首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.   Objectives : This study is to evaluate the effect of separase depletion on cell cycle progression of irradiated and non-irradiated cells through the G2/M phases and consecutive cell survival. Materials and methods : Separase was depleted with siRNA in two human non-small cell lung carcinoma (NSCLC) cell lines. Cell cycle progression, mitotic fraction, DNA repair, apoptotic and clonogenic cell death were determined. Results : By depletion of endogenous separase with siRNA in NSCLCs, we showed that separase affects progression through the G2 phase. In non-irradiated exponentially growing cells, separase depletion led to an increased G2 accumulation from 17.2% to 29.1% in H460 and from 15.7% to 30.9% in A549 cells and a decrease in mitotic cells. Depletion of separase significantly ( P <  0.01) increased the fraction of radiation-induced G2 arrested cells 30–56 h after irradiation and led to decrease in the mitotic fraction. This was associated with increased double-strand break repair as measured by γ-H2AX foci kinetics in H460 cells and to a lesser extent in A549 cells. In addition, a decrease in the expression of mitotic linked cell death after irradiation was found. Conclusions : These results indicate that separase has additional targets involved in regulation of G2 to M progression after DNA damage. Prolonged G2 phase arrest in the absence of separase has consequences on repair of damaged DNA and cell death.  相似文献   

2.
3.
In order to maintain genetic integrity, cells are equipped with cell cycle checkpoints that detect DNA damage, orchestrate repair, and if necessary, eliminate severely damaged cells by inducing apoptotic cell death. The mitotic machinery is now emerging as an important determinant of the cellular responses to DNA damage where it functions as both the downstream target and the upstream regulator of the G2/M checkpoint. Cell cycle kinases and the DNA damage checkpoint kinases appear to reciprocally control each other. Specifically, cell cycle kinases control the inactivation of DNA damage checkpoint signaling. Termination of a DNA damage response by mitotic kinases appears to be an evolutionary conserved mechanism that allows resumption of cell cycle progression. Here we review recent reports in which molecular mechanisms underlying checkpoint silencing at the G2/M transition are elucidated.  相似文献   

4.
Herein, we report differential effects of various proteasome inhibitors including clasto-lactacystin-beta-lactone, (-)-epigallocatechin gallate (EGCG) and N-Acetyl-Leu-Leu-Norleu-al (LLnL) on proteasomal activities of YT and Jurkat cells, human natural killer (NK) and T cell lines, respectively. The inhibitory rates of these inhibitors on the purified 20S proteasomal and 26S proteasomal chymotrypsin-like activity in whole cell extracts and intact cells did not show significant differences between the two cell lines. The viability of both cell lines was reduced in the presence of LLnL. Subsequent studies revealed a reduction of the mitochondrial membrane potential and caspase-3 activation in these two cell lines upon treatment with proteasome inhibitors; however, caspase-3 activation occurred much earlier in Jurkat cells. Cell cycle analysis indicated a sub-G(1) apoptotic cell population in Jurkat cells and G(2)/M arrest in YT cells after they were treated by proteasome inhibitors. Moreover, pretreatment of YT cells by a caspase inhibitor followed by a proteasome inhibitor did not increase the percentage of G(2)/M phase cells. In addition, accumulation of p27 and IkappaB-alpha was detected only in Jurkat cells, but not YT cells. In summary, proteasome inhibitors may act differentially in cell cycle arrest and apoptosis of tumors of NK and T cell origin, and may have similar effects on normal NK and T cells.  相似文献   

5.
We here report the influence of the cell cycle abrogator UCN-01 on RKO human colon carcinoma cells differing in p53 status following exposure to two DNA damaging agents, the topoisomerase inhibitors etoposide and camptothecin. Cells were treated with the two drugs at the IC90 concentration for 24 h followed by post-incubation in drug-free medium. RKO cells expressing wild-type, functional p53 arrested the cell cycle progression in both the G1 and G2 phases of the cell cycle whereas the RKO/E6 cells, which lack functional p53, only arrested in the G2 phase. Growth-arrested cells did not resume proliferation even after prolonged incubation in drug-free medium (up to 96 h). To evaluate the importance of the cell cycle arrest on cellular survival, a non-toxic dose of UCN-01 (100 nM) was added to the growth-arrested cells. The addition of UCN-01 was accompanied by mitotic entry as revealed by the appearance of condensed chromatin and the MPM-2 phosphoepitope, which is characteristic for mitotic cells. G2 exit and mitotic transit was accompanied by a rapid activation of caspase-3 and apoptotic cell death. The influence of UCN-01 on the long-term cytotoxic effects of the two drugs was also determined. Unexpectedly, abrogation of the G2 arrest had no influence on the overall cytotoxicity of either drug. In contrast, addition of UCN-01 to cisplatin-treated RKO and RKO/E6 cells greatly increased the cytotoxic effects of the alkylating agent. These results strongly suggest that even prolonged cell cycle arrest in the G2 phase of the cell cycle is not necessarily coupled to efficient DNA repair and enhanced cellular survival as generally believed.  相似文献   

