首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S protein, a major inhibitor of the assembly of the membrane attack complex of complement, has recently been shown to be identical to the serum spreading factor vitronectin. It also neutralizes the anticoagulant activities of heparin. We have studied the structural requirements for the heparin neutralizing properties of S protein/vitronectin using heparin, heparan sulfate, and heparin oligosaccharides with well defined anticoagulant specificities. The abilities of heparin fractions, Mr 7,800-18,800, with high affinity for antithrombin, and of the International Heparin Standard, to accelerate the inactivation of thrombin and Factor Xa by antithrombin were readily neutralized by S protein/vitronectin. Binding and neutralization of heparin by S protein/vitronectin was inhibited by heparin with low affinity for antithrombin, indicating that S protein/vitronectin can interact with a region on the heparin chain that might serve as a proteinase binding site. S protein/vitronectin efficiently neutralized oligosaccharides of Mr 2,400-7,200, unlike the two other physiologically occurring heparin neutralizing proteins histidine-rich glycoprotein and platelet factor 4. Furthermore, S protein/vitronectin neutralized the anti-Factor Xa activity of a synthetic pentasaccharide comprising the antithrombin-binding sequence of heparin. High molar excess of a synthetic tridecapeptide corresponding to part (amino acids 374-359) of the proposed glycosaminoglycan binding domain of S protein/vitronectin neutralized high affinity heparin and some oligosaccharides, but failed to neutralize the synthetic antithrombin-binding pentasaccharide. Like platelet factor 4, but unlike histidine-rich glycoprotein, S protein/vitronectin readily neutralized the anticoagulant activities of heparan sulfate of Mr approximately 20,000. These findings suggest that S protein/vitronectin may interact through its glycosaminoglycan binding domain(s) with various functional domains of the heparin (heparan sulfate) molecule, including the antithrombin-binding pentasaccharide sequence. Furthermore, the results suggest that S protein/vitronectin may be a physiologically important modulator of the anticoagulant activity of heparin-like material on or near the vascular endothelium.  相似文献   

2.
Binding of platelet factor 4 to heparin oligosaccharides.   总被引:4,自引:1,他引:3       下载免费PDF全文
Heparin fractions of differing Mr (7800-18 800) prepared from commercial heparin by gel filtration and affinity chromatography on immobilized anti-thrombin III had specific activities when determined by anti-Factor Xa and anti-thrombin assays that ranged from 228 to 448 units/mg. The anti-Factor Xa activity of these fractions could be readily and totally neutralized by increasing concentrations of platelet factor 4 (PF4). That these fractions bound to immobilized PF4 was indicated by the complete binding under near physiological conditions of 3H-labelled unfractionated commercial heparin. An anti-thrombin III-binding oligosaccharide preparation (containing predominantly eight to ten saccharide units), prepared by degradation of heparin with HNO2 had high (800 units/mg) anti-Factor Xa, but negligible anti-thrombin, specific activity. The anti-Factor Xa activity of this material could not be readily neutralized by PF4, and the 3H-labelled oligosaccharides did not completely bind to immobilized PF4. A heterogeneous anti-thrombin III-binding preparation containing upwards of 16 saccharides had anti-thrombin specific activity of just less than one-half the anti-Factor Xa specific activity. This material was completely bound to immobilized PF4 and was eluted with similar concentrations of NaCl to those that were required to elute unfractionated heparins from these columns. Furthermore, increasing concentrations of PF4 neutralized the anti-Factor Xa activity of this material in a manner similar to that of unfractionated heparin. It is concluded that heparin oligosaccharides require saccharide units in addition to the anti-thrombin III-binding sequence in order to fully interact with PF4.  相似文献   

