首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Buckley-James-type estimator for the mean with censored data   总被引:2,自引:0,他引:2  
SUSARLA  V.; TSAI  W. Y.; VAN RYZIN  J. 《Biometrika》1984,71(3):624-629
  相似文献   

2.
In the linear model with right-censored responses and many potential explanatory variables, regression parameter estimates may be unstable or, when the covariates outnumber the uncensored observations, not estimable. We propose an iterative algorithm for partial least squares, based on the Buckley-James estimating equation, to estimate the covariate effect and predict the response for a future subject with a given set of covariates. We use a leave-two-out cross-validation method for empirically selecting the number of components in the partial least-squares fit that approximately minimizes the error in estimating the covariate effect of a future observation. Simulation studies compare the methods discussed here with other dimension reduction techniques. Data from the AIDS Clinical Trials Group protocol 333 are used to motivate the methodology.  相似文献   

3.
We propose a semiparametric mean residual life mixture cure model for right-censored survival data with a cured fraction. The model employs the proportional mean residual life model to describe the effects of covariates on the mean residual time of uncured subjects and the logistic regression model to describe the effects of covariates on the cure rate. We develop estimating equations to estimate the proposed cure model for the right-censored data with and without length-biased sampling, the latter is often found in prevalent cohort studies. In particular, we propose two estimating equations to estimate the effects of covariates in the cure rate and a method to combine them to improve the estimation efficiency. The consistency and asymptotic normality of the proposed estimates are established. The finite sample performance of the estimates is confirmed with simulations. The proposed estimation methods are applied to a clinical trial study on melanoma and a prevalent cohort study on early-onset type 2 diabetes mellitus.  相似文献   

4.
Jing Qin  Yu Shen 《Biometrics》2010,66(2):382-392
Summary Length‐biased time‐to‐event data are commonly encountered in applications ranging from epidemiological cohort studies or cancer prevention trials to studies of labor economy. A longstanding statistical problem is how to assess the association of risk factors with survival in the target population given the observed length‐biased data. In this article, we demonstrate how to estimate these effects under the semiparametric Cox proportional hazards model. The structure of the Cox model is changed under length‐biased sampling in general. Although the existing partial likelihood approach for left‐truncated data can be used to estimate covariate effects, it may not be efficient for analyzing length‐biased data. We propose two estimating equation approaches for estimating the covariate coefficients under the Cox model. We use the modern stochastic process and martingale theory to develop the asymptotic properties of the estimators. We evaluate the empirical performance and efficiency of the two methods through extensive simulation studies. We use data from a dementia study to illustrate the proposed methodology, and demonstrate the computational algorithms for point estimates, which can be directly linked to the existing functions in S‐PLUS or R .  相似文献   

5.
Chan KC  Wang MC 《Biometrics》2012,68(2):521-531
A prevalent sample consists of individuals who have experienced disease incidence but not failure event at the sampling time. We discuss methods for estimating the distribution function of a random vector defined at baseline for an incident disease population when data are collected by prevalent sampling. Prevalent sampling design is often more focused and economical than incident study design for studying the survival distribution of a diseased population, but prevalent samples are biased by design. Subjects with longer survival time are more likely to be included in a prevalent cohort, and other baseline variables of interests that are correlated with survival time are also subject to sampling bias induced by the prevalent sampling scheme. Without recognition of the bias, applying empirical distribution function to estimate the population distribution of baseline variables can lead to serious bias. In this article, nonparametric and semiparametric methods are developed for distribution estimation of baseline variables using prevalent data.  相似文献   

6.
Case-cohort analysis with accelerated failure time model   总被引:1,自引:0,他引:1  
Kong L  Cai J 《Biometrics》2009,65(1):135-142
Summary .  In a case–cohort design, covariates are assembled only for a subcohort that is randomly selected from the entire cohort and any additional cases outside the subcohort. This design is appealing for large cohort studies of rare disease, especially when the exposures of interest are expensive to ascertain for all the subjects. We propose statistical methods for analyzing the case–cohort data with a semiparametric accelerated failure time model that interprets the covariates effects as to accelerate or decelerate the time to failure. Asymptotic properties of the proposed estimators are developed. The finite sample properties of case–cohort estimator and its relative efficiency to full cohort estimator are assessed via simulation studies. A real example from a study of cardiovascular disease is provided to illustrate the estimating procedure.  相似文献   

