首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At any instant, the human erythrocyte sugar transporter presents at least one sugar export site but multiple sugar import sites. The present study asks whether the transporter also presents more than one sugar exit site. We approached this question by analysis of binding of [3H]cytochalasin B (an export conformer ligand) to the human erythrocyte sugar transporter and by analysis of cytochalasin B modulation of human red blood cell sugar uptake. Phloretin-inhibitable cytochalasin B binding to human red blood cells, to human red blood cell integral membrane proteins, and to purified human red blood cell glucose transport protein (GluT1) displays positive cooperativity at very low cytochalasin B levels. Cooperativity between sites and K(d(app)) for cytochalasin B binding are reduced in the presence of intracellular ATP. Red cell sugar uptake at subsaturating sugar levels is inhibited by high concentrations of cytochalasin B but is stimulated by lower (<20 nM) concentrations. Increasing concentrations of the e1 ligand forskolin also first stimulate then inhibit sugar uptake. Cytochalasin D (a cytochalasin B analogue that does not interact with GluT1) is without effect on sugar transport over the same concentration range. Cytochalasin B and ATP binding are synergistic. ATP (but not AMP) enhances [3H]cytochalasin B photoincorporation into GluT1 while cytochalasin B (but not cytochalasin D) enhances [gamma-32P]azidoATP photoincorporation into GluT1. We propose that the red blood cell glucose transporter is a cooperative tetramer of GluT1 proteins in which each protein presents a translocation pathway that alternates between uptake (e2) and export (e1) states but where, at any instant, two subunits must present uptake (e2) and two subunits must present exit (e1) states.  相似文献   

2.
The glucose transporters (GLUT/SLC2A) are members of the major facilitator superfamily. Here, we generated a three-dimensional model for Glut1 using a two-step strategy: 1), GlpT structure as an initial homology template and 2), evolutionary homology using glucose-6-phosphate translocase as a template. The resulting structure (PDB No. 1SUK) exhibits a water-filled passageway communicating the extracellular and intracellular domains, with a funnel-like exofacial vestibule (infundibulum), followed by a 15 A-long x 8 A-wide channel, and a horn-shaped endofacial vestibule. Most residues which, by mutagenesis, are crucial for transport delimit the channel, and putative sugar recognition motifs (QLS, QLG) border both ends of the channel. On the outside of the structure there are two positively charged cavities (one exofacial, one endofacial) delimited by ATP-binding Walker motifs, and an exofacial large side cavity of yet unknown function. Docking sites were found for the glucose substrate and its inhibitors: glucose, forskolin, and phloretin at the exofacial infundibulum; forskolin, and phloretin at an endofacial site next to the channel opening; and cytochalasin B at a positively charged endofacial pocket 3 A away from the channel. Thus, 1SUK accounts for practically all biochemical and mutagenesis evidence, and provides clues for the transport process.  相似文献   

3.
Dihydrocytochalasin B. Biological effects and binding to 3T3 cells   总被引:4,自引:0,他引:4       下载免费PDF全文
Dihydrocytochalasin B (H2CB) does not inhibit sugar uptake in BALB/c 3T3 cells. Excess H2CB does not affect inhibition of sugar uptake by cytochalasin B (CB), indicating that it does not compete with CB for binding to high-affinity sites. As in the case of CB, H2CB inhibits cytokinesis and changes the morphology of the cells. These results demonstrate that the effects of CB on sugar transport and on cell motility and morphology involve separate and independent sites. Comparison of the effects of H2CB, CB, and cytochalasin D (CD) indicates that treatment of cells with any one of the compounds results in the same series of morphological changes; the cells undergo zeiosis and elongation at 2-4 microM CB and become arborized and rounded up at 10-50 microM CB. H2CB is slightly less potent than CB, whereas CD is five to eight times more potent than CB in causing a given state of morphological change. These results indicate that the cytochalasin-induced changes in cell morphology are mediated by a specific site(s) which can distinguish the subtle differences in the structures of the three compounds. Competitive binding studies indicate that excess H2CB displaces essentially all of the high-affinity bound [3H]CB, but, at less than 5 x 10(-5) M H2CB is not so efficient as unlabeled CB in the displacement reaction. In contrast, excess CD displaces up to 40% of the bound [3H]CB. These results suggest that three different classes of high-affinity CB binding sites exist in 3T3 cells: sites related to sugar transport, sites related to cell motility and morphology, and sites with undetermined function.  相似文献   