3.
Oligosaccharides of well-defined molecular size were prepared from heparin by nitrous acid depolymerization, affinity chromatography on immobilized antithrombin III (see footnote on Nomenclature) and gel chromatography on Sephadex G-50. High affinity (for antithrombin III) octa-, deca-, dodeca-, tetradeca-, hexadeca- and octadeca-saccharides were prepared, as well as oligosaccharides of larger size than octadecasaccharide. The inhibition of Factor Xa by antithrombin III was greatly accelerated by all of these oligosaccharides, the specific anti-Factor Xa activity being invariably greater than 1300 units/mumol. The anti-Factor Xa activity of the decasaccharide was not significantly decreased in the presence of platelet factor 4, even at high platelet factor 4/oligosaccharide ratios. Measurable but incomplete neutralization of the anti-Factor Xa activities of the tetradeca- and hexadeca-saccharides was observed, and complete neutralization of octadeca- and larger oligo-saccharides was achieved with excess platelet factor 4. The octa-, deca-, dodeca-, tetradeca- and hexadeca-saccharides had negligible effect on the inhibition of thrombin by antithrombin III, whereas specific anti-thrombin activity was expressed by the octadeca-saccharide and by the larger oligosaccharides. An octadecasaccharide is therefore the smallest heparin fragment (prepared by nitrous acid depolymerization) that can accelerate thrombin inhibition by antithrombin III. The anti-thrombin activities of the octadecasaccharide and larger oligosaccharides were more readily neutralized by platelet factor 4 than were their anti-Factor Xa activities. These findings are compatible with two alternative mechanisms for the action of platelet factor 4, both involving the binding of the protein molecule adjacent to the antithrombin III-binding site. Such binding results in either steric interference with the formation of antithrombin III-proteinase complexes or in displacement of the antithrombin III molecule from the heparin chain.  相似文献   

4.
The interference of the heparin-neutralizing plasma component S protein (vitronectin) (Mr = 78,000) with heparin-catalyzed inhibition of coagulation factor Xa by antithrombin III was investigated in plasma and in a purified system. In plasma, S protein effectively counteracted the anticoagulant activity of heparin, since factor Xa inhibition was markedly reduced in comparison to heparinized plasma deficient in S protein. Using purified components in the presence of heparin, S protein induced a concentration-dependent reduction of the inhibition rate of factor Xa by antithrombin III. This resulted in a decrease of the apparent pseudo-first order rate constant by more than 10-fold at a physiological ratio of antithrombin III to S protein. S protein not only counteracted the anticoagulant activity of commercial heparin but also of low molecular weight forms of heparin (mean Mr of 4,500). The heparin-neutralizing activity of S protein was found to be mainly expressed in the range 0.2-10 micrograms/ml of high Mr as well as low Mr heparin. S protein and high affinity heparin reacted with apparent 1:1 stoichiometry to form a complex with a dissociation constant KD = 1 X 10(-8) M as determined by a functional assay. As deduced from dot-blot analysis, direct interaction of radiolabeled heparin with S protein revealed a dissociation constant KD = 4 X 10(-8) M. Heparin binding as well as heparin neutralization by S protein increased significantly when reduced/carboxymethylated or guanidine-treated S protein was employed indicating the existence of a partly buried heparin-binding domain in native S protein. Radiolabeled heparin bound to the native protein molecule as well as to a BrCN fragment (Mr = 12,000) containing the heparin-binding domain as demonstrated by direct binding on nitrocellulose replicas of sodium dodecyl sulfate-polyacrylamide gels. Kinetic analysis revealed that the heparin neutralization activity of S protein in the inhibition of factor Xa by antithrombin III could be mimicked by a synthetic tridecapeptide from the amino-terminal portion of the heparin-binding domain. These data provide evidence that the heparin-binding domain of S protein appears to be unique in binding to heparin and thereby neutralizing its anticoagulant activity in the inhibition of coagulation factors by antithrombin III. The induction of heparin binding and neutralization may be considered a possible physiological mechanism initiated by conformational alteration of the S protein molecule.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Heparin with high anticoagulant activity was isolated from the two marine clam species Anomalocardia brasiliana and Tivela mactroides. A large portion of the polysaccharide chains of both preparations bound with high affinity to immobilized antithrombin. Titrations monitored by tryptophan fluorescence showed that clam polysaccharide chains with Mr approximately 22,500 contained up to three binding sites for antithrombin and that the binding constants for the interaction of these chains with antithrombin were higher than those reported for mammalian heparin of comparable size. Structural analysis of clam heparin fractions and subfractions of clam heparin with differing affinity for immobilized antithrombin revealed the presence of large amounts (up to 25-30% of the total disaccharide units) of the 3-O-sulfated saccharide sequences (-GlcNSO3)-GlcA-GlcNSO3(3-OSO3)- and (-GlcNSO3)-GlcA-GlcNSO3(3,6-di-OSO3)-, previously identified as unique markers for the antithrombin-binding region of heparin. The content of these saccharide sequences was found to increase with increasing affinity of the parent polysaccharide for antithrombin. Structural analysis of the clam heparins also demonstrated the occurrence of a novel saccharide sequence, tentatively identified as (-GlcNSO3)-IdA-GlcNSO3(3,6-di-OSO3)-, that has not previously been found in heparin or related polysaccharides. The contents of this latter sequence, at most 3-4% of the total disaccharide units, showed no correlation with the affinity for antithrombin.  相似文献   

