首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Programmed cell death (apoptosis) is a conserved process aimed to eliminate unwanted cells. The key molecules are a group of proteases called caspases that cleave vital proteins, which leads to the death of cells. In Drosophila, the apoptotic pathway is usually represented as a cascade of events in which an initial stimulus activates one or more of the proapoptotic genes (hid, rpr, grim), which in turn activate caspases. In stress-induced apoptosis, the dp53 (Drosophila p53) gene and the Jun N-terminal kinase (JNK) pathway function upstream in the activation of the proapoptotic genes. Here we demonstrate that dp53 and JNK also function downstream of proapoptotic genes and the initiator caspase Dronc (Drosophila NEDD2-like caspase) and that they establish a feedback loop that amplifies the initial apoptotic stimulus. This loop plays a critical role in the apoptotic response because in its absence there is a dramatic decrease in the amount of cell death after a pulse of the proapoptotic proteins Hid and Rpr. Thus, our results indicate that stress-induced apoptosis in Drosophila is dependant on an amplification loop mediated by dp53 and JNK. Furthermore, they also demonstrate a mechanism of mutual activation of proapoptotic genes.  相似文献   

2.
3.
4.
Transient activation of c-Jun N-terminal kinase (JNK) promotes cell survival, whereas persistent JNK activation induces apoptosis. Bovine testicular hyaluronidase PH-20 activates JNK1 and protects L929 fibroblasts from staurosporine-mediated cell death. PH-20 also induces the expression of a p53-interacting WW domain-containing oxidoreductase (WOX1, also known as WWOX or FOR) in these cells. WOX1 enhances the cytotoxic function of tumor necrosis factor and mediates apoptosis synergistically with p53. Thus, the activated JNK1 is likely to counteract WOX1 in mediating apoptosis. Here it is demonstrated that ectopic JNK1 inhibited WOX1-mediated apoptosis of L929 fibroblasts, monocytic U937 cells, and other cell types. Also, JNK1 blocked WOX1 prevention of cell cycle progression. By stimulating cells with anisomycin or UV light, JNK1 became activated, and WOX1 was phosphorylated at Tyr(33). The activated JNK1 physically interacted with the phosphorylated WOX1, as determined by co-immunoprecipitation. Alteration of Tyr(33) to Arg(33) in WOX1 abrogated its binding interaction with JNK1 and its activity in mediating cell death, indicating that Tyr(33) phosphorylation is needed to activate WOX1. A dominant negative WOX1 was developed and shown to block p53-mediated apoptosis and anisomycin-mediated WOX1 phosphorylation but could not inhibit JNK1 activation. This mutant protein bound p53 but could not interact with JNK1, as determined in yeast two-hybrid analysis. Taken together, phosphorylation of JNK1 and WOX1 is necessary for their physical interaction and functional antagonism.  相似文献   

5.
Ultraviolet light (UV) activates an acid sphingomyelinase (ASMase) pathway, which hydrolyzes sphingomyeline to ceramide. Ceramide has been found to be a second messenger, which activates the c-jun N-terminal kinase (JNK) that is required for apoptotic cell death. However, the role of ceramide in UV-induced JNK activation and apoptosis remains controversial. In this study, we examined the correlation among ceramide production, JNK activation and cell apoptosis after UV-irradiation in three cell lines: 293 (kidney), Jurkat (lymphocytes) and MCF-7 (breast) were used in this study. The ceramide production was analyzed using the diacylglycerol kinase assay method. The JNK activation was measured by Western blot analysis using an antibody specifically recognizing phosphorylated JNK. Cell apoptosis was determined by morphological change or flow cytometry. Our data show that UV-irradiation induces ceramide production in both 293 and Jurkat cells. Inhibition of ceramide production by desipramine (25–50 M) reduced UV-induced JNK activation in both 293 and Jurkat cells; and protects 293 cells from UV-induced apoptosis. However, inhibition of ceramide production does not prevent Jurkat cells from UV-induced apoptosis. In addition, our data demonstrates that UV-irradiation induces JNK activation and apoptosis of MCF-7 cells without production of detectable amounts of ceramide after UV-irradiation. These results suggest that UV-induced JNK activation and apoptosis can be mediated through a ceramide dependent or an independent pathway.  相似文献   

6.
The dual signal hypothesis of apoptosis holds that a common signal can activate both apoptotic and proliferative pathways. The fate of a cell is dependent on which of these two pathways predominates. In the MAPK family of kinases, ERK and JNK have been proposed to mediate apoptosis whereas the PI3K-stimulated kinase, Akt/PKB, has been shown to inhibit apoptosis. The object of this study was to determine the role of these kinases in a glioma model of apoptosis. We have previously shown that K252a induces apoptosis and inhibits kinase activity. In this study we confirm these results and shown that the protein tyrosine phosphatase inhibitor sodium vanadate activates ERK, JNK and Akt/PKB, but does not stimulate proliferation. Vanadate did protect T98G cells from K252a-induced apoptosis, an effect that was abolished by addition of the PI3K inhibitor wortmannin. This suggests that PI3K and Akt/PKB may be responsible for mediating vanadate's protective effect on glioma cells. We conclude that the intracellular balance between protein phosphorylation pathways is a critical determinant of both cell proliferation and cell death.  相似文献   