4.
As the contribution of cannabinoid (CB1) receptors in the neuroadaptations following chronic alcohol exposure is unknown, we investigated the neuroadaptations induced by chronic alcohol exposure on both NMDA and GABA(A) receptors in CB1-/- mice. Our results show that basal levels of hippocampal [(3)H]MK-801 ((1)-5-methyl-10,11-dihydro-5Hdibenzo[a,d]cyclohepten-5,10-imine) binding sites were decreased in CB1-/- mice and that these mice were also less sensitive to the locomotor effects of MK-801. Basal level of both hippocampal and cerebellar [(3)H]muscimol binding was lower and sensitivity to the hypothermic effects of diazepam and pentobarbital was increased in CB1-/- mice. GABA(A)alpha1, beta2, and gamma2 and NMDA receptor (NR) 1 and 2B subunit mRNA levels were altered in striatum of CB1-/- mice. Our results also showed that [(3)H]MK-801 binding sites were increased in cerebral cortex and hippocampus after chronic ethanol ingestion only in wild-type mice. Chronic ethanol ingestion did not modify the sensitivity to the locomotor effects of MK-801 in both genotypes. Similarly, chronic ethanol ingestion reduced the number of [(3)H]muscimol binding sites in cerebral cortex, but not in cerebellum, only in CB1+/+ mice. We conclude that lifelong deletion of CB1 receptors impairs neuroadaptations of both NMDA and GABA(A) receptors after chronic ethanol exposure and that the endocannabinoid/CB1 receptor system is involved in alcohol dependence.  相似文献   

5.
Nieland TJ  Xu S  Penman M  Krieger M 《Biochemistry》2011,50(11):1818-1830
Scavenger receptor class B, type I (SR-BI), is a high-density lipoprotein (HDL) receptor, which also binds low-density lipoprotein (LDL), and mediates the cellular selective uptake of cholesteryl esters from lipoproteins. SR-BI also is a coreceptor for hepatitis C virus and a signaling receptor that regulates cell metabolism. Many investigators have reported that lipoproteins bind to SR-BI via a single class of independent (not interacting), high-affinity binding sites (one site model). We have reinvestigated the ligand concentration dependence of (125)I-HDL binding to SR-BI and SR-BI-mediated specific uptake of [(3)H]CE from [(3)H]CE-HDL using an expanded range of ligand concentrations (<1 μg of protein/mL, lower than previously reported). Scatchard and nonlinear least-squares model fitting analyses of the binding and uptake data were both inconsistent with a single class of independent binding sites binding univalent lipoprotein ligands. The data are best fit by models in which SR-BI has either two independent classes of binding sites or one class of sites exhibiting negative cooperativity due to either classic allostery or ensemble effects ("lattice model"). Similar results were observed for LDL. Application of the "infinite dilution" dissociation rate method established that the binding of (125)I-HDL to SR-BI at 4 °C exhibits negative cooperativity. The unexpected complexity of the interactions of lipoproteins with SR-BI should be taken into account when interpreting the results of experiments that explore the mechanism(s) by which SR-BI mediates ligand binding, lipid transport, and cell signaling.  相似文献   