6.
The influence of Ca2+, phospholipid and Factor V was determined on the rate of inactivation of Factor Xa by antithrombin III, in the absence and in the presence of unfractionated heparin and of three high-affinity heparin oligosaccharides in the Mr range 1500-6000. In the absence of heparin the addition of Ca2+, phospholipid and Factor V caused a 4-fold decrease in rate of inactivation of Factor Xa. As concentrations of unfractionated heparin were increased the protective effect of Ca2+/phospholipid/Factor V was gradually abolished, and at a concentration of 2.4 nM there were no differences in rates of neutralization of Factor Xa in the presence or absence of Ca2+, phospholipid and Factor V. In contrast, heparin decasaccharide (Mr 3000) and pentasaccharide (Mr 1500) fragments were unable to overcome the protective effect of Ca2+/phospholipid/Factor V; in the presence of these components their catalytic efficiencies were 16-fold and 40-fold less respectively than that of unfractionated heparin. A heparin 20-22-saccharide fragment (Mr approx. 6000) gave similar inactivation rates in the presence and in the absence of Ca2+/phospholipid/Factor V. Human and bovine Factor Xa gave similar results. These results indicate that in the presence of Ca2+/phospholipid/Factor V optimum inhibition of Factor Xa requires a saccharide sequence of heparin additional to that involved in binding to antithrombin III. The use of free enzyme for the assessment of anti-(Factor Xa) activity of low-Mr heparin fractions could give misleading results.  相似文献   

7.
The specificity of endothelial binding sites for heparin was investigated with heparin fractions and fragments differing in their Mr, charge density and affinity for antithrombin III, as well as with heparinoids and other anionic polyelectrolytes (polystyrene sulphonates). The affinity for endothelial cells was estimated by determining I50 values in competition experiments with 125I-heparin. We found that affinity for endothelial cells increases as a function of Mr and charge density (degree of sulphation). Binding sites are not specific receptors for heparin. Other anionic polyelectrolytes, such as pentosan polysulphates and polystyrene sulphonates, competed with heparin for binding to endothelial cells. Fractions of standard heparin with high affinity for antithrombin III also had greater affinity for endothelium. However, these two properties of heparin (affinity for antithrombin III and affinity for endothelial cells) could be dissociated. Oversulphated heparins and oversulphated low-Mr heparin fragments had lower anticoagulant activity and higher affinity for endothelial cells than did their parent compounds. Synthetic pentasaccharides, bearing the minimal sequence for binding to antithrombin III, did not bind to endothelial cells. Binding to endothelial cells involved partial neutralization of heparin. Bound heparin exhibited only 5% and 7% of antifactor IIa and antifactor Xa specific activity, respectively. In the presence of 200 nM-antithrombin III, and in the absence of free heparin, a limited fraction (approx. 30%) of bound heparin was displaced from endothelial cells during a 1 h incubation period. These data suggested that a fraction of surface-bound heparin could represent a pool of anticoagulant.  相似文献   

8.
Heparan sulfate (HS) and heparin are highly sulfated polysaccharides. Heparin is a commonly used anticoagulant drug that inhibits the activities of factors Xa and IIa (also known as thrombin) to prevent blood clot formation. Here, we report the synthesis of a series of size-defined oligosaccharides to probe the minimum size requirement for an oligosaccharide with anti-IIa activity. The synthesis was completed by a chemoenzymatic approach involving glycosyltransferases, HS sulfotransferases, and C(5)-epimerase. We demonstrate the ability to synthesize highly purified N-sulfo-oligosaccharides having up to 21 saccharide residues. The results from anti-Xa and anti-IIa activity measurements revealed that an oligosaccharide longer than 19 saccharide residues is necessary to display anti-IIa activity. The oligosaccharides also exhibit low binding toward platelet factor 4, raising the possibility of preparing a synthetic heparin with a reduced effect of heparin-induced thrombocytopenia. The results from this study demonstrate the ability to synthesize large HS oligosaccharides and provide a unique tool to probe the structure and function relationships of HS that require the use of large HS fragments.  相似文献   

