首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
For coral reef fish with an obligate relationship to their habitat, like Pomacentrid damselfish, choosing a suitable home amongst the reef structure is key to survival. A surprisingly small number of studies have examined patterns in adult damselfish distributions compared to other ontogenetic phases. The aim of this study was to determine which reef and coral colony characteristics explained adult damselfish distribution patterns in a Red Sea reef. The characteristics investigated were reef type (continuous or patchy), coral species (seven species of Acropora), and coral morphology (coral size and branching density). The focal damselfish species were Dascyllus aruanus, D. marginatus, Chromis viridis, and C. flavaxilla. Occupancy (presence or absence of resident damselfish), group size and fish species richness were not significantly different between the seven Acropora species. However, within each coral species, damselfish were more likely to occupy larger coral colonies than smaller coral colonies. Occupancy rates were also higher in patchy reef habitats than in continuous sections of the reef, probably because average coral colony size was greater in patchy reef type. Fish group size increased significantly with coral colony volume and with larger branch spacing. Multi-species groups of fish commonly occurred and were increasingly likely with reduced branching density and increased coral size.  相似文献   

2.
In recent decades, the Florida reef tract has lost over 95% of its coral cover. Although isolated coral assemblages persist, coral restoration programs are attempting to recover local coral populations. Listed as threatened under the Endangered Species Act, Acropora cervicornis is the most widely targeted coral species for restoration in Florida. Yet strategies are still maturing to enhance the survival of nursery‐reared outplants of A. cervicornis colonies on natural reefs. This study examined the survival of 22,634 A. cervicornis colonies raised in nurseries along the Florida reef tract and outplanted to six reef habitats in seven geographical subregions between 2012 and 2018. A Cox proportional hazards regression was used within a Bayesian framework to examine the effects of seven variables: (1) coral‐colony size at outplanting, (2) coral‐colony attachment method, (3) genotypic diversity of outplanted A. cervicornis clusters, (4) reef habitat, (5) geographical subregion, (6) latitude, and (7) the year of monitoring. The best models included coral‐colony size at outplanting, reef habitat, geographical subregion, and the year of monitoring. Survival was highest when colonies were larger than 15 cm (total linear extension), when outplanted to back‐reef and fore‐reef habitats, and when outplanted in Biscayne Bay and Broward–Miami subregions, in the higher latitudes of the Florida reef tract. This study points to several variables that influence the survival of outplanted A. cervicornis colonies and highlights a need to refine restoration strategies to help restore their population along the Florida reef tract.  相似文献   

3.
Survival of pelagic marine larvae is an important determinant of dispersal potential. Despite this, few estimates of larval survival are available. For scleractinian corals, few studies of larval survival are long enough to provide accurate estimates of longevity. Moreover, changes in mortality rates during larval life, expected on theoretical grounds, have implications for the degree of connectivity among reefs and have not been quantified for any coral species. This study quantified the survival of larvae from five broadcast-spawning scleractinian corals (Acropora latistella, Favia pallida, Pectinia paeonia, Goniastrea aspera, and Montastraea magnistellata) to estimate larval longevity, and to test for changes in mortality rates as larvae age. Maximum lifespans ranged from 195 to 244 d. These longevities substantially exceed those documented previously for coral larvae that lack zooxanthellae, and they exceed predictions based on metabolic rates prevailing early in larval life. In addition, larval mortality rates exhibited strong patterns of variation throughout the larval stage. Three periods were identified in four species: high initial rates of mortality; followed by a low, approximately constant rate of mortality; and finally, progressively increasing mortality after approximately 100 d. The lifetimes observed in this study suggest that the potential for long-distance dispersal may be substantially greater than previously thought. Indeed, detection of increasing mortality rates late in life suggests that energy reserves do not reach critically low levels until approximately 100 d after spawning. Conversely, increased mortality rates early in life decrease the likelihood that larvae transported away from their natal reef will survive to reach nearby reefs, and thus decrease connectivity at regional scales. These results show how variation in larval survivorship with age may help to explain the seeming paradox of high genetic structure at metapopulation scales, coupled with the maintenance of extensive geographic ranges observed in many coral species. Communicated by Environment Editor Prof. van Woesik.  相似文献   