6.
Equilibrium [3H]cytochalasin B binding to class I sites of human red cell membranes (the sugar transporter) was examined in the presence and absence of intracellular or extracellular sugars known to interact with the transport system. D-Glucose, a transported sugar, is without effect on cytochalasin B binding when present in the extracellular medium but is an effective inhibitor of binding when present within the cell. Ethylidene glucose and maltose (reactive but nontransported sugars) inhibit cytochalasin B (CCB) binding when present either outside or inside the red cell. Inhibition by intracellular sugar (Si) is of the simple, linear competitive type. Inhibition by extracellular sugars (So) is more complex; the Kd(app) for cytochalasin B binding increases in a saturable fashion with [So]. These observations are compared with the predictions of the one-site, alternating conformer model and the two-site model for substrate binding to the sugar transporter, X. The experimental results are inconsistent with the one-site model but are explained by a two-site model in which the ternary complexes of So . X . Si or So . X . CCBi exist and where the binding sites for So and Si display negative cooperativity when occupied by nontransported substrate and little or no cooperativity when occupied by the transported species, D-glucose.  相似文献   

7.
Glucose transporter (GLUT)1 has become an attractive target to block glucose uptake in malignant cells since most cancer cells overexpress GLUT1 and are sensitive to glucose deprivation. Methylxanthines are natural compounds that inhibit glucose uptake; however, the mechanism of inhibition remains unknown. Here, we used a combination of binding and glucose transport kinetic assays to analyze in detail the effects of caffeine, pentoxifylline, and theophylline on hexose transport in human erythrocytes. The displacement of previously bound cytochalasin B revealed a direct interaction between the methylxanthines and GLUT1. Methylxanthines behave as noncompetitive blockers (inhibition constant values of 2-3 mM) in exchange and zero-trans efflux assays, whereas mixed inhibition with a notable uncompetitive component is observed in zero-trans influx assays (inhibition constant values of 5-12 mM). These results indicate that methylxanthines do not bind to either exofacial or endofacial d-glucose-binding sites but instead interact at a different site accessible by the external face of the transporter. Additionally, infinite-cis exit assays (Sen-Widdas assays) showed that only pentoxifylline disturbed d-glucose for binding to the exofacial substrate site. Interestingly, coinhibition assays showed that methylxanthines bind to a common site on the transporter. We concluded that there is a methylxanthine regulatory site on the external surface of the transporter, which is close but distinguishable from the d-glucose external site. Therefore, the methylxanthine moiety may become an attractive framework for the design of novel specific noncompetitive facilitative GLUT inhibitors.  相似文献   

8.
Pérez A  Ojeda P  Ojeda L  Salas M  Rivas CI  Vera JC  Reyes AM 《Biochemistry》2011,50(41):8834-8845
The facilitative hexose transporter GLUT1 activity is blocked by tyrosine kinase inhibitors that include natural products such as flavones and isoflavones and synthetic compounds such as tyrphostins, molecules that are structurally unrelated to the transported substrates [Vera, et al. (2001) Biochemistry, 40, 777-790]. Here we analyzed the interaction of GLUT1 with quercetin (a flavone), genistein (an isoflavone), and tyrphostin A47 and B46 to evaluate if they share one common or have several binding sites on the protein. Kinetic assays showed that genistein, quercetin, and tyrphostin B46 behave as competitive inhibitors of equilibrium exchange and zero-trans uptake transport and noncompetitive inhibitors of net sugar exit out of human red cells, suggesting that they interact with the external surface of the GLUT1 molecule. In contrast, tyrphostin A47 was a competitive inhibitor of equilibrium exchange and zero-trans exit transport and a noncompetitive inhibitor of net sugar entry into red cells, suggesting that it interacts with the cytoplasmic surface of the transporter. Genistein protected GLUT1 against iodide-elicited fluorescence quenching and also decreased the affinity of d-glucose for its external binding site, while quercetin and tyrphostins B46 and A47 promoted fluorescence quenching and did not affect the external d-glucose binding site. These findings are explained by a carrier that presents at least three binding sites for tyrosine kinase inhibitors, in which (i) genistein interacts with the transporter in a conformation that binds glucose on the external surface (outward-facing conformation), in a site which overlaps with the external binding site for d-glucose, (ii) quercetin and tyrphostin B46 interact with the GLUT1 conformation which binds glucose by the internal side of the membrane (inward-facing conformation), but to a site accessible from the external surface of the protein, and (iii) the binding site for tyrphostin A47 is accessible from the inner surface of GLUT1 by binding to the inward-facing conformation of the transporter. These data provide groundwork for a molecular understanding of how the tyrosine kinase inhibitors directly affect glucose transport in animal cells.  相似文献   