7.
ZBP-89-induced apoptosis is p53-independent and requires JNK   总被引:1,自引:0,他引:1  
ZBP-89 induces apoptosis in human gastrointestinal cancer cells through a p53-independent mechanism. To understand the apoptotic pathway regulated by ZBP-89, we identified downstream signal transduction targets. Ectopic expression of ZBP-89 induced apoptosis through the mitochondrial pathway and was accompanied by activation of all three MAP kinase subfamilies: JNK1/2, ERK1/2 and p38 MAP kinase. ZBP-89-induced apoptosis was markedly enhanced by ERK inhibition with U0126. In contrast, inhibiting JNK with a JNK1-specific peptide inhibitor or dominant-negative JNK2 expression abrogated ZBP-89-mediated apoptosis. The p38 inhibitor SB202190 had no effect on ZBP-89-induced cell death. Protein dephosphorylation assays revealed that ZBP-89 activates JNK via repression of JNK dephosphorylation. Oligonucleotide microarray analyses revealed that ectopic expression of ZBP-89 downregulated expression of the dual-specificity phosphatase MKP6. Overexpression of MKP6 blocked ZBP-89-induced JNK phosphorylation and PARP cleavage. In addition, ectopic expression of ZBP-89 repressed Bcl-xL and Mcl-1 expression, but had no effect on Bcl-2. Silencing ZBP-89 with small interfering RNA enhanced both Bcl-xL and Mcl-1 expression. Taken together, ZBP-89-mediated apoptosis occurs via a p53-independent mechanism that requires JNK activation.  相似文献   

8.
9.
10.
An understanding of the molecular pathways defining the susceptibility of prostate cancer, especially refractory prostate cancer, to apoptosis is the key for developing a cure for this disease. We previously demonstrated that up-regulating Ras signaling, together with suppression of protein kinase C (PKC), induces apoptosis. Dysregulation of various intracellular signaling pathways, including those governed by Ras, is the important element in the development of prostate cancer. In this study, we tested whether it is possible to modulate the activities of these pathways and induce an apoptotic crash among them in prostate cancer cells. Our data showed that DU145 cells express a high amount of JNK1 that is phosphorylated after endogenous PKC is suppressed, which initiates caspase 8 cleavage and cytochrome c release, leading to apoptosis. PC3 and LNCaP cells contain an activated Akt. The inhibition of PKC further augments Akt activity, which in turn induces ROS production and the accumulation of unfolded proteins in the endoplasmic reticulum, resulting in cell death. However, the concurrent activation of JNK1 and Akt, under the condition of PKC abrogation, dramatically augment the magnitude of apoptosis in the cells. Thus, our study suggests that Akt, JNK1, and PKC act in concert to signal the intracellular apoptotic machinery for a full execution of apoptosis in prostate cancer cells.  相似文献   

11.
The role of signaling pathways in the regulation of cellular iron metabolism is becoming increasingly recognized. Iron chelation is used for the treatment of iron overload but also as a potential strategy for cancer therapy, because iron depletion results in cell cycle arrest and apoptosis. This study examined potential signaling pathways affected by iron depletion induced by desferrioxamine (DFO) or di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT). Both chelators affected multiple molecules in the mitogen-activated protein kinase (MAPK) pathway, including a number of dual specificity phosphatases that directly de-phosphorylate MAPKs. Examination of the phosphorylation of major MAPKs revealed that DFO and Dp44mT markedly increased phosphorylation of stress-activated protein kinases, JNK and p38, without significantly affecting the extracellular signal-regulated kinase (ERK). Redox-inactive DFO-iron complexes did not affect phosphorylation of JNK or p38, whereas the redox-active Dp44mT-iron complex significantly increased the phosphorylation of these kinases similarly to Dp44mT alone. Iron or N-acetylcysteine supplementation reversed Dp44mT-induced up-regulation of phospho-JNK, but only iron was able to reverse the effect of DFO on JNK. Both iron chelators significantly reduced ASK1-thioredoxin complex formation, resulting in the increased phosphorylation of ASK1, which activates the JNK and p38 pathways. Thus, dissociation of ASK1 could serve as an important signal for the phosphorylation of JNK and p38 activation observed after iron chelation. Phosphorylation of JNK and p38 likely play an important role in mediating the cell cycle arrest and apoptosis induced by iron depletion.  相似文献   