4.
Transplantation of coral fragments is seen as a potential method to rapidly restore coral cover to areas of degraded reef; however, considerable research is still needed to assess the effectiveness of coral transplantation as a viable reef restoration tool. Initially, during restoration efforts, coral transplants are attached artificially. Self‐attachment (i.e., growth of coral tissue onto the substrate) provides a more secure and lasting bond, thus knowledge about self‐attachment times for corals is of importance to reef restoration. While it is known that coral fragments may generate new tissue and bond to substrata within a few weeks of transplantation, surprisingly little is known about the speed of self‐attachment for most species. Two independent experiments were carried out to examine the self‐attachment times of 12 scleractinian and one non‐scleractinian coral species to a natural calcium carbonate substrate. The first experiment examined times to self‐attachment in 11 species of differing morphologies from seven families over approximately 7 months, whereas the second experiment examined three fast‐attaching Acropora species over approximately 1 month. In the first experiment, the branching species Acropora muricata had a significantly faster self‐attachment time compared to all other species, while Echinopora lamellosa had the slowest self‐attachment time. For the second experiment, A. muricata was significantly slower to self‐attach than Acropora hyacinthus (tabular) and Acropora digitifera (corymbose‐digitate). The results suggest that a combination of factors including growth rates, growth form and life history may determine how quickly fragments of coral species self‐attach after fragmentation and transplantation.  相似文献   

5.
To explore how microbial community composition and function varies within a coral reef ecosystem, we performed metagenomic sequencing of seawater from four niches across Heron Island Reef, within the Great Barrier Reef. Metagenomes were sequenced from seawater samples associated with (1) the surface of the coral species Acropora palifera, (2) the surface of the coral species Acropora aspera, (3) the sandy substrate within the reef lagoon and (4) open water, outside of the reef crest. Microbial composition and metabolic function differed substantially between the four niches. The taxonomic profile showed a clear shift from an oligotroph-dominated community (e.g. SAR11, Prochlorococcus, Synechococcus) in the open water and sandy substrate niches, to a community characterised by an increased frequency of copiotrophic bacteria (e.g. Vibrio, Pseudoalteromonas, Alteromonas) in the coral seawater niches. The metabolic potential of the four microbial assemblages also displayed significant differences, with the open water and sandy substrate niches dominated by genes associated with core house-keeping processes such as amino acid, carbohydrate and protein metabolism as well as DNA and RNA synthesis and metabolism. In contrast, the coral surface seawater metagenomes had an enhanced frequency of genes associated with dynamic processes including motility and chemotaxis, regulation and cell signalling. These findings demonstrate that the composition and function of microbial communities are highly variable between niches within coral reef ecosystems and that coral reefs host heterogeneous microbial communities that are likely shaped by habitat structure, presence of animal hosts and local biogeochemical conditions.  相似文献   

6.
Larval recruitment is essential for sustaining coral communities and a fundamental tool in some interventions for reef restoration. To improve larval supply and post‐settlement survival in sexually assisted coral restoration efforts, an integrated in situ collector system, the larval cradle, was designed to collect spawned gametes then culture the resulting larvae until settled on artificial substrates. The final design of the larval cradle was cylindrical, a nylon mesh structure with a volume of 9 m3, suspended in the sea and extending vertically toward the seabed. We found three key design features that improved the efficiency of the apparatus: (1) an open area of sea surface and mesh size of less than 100 μm produced high fertilization and optimal survival (>90%), (2) a special skirt‐shaped net (3 m in diameter) with a connection hose for attaching the cradle to collect bundles from many adult colonies over a wide area and at various depths, and (3) adding short square tube pieces, called square hollow sections, as a substrate for enhancing larval settlement and survival, to a larval cradle at 4 days after spawning was optimal for uniform settlement. This system allowed not only the collection of several million eggs, but also subsequent production of several thousand settled juvenile corals, without land facilities. Our design achieved several hundred times higher survival for early life stages of Acropora tenuis compared to nature.  相似文献   