9.
L A Sultzman  A Carruthers 《Biochemistry》1999,38(20):6640-6650
The human erythrocyte sugar transporter is thought to function either as a simple carrier (sugar import and sugar export sites are presented sequentially) or as a fixed-site carrier (sugar import and sugar export sites are presented simultaneously). The present study examines each hypothesis by analysis of the rapid kinetics of reversible cytochalasin B binding to the sugar export site in the presence and absence of sugars that bind to the sugar import site. Cytochalasin B binding to the purified, human erythrocyte glucose transport protein (GLUT1) induces quenching of GLUT1 intrinsic tryptophan fluorescence. The time-course of GLUT1 fluorescence quenching reflects a second-order process characterized by simple exponential kinetics. The pseudo-first-order rate constant describing fluorescence decay (kobs) increases linearly with [cytochalasin B] while the extent of fluorescence quenching increases in a saturable manner with [cytochalasin B]. Rate constants for cytochalasin B binding to GLUT1 (k1) and dissociation from the GLUT1.cytochalasin B complex (k-1) are obtained from the relationship: kobs = k-1 + k1[cytochalasin B]. Low concentrations of maltose, D-glucose, 3-O-methylglucose, and other GLUT1 import-site reactive sugars increase k-1(app) and reduce k1(app) for cytochalasin B interaction with GLUT1. Higher sugar concentrations decrease k1(app) further. The simple carrier mechanism predicts that k1(app) alone is modulated by import- and export-site reactive sugars and is thus incompatible with these findings. These results are consistent with a fixed-site carrier mechanism in which GLUT1 simultaneously presents cooperative sugar import and export sites.  相似文献   

10.
The presence of CB(2) receptors was reported in the rat basophilic cell line RBL-2H3 and N-palmitoylethanolamide was proposed as an endogenous, potent agonist of this receptor. We synthesized a series of 10 N-palmitoylethanolamide homologues and analogues, varying by the elongation of the fatty acid chain from caproyl to stearoyl and by the nature of the amide substituent, respectively, and evaluated the affinity of these compounds to cannabinoid receptors in the rat spleen, RBL-2H3 cells and CHO-CB(1) and CHO-CB(2) receptor-transfected cells. In rat spleen slices, CB(2) receptors were the predominant form of the cannabinoid receptors. No binding of [(3)H]SR141716A was observed. [(3)H]CP-55,940 binding was displaced by WIN 55,212-2 and anandamide. No displacement of [(3)H]CP-55,940 or [(3)H]WIN 55,212-2 by palmitoylethanolamide derivatives was observed in rat spleen slices. In RBL-2H3 cells, no binding of [(3)H]CP-55,940 or [(3)H]WIN 55,212-2 could be observed and conversely, no inhibitory activity of N-palmitoylethanolamide derivatives and analogues was measurable. These compounds do not recognize the human CB(1) and CB(2) receptors expressed in CHO cells. In conclusion, N-palmitoylethanolamide was, in our preparations, a weak ligand while its synthesized homologues or analogues were essentially inactive. Therefore, it seems unlikely that N-palmitoylethanolamide is an endogenous agonist of the CB(2) receptors but it may be a compound with potential therapeutic applications since it may act via other mechanisms than cannabinoid CB(1)-CB(2) receptor interactions.  相似文献   