9.
The interactions of two proteinase inhibitors, heparin cofactor II and antithrombin, with thrombin are potentiated by heparin. Using two methods, we have studied the potentiating effects of a series of heparin (poly)saccharides with high affinity for antithrombin and mean Mr ranging from approx. 1700 to 18,800. First, catalytic amounts of heparin (poly)saccharide were added to purified systems containing thrombin and either heparin cofactor II or antithrombin. Residual thrombin activity was determined with a chromogenic substrate. It was found that only the higher-Mr polysaccharides (Mr greater than 8000) efficiently catalysed thrombin inhibition by heparin cofactor II, there being a progressive catalytic effect with increasing Mr of the polysaccharide. Weak accelerating effects were noted with low-Mr saccharides (Mr less than 8000). This contrasted with the well-characterized interaction of heparin with antithrombin and thrombin, where heparin oligosaccharides of Mr less than 5400 had absolutely no ability to accelerate the reaction, while (poly)saccharides of Mr exceeding 5400 showed rapidly increasing catalytic activity with increasing Mr. Secondly, these and other heparin preparations were added in a wide concentration range to plasma with which 125I-labelled thrombin was then incubated for 30 s. Inhibited thrombin was determined from the distribution of labelled thrombin amongst inhibitor-thrombin complexes, predominantly antithrombin-thrombin and heparin cofactor II-thrombin complexes. In this situation, where the inhibitors competed for thrombin and for the (poly)saccharides, it was found that, provided the latter were of high affinity for antithrombin and exceeded a Mr of 5400, thrombin inhibition in plasma was mediated largely through antithrombin. Polysaccharides of Mr exceeding 8000 that were of low affinity for antithrombin accelerated thrombin inhibition in plasma through their interaction with heparin cofactor II. High concentrations of saccharides of Mr 1700-5400 exhibited a size-dependent acceleration of thrombin inhibition, not through their interaction with antithrombin, but through their interaction with heparin cofactor II.  相似文献   

10.
The purpose of this study was to compare three heparin-binding plasma proteinase inhibitors in order to identify common and unique features of heparin binding and heparin-enhanced proteinase inhibition. Experiments with antithrombin, heparin cofactor, and protein C inhibitor were performed under identical conditions in order to facilitate comparisons. Synthetic peptides corresponding to the putative heparin binding regions of antithrombin, heparin cofactor, and protein C inhibitor bound to heparin directly and interfered in heparin-enhanced proteinase inhibition assays. All three inhibitors obeyed a ternary complex mechanism for heparin-enhanced thrombin inhibition, and the optimum heparin concentration was related to the apparent heparin affinity of the inhibitor. The maximum inhibition rate and rate enhancement due to heparin appeared to be unique properties of each inhibitor. In assays with heparin oligosaccharides of known size, only the antithrombin-thrombin reaction exhibited a sharp threshold for rate enhancement at 14-16 saccharide units. Acceleration of antithrombin inhibition of factor Xa, heparin cofactor inhibition of thrombin, and protein C inhibitor inhibition of thrombin, activated protein C, and factor Xa did not require a minimum saccharide size. The differences in heparin size dependence and rate enhancement of proteinase inhibition by these inhibitors might reflect differences in the importance of the ternary complex mechanism and other mechanisms, alterations in inhibitor reactivity, and orientation effects in heparin-enhanced proteinase inhibition.  相似文献   

11.
Oligosaccharides (10-20 monosaccharide units) with high affinity for antithrombin, as well as larger high-affinity heparin fractions (having relative molecular masses between 6,000 and 21,500), all markedly accelerated the inhibition of Factor Xa by antithrombin. Moreover, all high-affinity oligosaccharides and heparins enhanced, to a similar extent, the amount of free proteolytically modified antithrombin cleaved at the reactive bond by Factor Xa. In contrast, a minimum high-affinity heparin size of approximately 18 monosaccharide units was required to significantly accelerate the inactivation of thrombin by antithrombin and to enhance the production of modified antithrombin by this enzyme. All high-affinity fractions studied had similar affinities for antithrombin, as determined by fluorescence titrations. In competition experiments, binary complexes of antithrombin with octadecasaccharide or larger high-affinity heparins, but not with smaller oligosaccharides, displaced inactivated 125I-thrombin from matrix-linked low-affinity heparin. Moreover, similar binary complexes with 3H-labeled octadecasaccharide or larger chains, but not with smaller oligosaccharides, were capable of binding to matrix-linked inactivated thrombin. These results indicate that simultaneous binding of antithrombin and thrombin to high-affinity heparin is a prerequisite to the acceleration of the antithrombin-thrombin reaction and that the minimum heparin sequence capable of binding both proteins comprises approximately 18 monosaccharide units. Similar complex formation apparently is not required for the acceleration of the antithrombin-Factor Xa reaction.  相似文献   