7.
Zhao M X  Yu K F  Zhang Q M  Shi Q 《农业工程》2008,28(4):1419-1428
84 quadrats from 5 vertical transects of Luhuitou fringing reef are investigated in detail by using video-quadrat and indoor-interpretation methods. The results show that (1) the reef consists of 69 species of hermatypic corals belonging to 24 genera and 13 families which are unevenly distributed in abundance. (2) Among all the corals, Porites lutea is the most dominant species with importance value percentage up to 36.62%; Porites and Acropora are dominant genera with importance value percentages 43.85% and 22.88%, respectively. (3) There exist distinct spatial differences in coral communities. Both the coral covers and coral diversity indices on the northeastern transects are higher than those on the central and southern transects. (4) Coral communities also show remarkable zonal characteristics with less coral species occurring on reef flat than on reef slope. The importance value percentage of the sole dominant coral genus, Porites, is over 50%, while on the reef slope, the importance value percentages are 28.33% for the first dominant genus Acropora and 26.71% for the second dominant genus Porites. Our further analysis suggests that the spatial and zonal differences of coral diversity pattern are correlated with both natural environmental changes and human activities. The shallow water reef flat is frequently exposed at low tide and it receives more anthropogenic influences (including dredging and trampling) than the deep water reef slope. Thus, the coral community on the reef flat is not as well developed as that on reef slope. The relatively poor coral covers and coral diversity indices on the central and southern transects are closely related to heavy human activities around these sites such as aquaculture, fishing and coastal sewage drainage. Therefore, the impact of human activities must be taken into account in developing strategies for the protection of this coral reef.  相似文献   

8.
84 quadrats from 5 vertical transects of Luhuitou fringing reef are investigated in detail by using video-quadrat and indoor-interpretation methods. The results show that (1) the reef consists of 69 species of hermatypic corals belonging to 24 genera and 13 families which are unevenly distributed in abundance. (2) Among all the corals, Porites lutea is the most dominant species with importance value percentage up to 36.62%; Porites and Acropora are dominant genera with importance value percentages 43.85% and 22.88%, respectively. (3) There exist distinct spatial differences in coral communities. Both the coral covers and coral diversity indices on the northeastern transects are higher than those on the central and southern transects. (4) Coral communities also show remarkable zonal characteristics with less coral species occurring on reef flat than on reef slope. The importance value percentage of the sole dominant coral genus, Porites, is over 50%, while on the reef slope, the importance value percentages are 28.33% for the first dominant genus Acropora and 26.71% for the second dominant genus Porites. Our further analysis suggests that the spatial and zonal differences of coral diversity pattern are correlated with both natural environmental changes and human activities. The shallow water reef flat is frequently exposed at low tide and it receives more anthropogenic influences (including dredging and trampling) than the deep water reef slope. Thus, the coral community on the reef flat is not as well developed as that on reef slope. The relatively poor coral covers and coral diversity indices on the central and southern transects are closely related to heavy human activities around these sites such as aquaculture, fishing and coastal sewage drainage. Therefore, the impact of human activities must be taken into account in developing strategies for the protection of this coral reef.  相似文献   

9.
This study was conducted at a high-latitude location (32°N; Kochi, Japan), where annual seawater temperatures show large fluctuations due to the meandering of the Kuroshio Current, providing a unique opportunity to examine the influence of temperature on coral reproduction. Annual spawning of individual colonies of four reef coral species-two Acropora species (Acropora hyacinthus and A. japonica) and two faviid species (Favites pentagona and Platygyra contorta)-was monitored in situ for 4 years in 2006-2009. The spawning of the four species always occurred around the last quarter moon in the local summer, July or August, irrespective of high annual variations in seawater temperatures (from 23.7 to 29.5 °C) and weather during the spawning period. However, the exact timing of spawning during the spawning period varied among the years and was correlated with the cumulative seawater temperature during the late period of gametogenesis (0-3 months before spawning). When seawater temperatures were higher, spawning occurred in the earlier spawning month (July) and vice versa, except in A. hyacinthus, which always spawned in July. In the case of the two Acropora species, higher (lower) temperatures led to spawning earlier (later) in the lunar cycle. Seawater temperature may have an influence on gametogenesis, causing the shift in spawning timing.  相似文献   