11.
Hresko RC  Hruz PW 《PloS one》2011,6(9):e25237
The clinical use of several first generation HIV protease inhibitors (PIs) is associated with the development of insulin resistance. Indinavir has been shown to act as a potent reversible noncompetitive inhibitor of zero-trans glucose influx via direct interaction with the insulin responsive facilitative glucose transporter GLUT4. Newer drugs within this class have differing effects on insulin sensitivity in treated patients. GLUTs are known to contain two distinct glucose-binding sites that are located on opposite sides of the lipid bilayer. To determine whether interference with the cytoplasmic glucose binding site is responsible for differential effects of PIs on glucose transport, intact intracellular membrane vesicles containing GLUT1 and GLUT4, which have an inverted transporter orientation relative to the plasma membrane, were isolated from 3T3-L1 adipocytes. The binding of biotinylated ATB-BMPA, a membrane impermeable bis-mannose containing photolabel, was determined in the presence of indinavir, ritonavir, atazanavir, tipranavir, and cytochalasin b. Zero-trans 2-deoxyglucose transport was measured in both 3T3-L1 fibroblasts and primary rat adipocytes acutely exposed to these compounds. PI inhibition of glucose transport correlated strongly with the PI inhibition of ATB-BMPA/transporter binding. At therapeutically relevant concentrations, ritonavir was not selective for GLUT4 over GLUT1. Indinavir was found to act as a competitive inhibitor of the cytoplasmic glucose binding site of GLUT4 with a K(I) of 8.2 μM. These data establish biotinylated ATB-BMPA as an effective probe to quantify accessibility of the endofacial glucose-binding site in GLUTs and reveal that the ability of PIs to block this site differs among drugs within this class. This provides mechanistic insight into the basis for the clinical variation in drug-related metabolic toxicity.  相似文献   

12.
13.
Several studies have demonstrated that the intrinsic catalytic activity of cell surface glucose transporters is highly regulated in 3T3-L1 adipocytes expressing GLUT1 (erythrocyte/brain) and GLUT4 (adipocyte/skeletal muscle) glucose transporter isoforms. For example, inhibition of protein synthesis in these cells by anisomycin or cycloheximide leads to marked increases in hexose transport without a change in the levels of cell surface glucose transporter proteins (Clancy, B. M., Harrison, S. A., Buxton, J. M., and Czech, M. P. (1991) J. Biol. Chem. 266, 10122-10130). In the present work the exofacial hexose binding sites on GLUT1 and GLUT4 in anisomycin-treated 3T3-L1 adipocytes were labeled with the cell-impermeant photoaffinity reagent [2-3H]2-N-[4-(1-azitrifluoroethyl)benzoyl]-1,3-bis- (D-mannos-4-yloxy)-2-propylamine [( 2-3H] ATB-BMPA) to determine which isoform is activated by protein synthetic blockade. As expected, a 15-fold increase in 2-deoxyglucose uptake in response to insulin was associated with 1.7- and 2.6-fold elevations in plasma membrane GLUT1 and GLUT4 protein levels, respectively. Anisomycin treatment of cultured adipocytes for 5 h produced an 8-fold stimulation of hexose transport but no increase in the content of glucose transporters in the plasma membrane fraction as measured by protein immunoblot analysis. Cell surface GLUT1 levels were also shown to be unaffected on 3T3-L1 adipocytes in response to anisomycin using an independent method, the binding of an antiexofacial GLUT1 antibody to intact cells. In contrast, anisomycin fully mimicked the action of insulin to stimulate (about 4-fold) the radiolabeling of GLUT1 transporters specifically immunoprecipitated from intact 3T3-L1 adipocytes irradiated after incubation with [2-3H] ATB-BMPA. Photolabeling of GLUT4 under these conditions was also significantly enhanced (1.8-fold) by anisomycin treatment, but this effect was only 15% of that caused by insulin. These results suggest that: 1) the photoaffinity reagent [2-3H]ATB-BMPA labels those cell surface glucose transporters present in a catalytically active state rather than total cell surface transporters as assumed previously and 2) inhibition of protein synthesis in 3T3-L1 adipocytes stimulates sugar transport primarily by enhancing the intrinsic catalytic activity of cell surface GLUT1, and to a lesser extent, GLUT4 proteins.  相似文献   

