首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hyaluronic acid (HA) hydrogel beads were prepared by photopolymerization of methacrylated HA and N-vinylpyrrolidone using alginate as a temporal spherical mold. Various fabrication conditions for preparing the hydrogel beads, such as the concentration of methacrylated HA and UV irradiation time, were optimized to control swelling properties and enzymatic degradability. A new concept for cell encapsulation is proposed in this paper. Viable cells were directly injected into the hydrogel beads using a microinjection technique. When bovine articular chondrocytes were injected into HA hydrogel beads and cultivated for 1 week, the cells could proliferate well within the HA beads. HA hydrogel beads could be potentially used as injectable cell delivery vehicles for regenerating tissue defects.  相似文献   

2.
Hyaluronan (HA) based hydrogels have been synthesized combining chemical modification of the polysaccharide by partial oxidation, reductive amination and 'click chemistry'. HA was oxidized by 4-acetamido-TEMPO-mediated reaction, using sodium hypochlorite as primary oxidant and NaBr in buffered pH, so that the produced aldehyde moieties (hemiacetals) were trapped in situ by adding primary amines containing azide or alkyne-terminal groups. The structure of the reaction products, oxidized-HA and primary amines bonded to HA, was elucidated using 2D NMR spectroscopy. SEC-MALLS analysis of the modified substrates showed a negligible degradation of the polysaccharide using this procedure. Furthermore, azido- and alkynyl derivatives underwent cross-linking by click chemistry into hydrogels, which were characterized by NMR, FT-IR, swelling degree and mechanical properties. Possible application of the material as scaffold for tissue engineering was tested by seeding and proliferation of chondrocytes for up to 15 days.  相似文献   

3.
Glioblastoma multiforme (GBM) is the deadliest form of primary brain tumor. GBM tumors are highly heterogeneous, being composed of tumor cells as well as glioblastoma stem cells (GSCs) that contribute to drug resistance and tumor recurrence following treatment. To develop therapeutic strategies, an improved understanding of GSC behavior in their microenvironment is critical. Herein, we have employed three-dimensional (3D) hyaluronic acid (HA) hydrogels that allow the incorporation of brain microenvironmental cues to investigate GSC behavior. U87 cell line and patient-derived D456 cells were cultured as suspension cultures (serum-free) and adherently (in the presence of serum) and were then encapsulated in HA hydrogels. We observed that all the seeded single cells expanded and formed spheres, and the size of the spheres increased with time. Increasing the initial cell seeding density of cells influenced the sphere size distribution. Interestingly, clonal expansion of serum-free grown tumor cells in HA hydrogels was observed. Also, stemness marker expression of serum and/or serum-free grown cells was altered when cultured in HA hydrogels. Finally, we demonstrated that HA hydrogels can support long-term GSC culture (up to 60 days) with retention of stemness markers. Overall, such biomimetic culture systems could further our understanding of the microenvironmental regulation of GSC phenotypes.  相似文献   

4.
Hyaluronic acid (HA) hydrogels prepared with three different crosslinking reagents were assessed by in vitro and in vivo degradation tests for various tissue engineering applications. Adipic acid dihydrazide grafted HA (HA-ADH) was synthesized and used for the preparation of methacrylated HA (HA-MA) with methacrylic anhydride and thiolated HA (HA-SH) with Traut's reagent (imminothiolane). (1)H NMR analysis showed that the degrees of HA-ADH, HA-MA, and HA-SH modification were 69, 29, and 56 mol%, respectively. HA-ADH hydrogel was prepared by the crosslinking with bis(sulfosuccinimidyl) suberate (BS(3)), HA-MA hydrogel with dithiothreitol (DTT) by Michael addition, and HA-SH hydrogel with sodium tetrathionate by disulfide bond formation. According to in vitro degradation tests, HA-SH hydrogel was degraded very fast, compared to HA-ADH and HA-MA hydrogels. HA-ADH hydrogel was degraded slightly faster than HA-MA hydrogel. Based on these results, HA-MA hydrogels and HA-SH hydrogels were implanted in the back of SD rats and their degradation was assessed according to the pre-determined time schedule. As expected from the in vitro degradation test results, HA-SH hydrogel was in vivo degraded completely only in 2 weeks, whereas HA-MA hydrogels were degraded only partially even in 29 days. The degradation rate of HA hydrogels were thought to be controlled by changing the crosslinking reagents and the functional group of HA derivatives. In addition, the state of HA hydrogel was another factor in controlling the degradation rate. Dried HA hydrogel at 37 degrees C for a day resulted in relatively slow degradation compared to the bulk HA hydrogel. There was no adverse effect during the in vivo tests.  相似文献   