10.
Shallow-water Pleistocene coral reef facies in Barbados (dominated by Acropora palmata rubble) record evidence of deposition under contrasting non-catastrophic - (fair-weather?) and storm-induced conditions. Depositional styles are interpreted on the basis of coral rubble fabrics and calcareous encruster successions. Terrace exposures on the west of the island comprise uniform (3-4 m thick) depositional sequences. Individual coral samples exhibit similarities in encruster community composition and thickness, and a transition from photophilic to sciaphilic encrusting forms. These are indicative of colonization during gradual burial in an accumulating rubble pile. By contrast, NE coast sites comprise repetitive sequences of discrete (0.4-1 m thick) depositional units. Rubble colonization within each unit is characterized by a vertical succession from thin (1-2 mm), sciaphilic encruster-dominated sequences at the base, to progressively thicker (up to 20 mm), photophilic encruster-dominated sequences at the top. These are interpreted as multiple storm deposits, with upper surfaces colonized by opportunist coral species (primarily Agaricia agaricites). In contrast to many modern hurricane-impacted reef systems, however, there is no evidence of long-term shifts in coral community composition following physical disturbance. Colony sizes of opportunist corals at the tops of storm units are consistent with growth over timescales of <10 years. These are overlain on each occasion by a new A. palmata rubble pile, indicating successful recovery over successive physical disturbance cycles.  相似文献   

11.
Natural inducers for coral larval metamorphosis   总被引:1,自引:9,他引:1  
 Coral gametes from Acropora millepora (Ehrenberg, 1834) and from multi-species spawning slicks provided larvae for use in metamorphosis assays with a selection of naturally occurring inducer chemicals. Four species of crustose coralline algae, one non-coralline crustose alga and two branching coralline algae induced larval metamorphosis. However, one additional species of branching coralline algae did not produce a larval response. Metamorphosis was also observed when larvae were exposed to skeleton from the massive coral Goniastrea retiformis (Lamarck, 1816) and to calcified reef rubble, demonstrating metamorphosis is possible in the absence of encrusting algae. Chemical extracts from these algae and the coral skeleton, obtained using either decalcification or simple methanol extraction procedures, also contained active inducers. These results extend the number of crustose algal species known to induce coral metamorphosis, suggest that some inducers may not necessarily be strongly associated with the calcified algal cell walls, and indicate that inducer sources in reef habitats may be more diverse than previously reported. Accepted: 21 May 1999  相似文献   

12.
Coral reef restoration methods such as coral gardening are becoming increasingly considered as viable options to mitigate reef degradation and enhance recovery of depleted coral populations. In this study, we describe several aspects of the coral gardening approach that demonstrate this methodology is an effective way of propagating the threatened Caribbean staghorn coral Acropora cervicornis: (1) the growth of colonies within the nursery exceeded the growth rates of wild staghorn colonies in the same region; (2) the collection of branch tips did not result in any further mortality to the donor colonies beyond the coral removed for transplantation; (3) decreases in linear extension of the donor branches were only temporary and donor branches grew faster than control branches after an initial recovery period of approximately 3–6 weeks; (4) fragmentation did not affect the growth rates of non-donor branches within the same colony; (5) small branch tips experienced initial mortality due to handling and transportation but surviving tips grew well over time; and (6) when the growth of the branch tips is added to the regrowth of the fragmented donor branches, the new coral produced was 1.4–1.8 times more than new growth in undisturbed colonies. Based on these results, the collection of small (2.5–3.5 cm) branch tips was an effective propagation method for this branching coral species resulting in increased biomass accumulation and limited damage to parental stocks.  相似文献   

13.
Space competition between corals and seaweeds is an important ecological process underlying coral-reef dynamics. Processes promoting seaweed growth and survival, such as herbivore overfishing and eutrophication, can lead to local reef degradation. Here, we present the case that increasing concentrations of atmospheric CO(2) may be an additional process driving a shift from corals to seaweeds on reefs. Coral (Acropora intermedia) mortality in contact with a common coral-reef seaweed (Lobophora papenfussii) increased two- to threefold between background CO(2) (400 ppm) and highest level projected for late 21st century (1140 ppm). The strong interaction between CO(2) and seaweeds on coral mortality was most likely attributable to a chemical competitive mechanism, as control corals with algal mimics showed no mortality. Our results suggest that coral (Acropora) reefs may become increasingly susceptible to seaweed proliferation under ocean acidification, and processes regulating algal abundance (e.g. herbivory) will play an increasingly important role in maintaining coral abundance.  相似文献   