14.
At least four allosteric sites have been found to mediate the dose-dependent effects of gallamine on the binding of [(3)H]quinuclidinylbenzilate (QNB) and N-[(3)H]methylscopolamine (NMS) to M(2) muscarinic receptors in membranes and solubilized preparations from porcine atria, CHO cells, and Sf9 cells. The rate of dissociation of [(3)H]QNB was affected in a bell-shaped manner with at least one Hill coefficient (n(H)) greater than 1, indicating that at least three allosteric sites are involved. The level of binding of [(3)H]QNB was decreased in a biphasic manner, revealing at least two allosteric sites; binding of [(3)H]NMS was affected in a triphasic, serpentine manner, revealing at least three sites, and values of n(H) >1 pointed to at least four sites. Several lines of evidence indicate that all effects of gallamine were allosteric in nature and could be observed at equilibrium. The rates of equilibration and dissociation suggest that the receptor was predominately oligomeric, and the heterogeneity revealed by gallamine can be attributed to differences in its affinity for the constituent protomers of a tetramer. Those differences appear to arise from inter- and intramolecular cooperativity between gallamine and the radioligand.  相似文献   

15.
The binding of [3H]forskolin to a homogeneous population of binding sites in rat striatum was enhanced by NaF, guanine nucleotides and MgCl2. These effects of NaF and guanylylimidodiphosphate (Gpp(NH)p) were synergistic with MgCl2, but NaF and Gpp(NH)p together elicited no greater enhancement of [3H]forskolin binding. These data suggest that [3H]forskolin may label a site which is modulated by the guanine nucleotide regulatory subunit which mediates the stimulation of adenylate cyclase (NS). The D1 dopamine receptor is known to stimulate adenylate cyclase via NS. In rat striatum, the Bmax of [3H]forskolin binding sites in the presence of MgCl2 and NaF was approximately two fold greater than the Bmax of [3H]SCH23390-labeled D1 dopamine receptors. Incubation of striatal homogenates with the protein modifying reagent EEDQ elicited a concentration-dependent decrease in the binding of both [3H]SCH23390 and [3H]forskolin, although EEDQ was approximately 14 fold more potent at inactivating the D1 dopamine receptor. Following in vivo administration of EEDQ there was no significant effect on [3H]forskolin binding sites using a dose of EEDQ that irreversibly inactivated greater than 90% of D1 dopamine receptors. These data suggest that EEDQ is a suitable tool for investigating changes in the stoichiometry of receptors and their second messenger systems.  相似文献   