12.
The mechanisms of peroxynitrite-induced apoptosis are not fully understood. We report here that peroxynitrite-induced apoptosis of PC12 cells requires the simultaneous activation of p38 and JNK MAP kinase, which in turn activates the intrinsic apoptotic pathway, as evidenced by Bax translocation to the mitochondria, cytochrome c release to the cytoplasm and activation of caspases, leading to cell death. Peroxynitrite induces inactivation of the Akt pathway. Furthermore, overexpression of constitutively active Akt inhibits both peroxynitrite-induced Bax translocation and cell death. Peroxynitrite-induced death was prevented by overexpression of Bcl-2 and by cyclosporin A, implicating the involvement of the intrinsic apoptotic pathway. Selective inhibition of mixed lineage kinase (MLK), p38 or JNK does not attenuate the decrease in Akt phosphorylation showing that inactivation of the Akt pathway occurs independently of the MLK/MAPK pathway. Together, these results reveal that peroxynitrite-induced activation of the intrinsic apoptotic pathway involves interactions with the MLK/MAPK and Akt signaling pathways.  相似文献   

13.
In this study, we investigated the molecular pathways targeted by curcumin during apoptosis of human melanoma cell lines. We found that curcumin caused cell death in eight melanoma cell lines, four with wild-type and four with mutant p53. We demonstrate that curcumin-induced apoptosis is both dose- and time-dependent. We found that curcumin did not induce p53, suggesting that curcumin activates other apoptosis pathways. Our data show that curcumin activates caspases-3 and -8 but not caspase-9, supporting the rationale that apoptosis occurs via a membrane-mediated mechanism. Both a caspase-8 and broad-based caspase inhibitor, but not a caspase-9 specific inhibitor, suppressed curcumin-induced cell death. To further support our hypothesis that curcumin induces activation of a death receptor pathway, we show that curcumin induces Fas receptor aggregation in a FasL-independent manner and that low-temperature incubation, previously shown to inhibit receptor aggregation, prevented curcumin-induced cell death. Moreover, we demonstrate that expression of dominant negative FADD significantly inhibited curcumin-induced cell death. In addition, our results indicate that curcumin also blocks the NF-kappaB cell survival pathway and suppresses the apoptotic inhibitor, XIAP. Since melanoma cells with mutant p53 are strongly resistant to conventional chemotherapy, curcumin may overcome the chemoresistance of these cells and provide potential new avenues for treatment.  相似文献   

14.
The c-Jun N-terminal protein kinase (JNK)/c-Jun and p53 pathways form distinct death-signaling modules in neurons that culminate in Bax-dependent apoptosis. To investigate whether this signaling autonomy is due to recruitment of particular BH3-only proteins, we searched for a toxic signal that would activate both pathways in the same set of neurons. We show that arsenite activates both the JNK/c-Jun and p53 pathways in cortical neurons, which together account for >95% of apoptosis, as determined by using the mixed-lineage kinase (JNK/c-Jun) pathway inhibitor CEP11004 and p53-null mice. Despite the coexistence of both pathways in at least 30% of the population, Bim mRNA and protein expression was increased only by the JNK/c-Jun signaling pathway, whereas Noxa and Puma mRNA and Puma protein expression was entirely JNK/c-Jun independent. About 50% of Puma/Noxa expression was p53 dependent, with the remaining signal being independent of both pathways and possibly facilitated by arsenite-induced reduction in P-Akt. However, functionally, Puma was predominant in mediating Bax-dependent apoptosis, as evidenced by the fact that more than 90% of apoptosis was prevented in Puma-null neurons, although Bim was still upregulated, while Bim- and Noxa-null neurons died similarly to wild-type neurons. Thus, the p53 and JNK/c-Jun pathways can activate mutually exclusive subclasses of BH3-only proteins in the same set of neurons. However, other factors besides expression may determine which BH3-only proteins mediate apoptosis.  相似文献   

15.
Apoptosis ensures tissue homeostasis in response to developmental cues or cellular damage. Recently reported genome‐wide RNAi screens have suggested that several metabolic regulators can modulate caspase activation in Drosophila. Here, we establish a previously unrecognized link between metabolism and Drosophila apoptosis by showing that cellular NADPH levels modulate the initiator caspase Dronc through its phosphorylation at S130. Depletion of NADPH removed this inhibitory phosphorylation, resulting in the activation of Dronc and subsequent cell death. Conversely, upregulation of NADPH prevented Dronc‐mediated apoptosis upon DIAP1 RNAi or cycloheximide treatment. Furthermore, this CaMKII‐mediated phosphorylation of Dronc hindered Dronc activation, but not its catalytic activity. Blockade of NADPH production aggravated the death‐inducing activity of Dronc in specific neurons, but not in the photoreceptor cells of the eyes of transgenic flies; similarly, non‐phosphorylatable Dronc was more potent than wild type in triggering specific neuronal apoptosis. Our observations reveal a novel regulatory circuitry in Drosophila apoptosis, and, as NADPH levels are elevated in cancer cells, also provide a genetic model to understand aberrations in cancer cell apoptosis resulting from metabolic alterations.  相似文献   