14.
For sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography. This laboratory based study tested whether surface microtopography alone (without chemical cues) plays an important contributing role in the settlement of larvae of coral reef sessile invertebrates. We measured settlement to tiles, engineered with surface microtopography (holes) that closely matched the sizes (width) of larvae of a range of corals and sponges, in addition to surfaces with holes that were markedly larger than larvae. Larvae from two species of scleractinian corals (Acropora millepora and Ctenactis crassa) and three species of coral reef sponges (Luffariella variabilis, Carteriospongia foliascens and Ircinia sp.,) were used in experiments. L. variabilis, A. millepora and C. crassa showed markedly higher settlement to surface microtopography that closely matched their larval width. C. foliascens and Ircinia sp., showed no specificity to surface microtopography, settling just as often to microtopography as to flat surfaces. The findings of this study question the sole reliance on chemical based larval settlement cues, previously established for some coral and sponge species, and demonstrate that specific physical cues (surface complexity) can also play an important role in larval settlement of coral reef sessile invertebrates.  相似文献   

15.
Zooxanthellae are very important for the coral reef ecosystem. The diversity of coral hosts Is high in the South China Sea, but the diversity of zooxanthellae has not yet been investigated. We chose the Zhubi Coral Reef of the Nansha Islands as the region to be surveyed in the present study because it represents a typical tropical coral reef of the South China Sea and we investigated zooxanthellae diversity In 10 host scleractinlan coral species using polymerase chain reaction (PCR) of the large subunit rRNA and restriction fragment length polymorphlsm (RFLP) patterns. Poclllopora verrucosa, Acropora pefifera, Acropora mlllepora, Fungla fungltes, Galaxea fasclcularls, and Acropora pruinosa harbor Clade C, Goniastrea aspera harbors Clade D, and Acropora formosa harbors Clades D and C. Therefore, the Clade C is the dominant type in the Zhubi Coral Reef of the Nansha Islands. Furthermore, the results of the present also disprove what has been widely accepted, namely that one coral host harbors only one algal symblont. The coral-algal symbiosis Is flexible, which may be an Important mechanism for surviving coral bleaching. Meanwhile, on the basis of the results of the present study, we think that Symblodlnium Clade D may be more tolerant to stress than Symbiodlnlum Clade C.  相似文献   

16.
The early post-settlement stage is the most sensitive during the life history of reef building corals. However, few studies have examined the factors that influence coral mortality during this period. Here, the impact of fouling on the survival of newly settled coral spat of Acropora millepora was investigated by manipulating the extent of fouling cover on settlement tiles using non-toxic, wax antifouling coatings. Survival of spat on coated tiles was double that on control tiles. Moreover, there was a significant negative correlation between percentage cover of fouling and spat survival across all tiles types, suggesting that fouling in direct proximity to settled corals has detrimental effects on early post-settlement survival. While previous studies have shown that increased fouling negatively affects coral larval settlement and health of juvenile and adult corals, to the best of our knowledge, this is the first study to show a direct relationship between fouling and early post-settlement survival for a broadcast spawning scleractinian coral. The negative effects of fouling on this sensitive life history stage may become more pronounced in the future as coastal eutrophication increases. Our results further suggest that targeted seeding of coral spat on artificial surfaces in combination with fouling control could prove useful to improve the efficiency of sexual reproduction-based coral propagation for reef rehabilitation.  相似文献   