5.
  1. Download : Download high-res image (219KB)
  2. Download : Download full-size image
  相似文献   

6.
Hyaluronic acid (HA) is a naturally occurring polymer that holds considerable promise for tissue engineering applications. Current cross-linking chemistries often require a coupling agent, catalyst, or photoinitiator, which may be cytotoxic, or involve a multistep synthesis of functionalized-HA, increasing the complexity of the system. With the goal of designing a simpler one-step, aqueous-based cross-linking system, we synthesized HA hydrogels via Diels-Alder "click" chemistry. Furan-modified HA derivatives were synthesized and cross-linked via dimaleimide poly(ethylene glycol). By controlling the furan to maleimide molar ratio, both the mechanical and degradation properties of the resulting Diels-Alder cross-linked hydrogels can be tuned. Rheological and degradation studies demonstrate that the Diels-Alder click reaction is a suitable cross-linking method for HA. These HA cross-linked hydrogels were shown to be cytocompatible and may represent a promising material for soft tissue engineering.  相似文献   

7.
Wu DQ  Sun YX  Xu XD  Cheng SX  Zhang XZ  Zhuo RX 《Biomacromolecules》2008,9(4):1155-1162
Hydrogels with pH-sensitive poly(acrylic acid) (PAAc) chains and biodegradable acryloyl-poly(-caprolactone)-2-hydroxylethyl methacrylate (AC-PCL-HEMA) chains were designed and synthesized. The morphology of hydrogel was observed by scanning electron microscopy. The degradation of the hydrogel in the presence of Pseudomonas lipase was studied. The in vitro release of bovine serum albumin from the hydrogel was investigated. Cytotoxicity study shows that the AC-PCL-HEMA/AAc copolymer exhibits good biocompatibility. Cell adhesion and migration into the hydrogel networks were evaluated by using different cell lines. The hydrogel with a lower cross-linking density and a larger pore size exhibited a better performance for cells migration.  相似文献   

8.
Degradable and electrically conductive polysaccharide hydrogels (DECPHs) have been synthesized by functionalizing polysaccharide with conductive aniline oligomers. DECPHs based on chitosan (CS), aniline tetramer (AT), and glutaraldehyde were obtained by a facile one-pot reaction by using the amine group of CS and AT under mild conditions, which avoids the multistep reactions and tedious purification involved in the synthesis of degradable conductive hydrogels in our previous work. Interestingly, these one-pot hydrogels possess good film-forming properties, electrical conductivity, and a pH-sensitive swelling behavior. The chemical structure and morphology before and after swelling of the hydrogels were verified by FT-IR, NMR, and SEM. The conductivity of the hydrogels was tuned by adjusting the content of AT. The swelling ratio of the hydrogels was altered by the content of tetraaniline and cross-linker. The hydrogels underwent slow degradation in a buffer solution. The hydrogels obtained by this facile approach provide new possibilities in biomedical applications, for example, biodegradable conductive hydrogels, films, and scaffolds for cardiovascular tissue engineering and controlled drug delivery.  相似文献   

9.
Photo-crosslinkable, fumaric acid monoethyl ester-functionalized triblock oligomers are synthesized and copolymerized with N-vinyl-2-pyrrolidone to form biodegradable photo-crosslinked hydrogels. Poly(ethylene glycol) is used as the middle hydrophilic segment and the hydrophobic segments are based on D,L-lactide, trimethylene carbonate or a mixture of these monomers. Two model proteins, lysozyme and albumin, are incorporated in the hydrogels and their release is studied. The composition of the hydrophobic segments could be used to tune degradation behavior and release rates. Careful optimization of photo-polymerization conditions is needed to limit conjugation of proteins to the hydrogels and protein denaturation.  相似文献   