12.
Adult male rats were given [35S]sulphate intraperitoneally. Heparan [35S]sulphate (HS) chains were recovered from adipose tissue, brain, carcase, heart, intestine, kidneys, liver, lungs, skin and spleen by digestion with Pronase, precipitation with cetylpyridinium chloride, digestion with chondroitin ABC lyase and DNAase and gradient elution from DEAE-Sephacel. Purity was confirmed by agarose-gel electrophoresis and degradation with HNO2. Fractionation by gradient elution from antithrombin-agarose indicated that the proportion of HS with high binding affinity for antithrombin (HA-HS) ranged from 4.7% (kidneys) to 21.5% (brain). On a mass basis the major sources of HA-HS were carcase, skin and intestine. HA-HS from intestine was arbitrarily divided into subfractions I-VI, with anticoagulant activities ranging from 1 to 60 units/mg [by amidolytic anti-(Factor IIa) assay] and from 4 to 98 units/mg [by amidolytic anti-(Factor Xa) assay], indicating that the antithrombin-binding-site densities of HA-HS chains covered a wide range, as shown previously for rat HA-heparin chains [Horner, Kusche, Lindahl & Peterson (1988) Biochem. J. 251, 141-145]. HA-HS subfractions II, IV and VI were mixed with samples of HA-[3H]heparin chains and rechromatographed on antithrombin-agarose. Affinity for matrix-bound antithrombin did not correlate with anticoagulant activity, e.g. HA-HS subfraction IV [38 anti-(Factor Xa) units/mg] was co-eluted with HA-heparin chains [127 anti-(Factor Xa) units/mg].  相似文献   

13.
The effect of heparin fractions of various Mr, with high affinity for antithrombin III, on the kinetics of the reaction between factor Xa and antithrombin III have been studied using purified human proteins. Each of the heparin fractions, which varied between pentasaccharide and Mr 32,000, accelerated the inhibition of factor Xa although an increasing rate of inhibition was observed with increasing Mr. The chemically synthesized pentasaccharide preparation (Mr 1714) gave a maximum inhibition rate constant of 1.2 X 10(7) M-1 X min-1, compared with 6.3 X 10(4) M-1 X min-1 in the absence of heparin, and this rose progressively to 4.2 X 10(8) M-1 X min-1 with the two fractions of highest Mr (22,500 and 32,000). The 35-fold difference in inhibition rates observed with the high-affinity fractions was virtually abolished by the presence of 0.3 M-NaCl. The disparity in these rates of inhibition was shown to be due to a change in the Km for factor Xa when a two-substrate model of heparin catalysis was used. The Km for factor Xa rose from 28 nM for the fraction of Mr 32,000 to 770 nM for the pentasaccharide, whilst 0.3 M-NaCl also caused an increase in Km with the high-Mr fraction. These data suggest that the increased rates of inhibition observed with heparins of higher Mr may be due to an involvement of heparin binding to factor Xa as well as to antithrombin III.  相似文献   

14.
Heparin is thought to regulate the rate of mammalian blood clotting by enhancing the activity of antithrombin, an inhibitor of coagulation enzymes. The present study establishes that this same inhibitor is present in the blood plasma of each of the terrestrial vertebrate groups including mammals, birds, reptiles, and amphibians. In each case, an inhibitor with remarkably similar properties to human antithrombin was isolated by affinity chromatography on immobilized porcine heparin. The purified vertebrate inhibitors all show the following physical and functional homologies to human antithrombin: (i) heparin-enhanced inhibition of both bovine thrombin and human Factor Xa, (ii) molecular masses of approximately 60,000, and (iii) heparin-induced increases in ultraviolet fluorescence. Also, the heparin-binding interaction of vertebrate antithrombins is highly selective with each demonstrating the same rigid specificity for heparin species fractionated on the basis of their affinity for human antithrombin. This common ability of vertebrate antithrombins to discriminate among heparins is accomplished by a nearly unvarying equilibrium binding constant for the high-affinity heparin species. Thus, the present results suggest that the anticoagulant relationship of heparin and antithrombin was established at an early point in the evolution of the coagulation system and has been highly conserved since that time.  相似文献   