17.
Various approaches to coral restoration have been developed to help increase rate of reef recovery from perturbations, among the most common of which is coral transplantation. Success is often evaluated based on short‐term observations that capture only the initial phase of space colonization by coral transplants. Here, an individual‐based model is developed to quantify uncertainty in future trajectories in experimental plots given past observations. Empirical data were used to estimate probabilistic growth, survival, and fission rates of Acropora pulchra and A. intermedia (order Scleractinia) in a sandy reef flat (Bolinao, Philippines). Simulations were initialized with different densities (25 or 50 transplants per species per 16 m2) to forecast possible coral cover trajectories over a 5‐year period. Given current conditions, there is risk of local extinction which is higher in low‐density plots for both species, and higher for A. intermedia compared to A. pulchra regardless of density. While total coral cover is projected to increase, species composition in the future is more likely to be highly uneven. The model was used to quantify effect on recovery rate of protection from pulse anthropogenic disturbances, given different initial transplantation densities. When monitoring data are limited in time, stochastic models may be used to assess whether the restoration trajectory is heading toward the desired state and at what rate, and foresee system response to various adaptive interventions.  相似文献   

18.
In order to develop and test a low-cost method of coral reef rehabilitation, the staghorn corals Acropora muricata and A. vaughani were transplanted to a shallow site with unstable substrate. To avoid abrasion, dislodgement and transport due to water movement, the transplanted corals were tied to string sections, which were connected at the seabed to form a grid. This created stability and improved the survival of the corals. The average increase in weight of live coral over 1 year was 56%, eight times more than the control treatment with unattached coral branches. This difference was mainly due to a reduced partial mortality among smaller coral fragments in the stabilized treatment. Survival was positively related to initial size among the loosely placed coral branches, whereas the attached treatment showed a negative relation between size and relative increase in weight of the surviving parts of the coral branches. Coral fragments were not significantly affected by severe physical damage simulating the effects of handling.  相似文献   

19.
Duong  B.  Blomberg  S. P.  Cribb  T. H.  Cowman  P. F.  Kuris  A. M.  McCormick  M. I.  Warner  R. R.  Sun  D.  Grutter  A. S. 《Coral reefs (Online)》2019,38(2):199-214

The pelagic larval stage is a critical component of the life cycle of most coral reef fishes, but the adaptive significance of this stage remains controversial. One hypothesis is that migrating through the pelagic environment reduces the risk a larval fish has of being parasitised. Most organisms interact with parasites, often with significant, detrimental consequences for the hosts. However, little is known about the parasites that larval fish have upon settlement, and the factors that affect the levels of parasitism. At settlement, coral reef fishes vary greatly in size and age (pelagic larval duration), which may influence the degree of parasitism. We identified and quantified the parasites of pre-settlement larvae from 44 species of coral reef fishes from the Great Barrier Reef and explored their relationship with host size and age at settlement, and phylogeny. Overall, less than 50% of the larval fishes were infected with parasites, and over 99% of these were endoparasites. A Bayesian phylogenetic regression was used to analyse host-parasite (presence and intensity) associations. The analysis showed parasite presence was not significantly related to fish size, and parasite intensity was not significantly related to fish age. A phylogenetic signal was detected for both parasite presence and intensity, indicating that, overall, closely related fish species were likely to have more similar susceptibility to parasites and similar levels of parasitism when compared to more distantly related species. The low prevalence of infection with any parasite type and the striking rarity of ectoparasites is consistent with the ‘parasite avoidance hypothesis’, which proposes that the pelagic phase of coral reef fishes results in reduced levels of parasitism.

  相似文献   

20.
Coral reef restoration aims to help threatened coral ecosystems recover from recent severe declines. Here we address whether coral fragments should be out‐planted individually or in larger aggregations. Theory suggests alternative possible outcomes: whereas out‐plants within aggregations might suffer from heightened negative interactions with neighbors (e.g. competition for space), they may alternatively benefit from positive interactions with neighbors (e.g. buffering wave disturbances). On a degraded reef in the Caribbean (St. Croix, USVI), using out‐plants of the critically endangered staghorn coral Acropora cervicornis, we experimentally tested how aggregation density (1–20 out‐planted coral fragments spaced at approximately 5 cm) influenced initial coral growth (over 3 months). Coral growth declined as a function of aggregation size, and out‐plants within larger aggregations had fewer and shorter secondary branches on average, indicative of horizontal competition for space. Our results therefore suggest that wide spacing of individuals will maximize the initial growth of out‐planted branching corals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号