10.
While significant progress has been made in directing the behavior of cells encapsulated within three-dimensional (3D) covalently crosslinked hydrogels, the capacity of these materials to support in situ cryopreservation of cells directly within the gels has not been assessed. Here, we demonstrate the retention of human mesenchymal stem cell (hMSC) viability within hyaluronic acid (HA) and polyethylene glycol based hydrogels via a facile gradual cooling and freezing protocol. Encapsulated cell viability was retained at similar rates in both materials systems regardless of initial duration in culture or adhesive ligand incorporation, indicating the versatility of the approach. Additionally, the cryopreservation protocol maintains stem cell differentiation potential; incubation in adipogenic differentiation media induced equal rates of hMSC adipogenesis in freeze-thawed and non-frozen HA based hydrogels on a per-cell basis. Collectively, these findings highlight the cryopreservation protocol as a platform technology that, in addition to contributing to an increased understanding of three-dimensional cell-matrix interactions, could enable the long-term preservation of tissue engineering constructs for clinical applications.  相似文献   

11.
Current membrane-based bioartificial organs consist of three basic components: (1) a synthetic membrane, (2) cells that secrete the product of interest, and (3) an encapsulated matrix material. Alginate and agarose have been widely used to encapsulate cells for artificial organ applications. It is important to understand the degree of transport resistance imparted by these matrices in cell encapsulation to determine if adequate nutrient and product fluxes can be obtained. For artificial organs in xenogeneic applications, it may also be important to determine the extent of immunoprotection offered by the matrix material. In this study, diffusion coefficients were measured for relevant solutes [ranging in size from oxygen to immunoglobulin G (IgG)] into and out of agarose and alginate gels. Alginate gels were produced by an extrusion/ionic crosslinking process using calcium while agarose gels were thermally gelled. The effect of varying crosslinking condition, polymer concentration, and direction of diffusion on transport was investigated. In general, 2-4% agarose gels offered little transport resistance for solutes up to 150 kD, while 1.5-3% alginate gels offered significant transport resistance for solutes in the molecular weight range 44-155 kD-lowering their diffusion rates from 10- to 100-fold as compared to their diffusion in water. Doubling the alginate concentration had a more significant effect on hindering diffusion of larger molecular weight species than did doubling the agarose concentration. Average pore diameters of approximately 170 and 147 A for 1.5 and 3% alginate gels, respectively, and 480 and 360 A for 2 and 4% agarose gels, respectively, were estimated using a semiempirical correlation based on diffusional transport of different-size solutes. The method developed for measuring diffusion in these gels is highly reproducible and useful for gels crosslinked in the cylindrical geometry, relevant for studying transport through matrices used in cell immobilization in the hollow fiber configuration. (c) 1996 John Wiley & Sons, Inc.  相似文献   

12.
Liposomal delivery systems for water-soluble bioactives were prepared using the pro-liposome and the microfluidization technologies. Iron, an essential micronutrient as ferrous sulfate and ascorbic acid, as an antioxidant for iron were encapsulated in the liposomes. Liposomes prepared by the microfluidization technology using 6% (w/w) concentration of the lipid encapsulated with ferrous sulfate and ascorbic acid had particle size distributions around 150 to 200 nm, whereas liposomes from the pro-liposome technology resulted in particle sizes of about 5 microm. The encapsulation efficiency of ferrous sulfate was 58% for the liposomes prepared by the microfluidization using 6% (w/w) lipid and 7.5% of ferrous sulfate concentrations, and it was 11% for the liposomes from pro-liposome technology using 1.5% (w/v) lipid and 15% of ferrous-sulfate concentration. Both the liposomes exhibited similar levels of oxidative stability, demonstrating the feasibility of microfluidization-based liposomal delivery systems for large-scale food/nutraceutical applications.  相似文献   