16.
17.
G(q) protein-coupled receptors (G(q)PCRs) regulate various cellular processes, including mainly proliferation and differentiation. In a previous study we found that in prostate cancer cells, the G(q)PCR of gonadotropin-releasing hormone (GnRH) induces apoptosis by reducing the PKC-dependent AKT activity and elevating JNK phosphorylation. Because it was thought that G(q)PCRs mainly induce activation of AKT, we first undertook to examine how general this phenomenon is. In a screen of 21 cell lines we found that PKC activation results in the reduction of AKT activity, which correlates nicely with JNK activation and in some cases with apoptosis. To understand further the signaling pathways involved in this stimulation, we studied in detail SVOG-4O and αT3-1 cells. We found that prostaglandin F2α and GnRH agonist (GnRH-a) indeed induce significant Gα(q)- and PKC-dependent apoptosis in these cells. This is mediated by two signaling branches downstream of PKC, which converge at the level of MLK3 upstream of JNK. One branch consists of c-Src activation of the JNK cascade, and the second involves reduction of AKT activity that alleviates its inhibitory effect on MLK3 to allow the flow of the c-Src signal to JNK. At the MAPKK level, we found that the signal is transmitted by MKK7 and not MKK4. Our results present a general mechanism that mediates a G(q)PCR-induced, death receptor-independent, apoptosis in physiological, as well as cancer-related systems.  相似文献   

18.
Colorectal carcinomas (CRCs) with P53 mutations have been shown to be resistant to chemotherapy with 5-fluorouracil (5-FU), the most widely used chemotherapeutic drug for CRC treatment. Autophagy is emerging as a promising therapeutic target for drug-resistant tumors. In the present study, we tested the effects of ursolic acid (UA), a natural triterpenoid, on cell death mechanisms and its effects in combination with 5-FU in the HCT15 p53 mutant apoptosis-resistant CRC cell line. The involvement of UA in autophagy and its in vivo efficacy were evaluated.Our data show that UA induces apoptosis independent of caspases in HCT15 cells and enhances 5-FU effects associated with an activation of c-jun N-terminal kinase (JNK). In this cell line, where this compound has a more pronounced effect on the induction of cell death compared to 5-FU, apoptosis corresponds only to a small percentage of the total cell death induced by UA. UA also modulated autophagy by inducing the accumulation of LC3 and p62 levels with involvement of JNK pathway, which indicates a contribution of autophagy on JNK-dependent induction of cell death by UA. By using nude mice xenografted with HCT15 cells, we verified that UA was also active in vivo decreasing tumor growth rate.In conclusion, this study shows UA's anticancer potential both in vitro and in vivo. Induction of cell death and modulation of autophagy in CRC-resistant cells were shown to involve JNK signaling.  相似文献   

19.
Regeneration is a complex process that requires a coordinated genetic response to tissue loss. Signals from dying cells are crucial to this process and are best understood in the context of regeneration following programmed cell death, like apoptosis. Conversely, regeneration following unregulated forms of death, such as necrosis, have yet to be fully explored. Here, we have developed a method to investigate regeneration following necrosis using the Drosophila wing imaginal disc. We show that necrosis stimulates regeneration at an equivalent level to that of apoptosis-mediated cell death and activates a similar response at the wound edge involving localized JNK signaling. Unexpectedly, however, necrosis also results in significant apoptosis far from the site of ablation, which we have termed necrosis-induced apoptosis (NiA). This apoptosis occurs independent of changes at the wound edge and importantly does not rely on JNK signaling. Furthermore, we find that blocking NiA limits proliferation and subsequently inhibits regeneration, suggesting that tissues damaged by necrosis can activate programmed cell death at a distance from the injury to promote regeneration.  相似文献   

20.
In multi-cellular organisms, activation of apoptosis can trigger compensatory proliferation in surrounding cells to maintain tissue homeostasis. Genetic studies in Drosophila have indicated that distinct mechanisms of compensatory proliferation are employed in apoptotic tissues of different developmental states. In proliferating eye and wing tissues, the initiator caspase Dronc coordinates cell death and compensatory proliferation through the Jun N-terminal kinase and p53. The mitogens Decapentaplegic and Wingless are induced in this process. By contrast, in differentiating eye tissues, the effector caspases DrICE and Dcp-1 activate the Hedgehog signaling pathway to induce compensatory proliferation. In this review, we summarize these findings and discuss how activation of apoptosis is linked to the process of compensatory proliferation. The developmental and pathological relevance of compensatory proliferation is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号