude that compounds of this kind that stimulate neurogenesis may be useful to counteract the neurological effects of pathological aging.  相似文献   

17.
There are several known neurogenic areas including subventricular zone and subgranular layer in the dentate gyrus of the hippocampus. Both germinal centers exhibit an age-dependent decline in cell proliferation and neurogenesis, which may be associated with age-related decline in brain function. We recently identified the subcallosal zone (SCZ) as a novel neural stem cell niche with a potential to spontaneously produce new neuroblasts. We examined whether SCZ neurogenesis is also regulated by the age of mice. The number of newly generated neuroblasts was reduced in the SCZ with age, and only marginal number of DCX-labeled neuroblasts was found in 6-month-old SCZ, which is most likely due to reduced proliferation of progenitor cells and loss of neural stem cells (NSCs). This age-dependent changes in the SCZ occurred earlier than that of other neurogenic brain regions. The neurosphere assay in vitro confirmed the depletion of NSCs within the SCZ of young adults. However, marked induction of neuroblast production in the SCZ was seen in 6-month-old mice after traumatic brain injury. Taken together, these results indicate that a rapid decline in SCZ neurogenesis in mice is due to depletion of NSCs and reduced capacity to produce neuroblasts.  相似文献   

18.
The glial fibrillary acidic protein (GFAP) is an astrocyte-specific member of the class III intermediate filament proteins. It is generally used as a specific marker of astrocytes in the central nervous system (CNS). We isolated a GFAP cDNA from the brain and spinal cord cDNA library of Gekko japonicus, and prepared polyclonal antibodies against gecko GFAP to provide useful tools for further immunochemistry studies. Both the real-time quantitative PCR and western blot results revealed that the expression of GFAP in the spinal cord after transection increased, reaching its maximum level after 3 days, and then gradually decreased over the rest of the 2 weeks of the experiment. Immunohistochemical analyses demonstrated that the increase in GFAP-positive labeling was restricted to the white matter rather than the gray matter. In particular, a slight increase in the number of GFAP positive star-shaped astrocytes was detected in the ventral and lateral regions of the white matter. Our results indicate that reactive astrogliosis in the gecko spinal cord took place primarily in the white matter during a short time interval, suggesting that the specific astrogliosis evaluated by GFAP expression might be advantageous in spinal cord regeneration.  相似文献   

19.
Cultured Rat Astrocytes Give Rise to Neural Stem Cells   总被引:4,自引:0,他引:4  
Previously, we reported the occurrence of neural stem cells (NSCs) around an area of damage after rat traumatic brain injury (TBI), but it was unclear if this was due to blastgenesis in astrocytes, or to NSCs migrating from the subventricular zone (SVZ). In this study, NSCs were isolated and cultured from cultured type 1 astrocytes taken from newborn rat cortex in which the subventricular zone and hippocampus had been discarded. All cultured type 1 astrocytes showed glial fibrillary acidic protein (GFAP) immunopositivity. Nestin immunopositive spheres were isolated from type 1 astrocytes and cultured in the presence of bFGF and EGF in the medium. Neurospheres differentiated into Tuj1-, GFAP- and A2B5-positive cells after 4 days of culture without bFGF and EGF. These results indicate that isolated neurospheres from brain cortex astrocytes can differentiate into neurons and glia and might contribute to neurogenesis and neuroplasticity.  相似文献   

20.
Blood–brain barrier dysfunction (BBBD) and accumulation of senescent astrocytes occur during brain aging and contribute to neuroinflammation and disease. Here, we explored the relationship between these two age-related events, hypothesizing that chronic hippocampal exposure to the blood-borne protein serum albumin could induce stress-induced premature senescence (SIPS) in astrocytes via transforming growth factor beta 1 (TGFβ) signaling. We found that 1 week of albumin exposure significantly increased TGFβ signaling and senescence marker expression in cultured rat hippocampal astrocytes. These changes were preventable by pharmacological inhibition of the type I TGFβ receptor (TGFβR) ALK5. To study these effects in vivo, we utilized an animal model of BBBD in which albumin was continuously infused into the lateral ventricles of adult mice. Consistent with our in vitro results, 1 week of albumin infusion significantly increased TGFβ signaling activation and the burden of senescent astrocytes in hippocampal tissue. Pharmacological inhibition of ALK5 TGFβR or conditional genetic knockdown of astrocytic TGFβR prior to albumin infusion was sufficient to prevent albumin-induced astrocyte senescence. Together, these results establish a link between TGFβ signaling activation and astrocyte senescence and suggest that prolonged exposure to serum albumin due to BBBD can trigger these phenotypic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号