13.
14.
Hyaluronic acid (HA) was chemically modified either by oxidation to obtain aldehyde-HA (aHA) or 3,3'-dithiobis(propanoic hydrazide) to obtain thiol-HA (tHA) that was covalently immobilized on model substrata such as amino-terminated surfaces or gold. Knowledge about the effect of modification with HA on physicochemical surface properties of these substrata and estimates of the quantities of immobilized HA were obtained by different physical methods such as contact angle measurements, ellipsometry, and atomic force microscopy. The bioactivity of aHA and tHA toward their natural binding partner aggrecan was studied by comparing surface plasmon resonance to native HA; this shows that binding of aggrecan was achieved in a similar way. Dermal human fibroblasts were used as a model cell to study how chemical modification and immobilization of HA impact adhesion and spreading of cells, which also affects cell growth and differentiation. A lower number and spreading of cells were observed on HA-modified surfaces compared to amino- and vinyl-terminated glass and silicon surfaces. Immunofluorescence microscopy also revealed that adhesion of fibroblast plated on HA-modified surfaces was mediated primarily by HA receptor CD44, indicating that bioactivity of HA was not significantly reduced by chemical modification.  相似文献   

15.
Hyaluronic acid binding protein (HABP) has been purified to homogeneity from normal adult rat kidney by hyaluronate Sepharose affinity chromatography, and its apparent molecular mass was found to be 68 kDa. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of HABP under reducing as well as nonreducing conditions revealed a single protein band of 34 kDa, thus indicating that kidney HABP is a homodimer and lacks interchain disulfide bond. Its glycoprotein nature was demonstrated by Con-A binding analysis. The pI value of kidney HABP was 6, indicating its acidic nature. Polyclonal antibodies were raised against it, and the monospecificity of the antibodies towards HABP was confirmed by Western blot analysis of tissue extracts. Immunoblot analysis has elucidated the occurrence of this glycoprotein in various tissues. Moreover, HABP present in these tissues are shown to be structurally and immunologically identical. However, this glycoprotein is antigenically distinct from other well characterized extracellular proteins, e.g., fibronectin, laminin and collagen type IV. With the help of enzyme-linked immunosorbent assay (ELISA) and iodinated [125I]HABP, it has been shown that kidney HABP binds specifically to hyaluronic acid (HA) amongst all the glycosaminoglycans (GAGs), however, HABP can interact with other matrix proteins, e.g., laminin, fibronectin, and collagen type IV. The apparent dissociation constants of HABP for HA, laminin, fibronectin, and collagen type IV were approximately in the range of 10(-9) M, and kinetic analysis showed that these binding interactions were complex and of positive cooperative nature. Indirect immunofluorescence staining demonstrated its localization on human fetus lung fibroblast cell surface. Detection of 34 kDa HABP in the serum-free supernatant culture medium of fibroblasts was further evident by immunoblot analysis, thus confirming the secretory nature of HABP and its occurrence in the extracellular matrix.  相似文献   

16.
High-affinity nitrilotriacetic acids (NTA) have great potential in the molecular manipulation of His-tagged proteins. We have developed a facile method to synthesize multivalent NTA and its conjugates. Starting with appropriately protected lysine, we synthesized the mono-NTA synthons functionalized with either an amino group or a carboxylic group. We then obtained tri-NTA through the condensation of the amino NTA and the carboxylic NTA. Using amino tri-NTA as the key intermediate, we synthesized a series of tri-NTA conjugates with a variety of functional units including biotin, dialkyl, fluorescein, and a hydroxybenzimidate moiety. The biotin-tri-NTA was employed to convert a Biacore streptavidin chip into a high-affinity tri-NTA chip. The equilibrium dissociation constants of tri-NTA/His-tagged protein complexes measured by surface plasmon resonance are in the 20 nM range. Histidine(6)-tagged yeast cytosine deaminase (His6-yCD) was incorporated onto the liposome surface by the lipid-tri-NTA conjugate without any activity loss. Fluorescein-tri-NTA formed a stable 1:1 complex with His6-yCD without significant fluorescence quenching. Specific tri-NTA derivatives for the radiolabeling and coupling of two His-tagged proteins to each other are described. Thus, we have added to the toolbox a number of high-affinity tri-NTA adaptors for the manipulation of His-tagged molecules.  相似文献   