15.
A prothrombinase complex of mouse peritoneal macrophages   总被引:3,自引:0,他引:3  
Addition of prothrombin to mouse peritoneal macrophages in vitro resulted in the formation of a thrombin-like enzyme, as demonstrated by use of the luminogenic peptide substrate S-2621. The prothrombinase activity was sedimented by high-speed centrifugation following homogenization of the cells and was abolished by treatment of the cells with the nonionic detergent Triton X-100 at 0.02% concentration. Moreover, the activity was drastically reduced by maintaining cultures in the presence of warfarin and, presumably due to competitive substrate inhibition, by adding S-2222, a chromogenic peptide substrate for Factor Xa. These findings suggest that prothrombin cleavage is catalyzed by Factor Xa at the macrophage surface. The generated thrombin was inhibited by antithrombin, and this reaction was accelerated by heparin with high affinity for antithrombin but not by the corresponding oligosaccharides composed of 8-14 monosaccharide units. Such oligosaccharides which are capable of accelerating the inactivation of Factor Xa by antithrombin, inhibited thrombin formation from prothrombin in the macrophage cultures, presumably by promoting inactivation by antithrombin of Factor Xa in a prothrombinase complex. Activation of the macrophage coagulation system, as proposed to occur in certain inflammatory conditions, thus may be modulated at various levels by heparin, or heparin oligosaccharides, released from mast cells.  相似文献   

16.
Heparin and heparin fragments in the molecular mass range 1,700-20,000 Da were examined for their ability to accelerate the antithrombin III (AT III)-dependent inhibition of human factor Xa and the prothrombin converting complex (prothrombinase) during human prothrombin activation. The prothrombinase reaction was modeled by a 3-parameter 2-exponential equation to determine the initial rate of prothrombin activation and the pseudo-first order rate constants of inhibition of prothrombinase and in situ generated thrombin activity. The catalytic specific activities of the heparins increased with increasing molecular size for both the inhibition of prothrombinase and factor Xa. A 10-fold increase over the entire Mr range was found. In contrast to results obtained by others (Ellis, V., Scully, M. F., and Kakkar, V. V. (1986) Biochem. J. 233, 161-165; Barrowcliffe, T. W., Havercroft, S. J., Kemball-Cook, G., and Lindahl, U. (1987) Biochem. J. 243, 31-37), all the heparins showed a 5-fold higher rate of inhibition of factor Xa when compared with the inhibition of prothrombinase, indicating that the factor Va-mediated protection of factor Xa from inhibition by AT III/heparin is independent of the molecular size of the heparin. Our original approach has also revealed a hitherto unrecognized phenomenon, namely, in addition to the accelerating effect of the heparins on the rate of formation of the inactive AT III-factor Xa complex, heparins with Mr greater than 4,500 reduce the initial rate of thrombin generation in the presence of AT III in a concentration-dependent way. We hypothesize that the formation of the dissociable ternary AT III-heparin-factor Xa complex results in a (partial) loss of factor Xa activity towards its natural substrate prothrombin.  相似文献   

17.
Finback-whale (Balaenoptera physalus L.) heparin was partially digested with a purified heparinase and an octasaccharide with high affinity for antithrombin III was isolated from the digest by gel filtration, followed by affinity chromatography on a column of antithrombin III immobilized on Sepharose 4B. This octasaccharide possessed high inhibitory activity for Factor Xa in the presence of antithrombin III, but was essentially inactive for thrombin-antithrombin III reaction. The anticoagulant activity determined by the activated-partial-thromboplastin-time method was very low (40-70 units/mg), although the initial whale heparin exhibited high activity (252 units/mg). On the basis of the results of chemical analyses, 13C n.m.r. spectrum and enzymic studies with purified heparinase, heparitinases 1 and 2, the predominant structure of the octasaccharide was proposed as follows: delta UA(2S) alpha 1 leads to 4GlcNS alpha 1 leads to 4IdUA alpha 1 leads to 4GlcNAc(6S) alpha 1 leads to 4GlcUA beta 1 leads to 4GlcNS(3S) alpha 1 leads to 4IdUA(2S) alpha 1 leads to 4GlcNS. Comparing this structure with those of the heparin octasaccharides so far reported, the presence of the critical structural elements for binding to antithrombin III was suggested in the pentasaccharide region situated at the reducing end of this octasaccharide. Binding to antithrombin III of the critical structural elements alone would appear to elicit the acceleration of the Factor Xa-antithrombin III reaction. Additional structural elements required for the acceleration of the thrombin-antithrombin III reaction and for the manifestation of high anticoagulant activity are discussed.  相似文献   