7.
8.
On least-squares regression with censored data   总被引:4,自引:0,他引:4  
  相似文献   

9.
10.
Linear regression analysis of censored survival data based on rank tests   总被引:7,自引:0,他引:7  
WEI  L. J.; YING  Z.; LIN  D. Y. 《Biometrika》1990,77(4):845-851
  相似文献   

11.
We consider a regression model where the error term is assumed to follow a type of asymmetric Laplace distribution. We explore its use in the estimation of conditional quantiles of a continuous outcome variable given a set of covariates in the presence of random censoring. Censoring may depend on covariates. Estimation of the regression coefficients is carried out by maximizing a non‐differentiable likelihood function. In the scenarios considered in a simulation study, the Laplace estimator showed correct coverage and shorter computation time than the alternative methods considered, some of which occasionally failed to converge. We illustrate the use of Laplace regression with an application to survival time in patients with small cell lung cancer.  相似文献   

12.
Chang SH 《Biometrics》2000,56(1):183-189
A longitudinal study is conducted to compare the process of particular disease between two groups. The process of the disease is monitored according to which of several ordered events occur. In the paper, the sojourn time between two successive events is considered as the outcome of interest. The group effects on the sojourn times of the multiple events are parameterized by scale changes in a semiparametric accelerated failure time model where the dependence structure among the multivariate sojourn times is unspecified. Suppose that the sojourn times are subject to dependent censoring and the censoring times are observed for all subjects. A log-rank-type estimating approach by rescaling the sojourn times and the dependent censoring times into the same distribution is constructed to estimate the group effects and the corresponding estimators are consistent and asymptotically normal. Without the dependent censoring, the independent censoring times in general are not available for the uncensored data. In order to complete the censoring information, pseudo-censoring times are generated from the corresponding nonparametrically estimated survival function in each group, and we can still obtained unbiased estimating functions for the group effects. A real application and a simulation study are conducted to illustrate the proposed methods.  相似文献   

13.
14.
A mixture Markov regression model is proposed to analyze heterogeneous time series data. Mixture quasi‐likelihood is formulated to model time series with mixture components and exogenous variables. The parameters are estimated by quasi‐likelihood estimating equations. A modified EM algorithm is developed for the mixture time series model. The model and proposed algorithm are tested on simulated data and applied to mosquito surveillance data in Peel Region, Canada.  相似文献   

15.
16.
Zhao and Tsiatis (1997) consider the problem of estimation of the distribution of the quality-adjusted lifetime when the chronological survival time is subject to right censoring. The quality-adjusted lifetime is typically defined as a weighted sum of the times spent in certain states up until death or some other failure time. They propose an estimator and establish the relevant asymptotics under the assumption of independent censoring. In this paper we extend the data structure with a covariate process observed until the end of follow-up and identify the optimal estimation problem. Because of the curse of dimensionality, no globally efficient nonparametric estimators, which have a good practical performance at moderate sample sizes, exist. Given a correctly specified model for the hazard of censoring conditional on the observed quality-of-life and covariate processes, we propose a closed-form one-step estimator of the distribution of the quality-adjusted lifetime whose asymptotic variance attains the efficiency bound if we can correctly specify a lower-dimensional working model for the conditional distribution of quality-adjusted lifetime given the observed quality-of-life and covariate processes. The estimator remains consistent and asymptotically normal even if this latter submodel is misspecified. The practical performance of the estimators is illustrated with a simulation study. We also extend our proposed one-step estimator to the case where treatment assignment is confounded by observed risk factors so that this estimator can be used to test a treatment effect in an observational study.  相似文献   

17.
Tian  Lu; Cai  Tianxi 《Biometrika》2006,93(2):329-342
  相似文献   

18.
19.
In observational cohort studies with complex sampling schemes, truncation arises when the time to event of interest is observed only when it falls below or exceeds another random time, that is, the truncation time. In more complex settings, observation may require a particular ordering of event times; we refer to this as sequential truncation. Estimators of the event time distribution have been developed for simple left-truncated or right-truncated data. However, these estimators may be inconsistent under sequential truncation. We propose nonparametric and semiparametric maximum likelihood estimators for the distribution of the event time of interest in the presence of sequential truncation, under two truncation models. We show the equivalence of an inverse probability weighted estimator and a product limit estimator under one of these models. We study the large sample properties of the proposed estimators and derive their asymptotic variance estimators. We evaluate the proposed methods through simulation studies and apply the methods to an Alzheimer's disease study. We have developed an R package, seqTrun , for implementation of our method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号