17.
Whole serum and elevated pH previously had been found to stimulate both cell multiplication and hyaluronic acid production by chick embryo fibroblasts in culture. In a study to determine whether cell multiplication and hyaluronic acid production both respond to a single well-defined substance, insulin was found to stimulate, and cortisol to inhibit both processes coordinately. It appears, therefore, that multiplication and differentiated function in fibroblasts respond to a common underlying regulatory signal. Inhibition of ribosomal RNA synthesis by actinomycin D does not prevent serum stimulation of hyaluronic acid production, but inhibition of total RNA synthesis does. If total RNA synthesis is inhibited only after the hyaluronic acid production has reached a new high level, it continues at that level for the next five hours. The stimulatory treatment causes an increase in the activity of the enzyme hyaluronate synthetase. Inhibition of protein synthesis prevents any increase in hyaluronic acid production, and reduces the basal level of production. Reduction of the availability of Mg2+ in the medium coordinately inhibits DNA synthesis and hyaluronic acid production. The results are discussed in the light of a model for coordinate control growth and metabolism based on the availability of Mg2+.  相似文献   

18.
An efficient and scale-up ready single-step synthesis for the conjugation of thermoresponsive polymers to hyaluronic acid (HA) was established. Jeffamines(?) (JFM) and poly(N-isopropylacrylamide) (PNIPAM) were grafted to HA via direct amidation mediated by 1,1'-carbonyldiimidazole activation. The temperature-induced gelation of the semi-synthetic co-polymers was characterized by rheology as a function of the temperature and by differential scanning calorimetry (DSC). A HA-JFM conjugate with sol-gel transition in a physiologically relevant temperature range was identified. The grafting of PNIPAM resulted in the drastic change of the main rheological properties of native HA, revealing the hydrophobic non-covalent nature of the interactions between the thermoresponsive brushes in the gel state. Owing to the reversibility of these interactions and the sharpness of the transition, the HA-PNIPAM conjugates are suitable candidates for the incorporation of drugs, cells or ceramic materials for different biomedical applications.  相似文献   

19.
Hyaluronic acid (HA) is a natural polysaccharide abundant in biological tissues with excellent potential for constructing synthetic extracellular matrix analogues. In this work, we established a simple and dependable approach to prepare hyaluronic acid-based hydrogels with controlled stiffness and cell recognition properties for use as cell-interactive substrates. This approach relied on a new procedure for the synthesis of methacrylate-modified HA macromers (HA-MA) and, on photorheometry allowing real time monitoring of gelation during photopolymerization. We showed in this way the ability to obtain gels that encompass the range of physiologically relevant elastic moduli while still maintaining the recognition properties of HA by specific cell surface receptors. These hydrogels were prepared from HA macromers having a degree of methacrylation <0.5, which allows to minimize compromising effects on the binding affinity of HA to its cell receptors due to high substitution on the one hand, and to achieve nearly 100% conversion of the methacrylate groups on the other. When the HA hydrogels were immobilized on glass substrates, it was observed that the attachment and the spreading of a variety of mammalian cells rely on CD44 and its coreceptor RHAMM. The attachment and spreading were also shown to be modulated by the elastic properties of the HA matrix. All together, these results highlight the biological potential of these HA hydrogel systems and the needs of controlling their chemical and physical properties for applications in cell culture and tissue engineering.  相似文献   

20.
This article describes the preparation and in vitro characterization of novel genipin cross-linked alginate-chitosan (GCAC) microcapsules that have potential for live cell therapy applications. This microcapsule system, consisting of an alginate core with a covalently cross-linked chitosan membrane, was formed via ionotropic gelation between calcium ions and alginate, followed by chitosan coating by polyelectrolyte complexation and covalent cross-linking of chitosan by naturally derived genipin. Results showed that, using this design concept and the three-step procedure, spherical GCAC microcapsules with improved membrane strength, suppressed capsular swelling, and suitable permeability can be prepared. The suitability of this novel membrane formulation for live cell encapsulation was evaluated, using bacterial Lactobacillus plantarum 80 (pCBH1) (LP80) and mammalian HepG2 as model cells. Results showed that capsular integrity and bacterial cell viability were sustained 6 mo postencapsulation, suggesting the feasibility of using this microcapsule formulation for live bacterial cell encapsulation. The metabolic activity of the encapsulated HepG2 was also investigated. Results suggested the potential capacity of this GCAC microcapsule in cell therapy and the control of cell signaling; however, further research is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号