16.
Recent investigations in our laboratory showed that voltage-gated sodium channels (VGSCs) in brain are sensitive to inhibition by various synthetic cannabinoids and endocannabinoids. The present experiments examined the effects of the cannabinoid-1 (CB1) receptor agonist CP-55,940 and ethyl arachidonate on [(3)H]batrachotoxinin A 20 alpha-benzoate ([(3)H]BTX-B]) binding and VGSC-dependent depolarization of the nerve membrane in synaptoneurosomes isolated from mouse whole brain. CP-55,940 acted as a full inhibitor of [(3)H]BTX-B binding and its IC(50) was established at 22.3 microM. At its maximum effect concentration, ethyl arachidonate achieved partial (approximately 70%) inhibition and was less effective than CP-55,940 as an inhibitor of binding (IC(50)=262.7 microM). The potent CB1 receptor antagonist AM251 (2 microM) had no significant effect on the displacement of [(3)H]BTX-B by either compound (P>0.05). Scatchard analyses showed that CP-55,940 and ethyl arachidonate reduce the binding of [(3)H]BTX-B by lowering its B(max) but ethyl arachidonate also increased the K(d) of radioligand binding. In kinetic experiments, CP-55,940 and ethyl arachidonate were found to boost the dissociation of [(3)H]BTX-B from VGSCs to rates that exceed the maximum velocity achievable by veratridine, indicating they operate as allosteric inhibitors of [(3)H]BTX-B binding. Neither compound was effective at changing the initial rate of association of [(3)H]BTX-B with sodium channels. CP-55,940 and ethyl arachidonate inhibited veratridine-dependent (TTX-suppressible) depolarization of the plasma membrane of synaptoneurosomes with IC(50)s of 3.2 and 50.1 microM respectively. These inhibitory effects were again not influenced by 2 microM AM251. Our data demonstrate that the potent cannabinoid receptor agonist CP-55,940 and the ethyl ester of arachidonic acid have the ability to associate with VGSCs and inhibit their function independently of effects on CB1 receptors. Binding data comparisons using mouse brain preparations indicate CP-55,940 is approximately 10,000 times more potent as a CB1 receptor ligand than a sodium channel ligand while ethyl arachidonate shows a much smaller differential. Ethyl arachidonate has been shown previously to be the principal metabolite of ethanol in the brains of intoxicated individuals and effects of this ester on VGSCs and CB1 receptors may contribute to the depressant effects of alcohol.  相似文献   

17.
The coupling of opioid receptor-like (ORL1) receptors to adenylyl cyclase has been investigated in specific layers of the rat main olfactory bulb. Membranes prepared from the olfactory nerve-glomerular layer (ON-G layer), external plexiform layer (EP layer) and granule cell layer (GR layer) displayed specific binding sites for [(3)H]-nociceptin/orphanin FQ ([(3)H]Noc/OFQ). In each layer, the presence of high-and low-affinity binding sites, with K(D) values in the picomolar and nanomolar range, respectively, was detected. The binding of [(3)H]Noc/OFQ was displaced by unlabelled Noc/OFQ, but not by opioid antagonists. In each layer, Noc/OFQ significantly stimulated [(35)S]GTPgammaS binding with nanomolar potencies. In ON-G layer, Noc/OFQ inhibited basal adenylyl cyclase activity and the enzyme stimulations by corticotropin releasing hormone (CRH), Ca(2+)/calmodulin (Ca(2+)/CaM) and forskolin (FSK). In EP layer, Noc/OFQ inhibited Ca(2+)/CaM-and FSK-stimulated enzyme activities. Conversely, in GR layer the peptide stimulated basal cyclase activity and potentiated the enzyme activation by CRH. The Noc/OFQ stimulation was counteracted by the GDP-bound form of the alpha subunit of transducin and was mimicked by transducin betagamma subunits. In the same tissue layer, Ca(2+)/CaM-and FSK-stimulated enzyme activities were inhibited. Naloxone failed to antagonize all the actions of Noc/OFQ. Western blot and RT-PCR analysis revealed the expression of Ca(2+)-insensitive and -sensitive adenylyl cyclases in the three layers. These results demonstrate that in rat main olfactory bulb ORL1 receptors can differentially affect distinct forms of adenylyl cyclase in a layer specific manner.  相似文献   