18.
Treatment of porcine heparin with the ferrous-EDTA complex and ascorbic acid for 24 h at 37 degrees C results in the degradation of most of the glycosaminoglycan to smaller fragments. About 65% of the products comprise oligosaccharides composed of less than 30 sugar units. The extent of depolymerization is decreased significantly if ascorbate or EDTA is not included in the reaction mixture. Gel filtration of the reaction products yielded fractions with narrow chain length ranges. The sulfate content of the fractions and their electrophoretic mobilities on cellulose acetate indicate that the components have equivalent charge densities. Depolymerization products with 20 or more sugar units retain significant anticoagulant potencies as measured by their effect in accelerating the neutralization of factor Xa by antithrombin.  相似文献   

19.
Heparin was previously reported to potentiate the mitogenic activity of endothelial cell mitogens in a crude extract of bovine hypothalami (Thornton, S. C., Mueller, S. N., and Levine, E. M. (1983) Science 222, 623-625). We and others (Gospodarowicz, D., and Cheng, J. (1986) J. Cell. Physiol. 128, 475-484) have reported that the growth stimulatory effects of acidic fibroblast growth factor (aFGF) are potentiated in a similar manner. We have used these observations as the basis of an assay to characterize the importance of size, sulfation, and anticoagulant activity of heparin in mediating this effect. Partial nitrous acid depolymerization of heparin from porcine intestinal mucosa resulted in a mixture of heparin fragments, containing oligosaccharides ranging from disaccharides to polysaccharides of about 40 monosaccharides in length. This mixture was fractionated by ion exchange chromatography and gel permeation chromatography to obtain size-homogeneous oligosaccharides with different degrees of sulfation. Assay of these heparin-derived saccharides in the presence of a suboptimal concentration of aFGF revealed that a minimum chain length and a certain degree of sulfation is required in order to potentiate the action of aFGF. Low sulfate oligosaccharides (4-16 units) were unable to potentiate aFGF, whereas medium sulfate fractions of octadecasaccharides and larger were able to moderately potentiate aFGF. The potentiation of aFGF by the high sulfate fraction correlated with the saccharide size: 12 or more monosaccharide units were necessary to achieve potentiation equivalent to whole heparin, octa- and decasaccharides were mildly stimulatory, and hexasaccharides were without effect. In the absence of aFGF, intact heparin as well as all the oligosaccharides examined, inhibited the proliferation of capillary endothelial cells to approximately the same degree, between 20 and 50% inhibition. When a tetradecasaccharide was separated into a binding and a nonbinding fraction on matrix-bound antithrombin III, no difference was seen for these fractions in the endothelial cell proliferation assay. These results indicate that both size and sulfation of a heparin-derived oligosaccharide contribute to its ability to interact with aFGF and/or endothelial cells and that this interaction is independent of anticoagulant activity. In addition, our findings suggest that the inhibitory and potentiating effects of heparin on capillary endothelial cells have different structural requirements.  相似文献   

20.
Low molecular weight heparin (Mr 8 kDa) was prepared from conventional heparin (Mr 18 kDa) by the chromatography on DEAE-sephadex with the recovery of 56%. Low molecular weight heparin had less affinity to antithrombin III than unfractionated heparin and had less anticoagulant and anti-IIa activities. The anti-Xa activity of low molecular weight heparin exceed by 17% the activity of conventional heparin. In the experiments on rats it was determined that the biological half-life of low molecular weight heparin exceed two-fold that of the unfractionated heparin. In the modified model of the arteriovenous shunt thrombosis in normal and nephrotic syndrome rats it was shown that the low molecular weight heparin was the most efficient antithrombotic remedy in normal and decreased level of antithrombin III in the organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号