18.
The binding of [14,15-3H]14,15-dihydroforskolin ([3H]DHF) to rat liver membranes has been further characterized and was compared with the stimulatory effect of forskolin on adenylate cyclase. The binding equilibrium dissociation constant (KD) for 14,15-dihydroforskolin obtained in inhibition experiments was 0.6 microM, with a maximal binding capacity (Bmax) of 114 pmol/mg protein. A similar KD value (0.5 microM) was derived from kinetics studies that revealed very rapid association and dissociation reactions. For structure-activity relationship studies several forskolin derivatives were synthesized and tested for their ability to inhibit [3H]DHF binding and increase adenylate cyclase activity. Among the tested compounds, forskolin itself was the most potent agonist (K1 = 0.2 microM). Further modification of the molecule in position 7 and (or) 1 decreased or abolished its agonist properties in both adenylate cyclase and binding studies. [3H]DHF binding was not affected by several nucleotides, carbohydrates, lectins, and hormone receptor agonists including isoproterenol, glucagon, and adenosine, but the steroids 17-beta-estradiol, progesterone, and testosterone showed slight inhibitory effects at unphysiologically high concentrations. [3H]DHF binding and forskolin-stimulated adenylate cyclase were sensitive to heat and N-ethylmaleimide treatment. Forskolin protected adenylate cyclase against inactivation by heat but not by N-ethylmaleimide. Preincubation of the membrane with trypsin decreased [3H]DHF binding. The results presented in this study demonstrate that the binding sites identified with [3H]DHF have a high specificity for forskolin and provide evidence that these binding sites are involved in the stimulation of adenylate cyclase by forskolin.  相似文献   

19.
Photoreactive derivatives of the general anesthetic etomidate have been developed to identify their binding sites in γ-aminobutyric acid, type A and nicotinic acetylcholine receptors. One such drug, [(3)H]TDBzl-etomidate (4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzyl-[(3)H]1-(1-phenylethyl)-1H-imidazole-5-carboxylate), acts as a positive allosteric potentiator of Torpedo nACh receptor (nAChR) and binds to a novel site in the transmembrane domain at the γ-α subunit interface. To extend our understanding of the locations of allosteric modulator binding sites in the nAChR, we now characterize the interactions of a second aryl diazirine etomidate derivative, TFD-etomidate (ethyl-1-(1-(4-(3-trifluoromethyl)-3H-diazirin-3-yl)phenylethyl)-1H-imidazole-5-carboxylate). TFD-etomidate inhibited acetylcholine-induced currents with an IC(50) = 4 μM, whereas it inhibited the binding of [(3)H]phencyclidine to the Torpedo nAChR ion channel in the resting and desensitized states with IC(50) values of 2.5 and 0.7 mm, respectively. Similar to [(3)H]TDBzl-etomidate, [(3)H]TFD-etomidate bound to a site at the γ-α subunit interface, photolabeling αM2-10 (αSer-252) and γMet-295 and γMet-299 within γM3, and to a site in the ion channel, photolabeling amino acids within each subunit M2 helix that line the lumen of the ion channel. In addition, [(3)H]TFD-etomidate photolabeled in an agonist-dependent manner amino acids within the δ subunit M2-M3 loop (δIle-288) and the δ subunit transmembrane helix bundle (δPhe-232 and δCys-236 within δM1). The fact that TFD-etomidate does not compete with ion channel blockers at concentrations that inhibit acetylcholine responses indicates that binding to sites at the γ-α subunit interface and/or within δ subunit helix bundle mediates the TFD-etomidate inhibitory effect. These results also suggest that the γ-α subunit interface is a binding site for Torpedo nAChR negative allosteric modulators (TFD-etomidate) and for positive modulators (TDBzl-etomidate).  相似文献   

20.
In saturation binding experiments, (+)pentazocine, (+)3-(3-hydroxyphenyl)-N-propylpiperidine (3-PPP), haloperidol and rimcazole did not inhibit the binding of [3H]DTG in a purely competitive fashion. Although Scatchard analysis indicated that [3H]DTG bound to a single site, the inhibition curves of some, but not all, reference compounds exhibited Hill coefficients of less than 0.8. The Scatchard data were consistent with a model of hyperbolic competitive inhibition of binding to the [3H]DTG-defined sigma site, although other possibilities such as negative cooperativity or binding to two sites cannot be definitively excluded. Compounds from numerous pharmacological and structural classes inhibited the binding of [3H]DTG, suggesting that interactions of [3H]DTG with other receptors may have confounded the Scatchard analysis of the binding of [3H]DTG to sigma recognition sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号