6.
Jurkat human lymphoblastoid cells were incubated in increasing concentrations of doxorubicin (0.05, 0.1 and 0.15 μM) to induce cell death, and their expression of cyclin A, B1 and D1 was evaluated by flow cytometry (cell cycle progression, Annexin V assay, percentages and levels of each of the cyclins), transmission electron microscopy (ultrastructure) and confocal fluorescence microscopy (expression and intracellular localization of cyclins). After low‐dose doxorubicin treatment, Jurkat cells responded mainly by G2/M arrest, which was related to increased cyclin B1, A and D1 levels, a low level of apoptosis and/or mitotic catastrophe. The influence of doxorubicin on levels and/or localization of selected cyclins was confirmed, which may in turn contribute to the G2/M arrest induced by the drug.  相似文献   

7.
Mevinolin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase, was used to study the importance of mevalonic acid (MVA) for cell cycle progression of tobacco (Nicotiana tabacum L.) BY-2 cells. After treatment with 5 microM mevinolin, the cell cycle progression was completely blocked and two cell populations accumulated (80% in phase G0/G1 and 20% in G2/M). The arrest could be released by subsequent addition of MVA. Effects were compared to those caused by aphidicolin, an inhibitor of alpha-like DNA polymerases that blocks cell cycle at the entry of the S phase. The 80% proportion of mevinolin-treated TBY-2 cells was clearly arrested before the aphidicolin-inducible block. By the aid of a double-blocking technique, it was shown that the mevinolin-induced cell arrest of highly synchronized cells was due to interaction with a control point located at the mitotic telophase/entry G1 phase. Depending on the developmental stage, mevinolin induced rapid cell death in a considerable percentage of cells. Mevinolin treatment led to a partial synchronization, as shown by the increase in mitotic index. The following decrease was correlated with the above-mentioned induction of cell death.  相似文献   

8.
Haspin (Haploid Germ Cell-Specific Nuclear Protein Kinase) is a serine/threonine kinase pertinent to normal mitosis progression and mitotic phosphorylation of histone H3 at threonine 3 in mammalian cells. Different classes of small molecule inhibitors of haspin have been developed and utilized to investigate its mitotic functions. We report herein that applying haspin inhibitor CHR-6494 or 5-ITu at the G1/S boundary could delay mitotic entry in synchronized HeLa and U2OS cells, respectively, following an extended G2 or the S phase. Moreover, late application of haspin inhibitors at S/G2 boundary is sufficient to delay mitotic onset in both cell lines, thereby, indicating a direct effect of haspin on G2/M transition. A prolonged interphase duration is also observed with knockdown of haspin expression in synchronized and asynchronous cells. These results suggest that haspin can regulate cell cycle progression at multiple stages at both interphase and mitosis.  相似文献   

9.
Growth factors and cytokines initiate multiple signal transduction pathways that lead to cell survival, cell cycle progression or differentiation. A common feature of these pathways is increased cellular metabolism and glucose uptake. Furthermore, the energy requirements of many cancers and transformed cell lines are met by constitutive upregulation of glucose uptake. Relationships among transforming events, glucose uptake and cell cycle progression are not well understood. Here we investigated the regulation of glucose transport during the cell cycle of growth factor-dependent 32D cells, primary T-cells, src-transformed 32D cells and Jurkat cells. Cells were enriched in the G1, S and G2/M phases of the cell cycle, and glucose transporter expression and 2-deoxyglucose uptake were measured. Glucose transporter expression increased with cell volume as cells progressed through the cell cycle. Growth factor-dependent 32D cells and T-lymphocytes were characterised by increased 2-deoxyglucose uptake from G1 to S and reduced uptake at G2/M, with the highest specific activity of transporters in the S phase. In contrast, src-transformed 32D cells and Jurkat cells showed increased 2-deoxyglucose uptake from S to G2/M, with the highest glucose transporter specific activity in G2/M. Our results show that glucose transport is regulated in a cell cycle-dependent manner and suggest that this regulation may be altered in transformed cells.  相似文献   

10.
The different effects of two cytostatic drugs, Actinomycin D and Vinblastine, during macrophage-like differentiation induced in THP-1 monocytic cell line by phorbol ester phorbol 12-myristate 13-acetate (PMA) (6, 30, and 60 nM), were studied by morpho-cytochemical approaches. In PMA-unstimulated monocytic cells, the cytostatic effects of Actinomycin D (an antimetabolic drug) were characterized by a drastic reduction of the G2/M cells accompanied by dramatic death of the G1 cells; on the contrary, Vinblastine (a microtubule-depolymerizating drug) induced an accumulation of the G2/M cells with the appearance of aneugenic micronuclei and scarce cell death mainly from the G1 cells. After 60 nM PMA stimulation, the culture was mostly composed by macrophagic cells characterized by low proliferation and the appearance of mono-/binucleated polyploid cells; in this condition, the cytotoxicity of the two drugs, more effective for Vinblastine, induced cell death in the different ploidy classes (2c, 4c, 8c). Cell death appeared to be of apoptotic nature, but with some morpho-phenotypic differences due to the action mechanism of the drugs and dependent on cell culture growth and differentiation. As a consequence of the different block-action of the two drugs on the cell cycle phases and in relation to the different subcellular targets, the effects changed during the transition from not-adhering/proliferating monocytes to adhering/low-proliferating differentiated macrophages.  相似文献   

11.
In mouse macrophage cells, the increase of the intracellular cAMP level activates protein kinase A (PKA) and results in inhibition of cell cycle progression in both G1 and G2/M phases. G1 arrest is mediated by a cdk inhibitor, p27Kip1, which prevents G1 cyclin/cdk complexes from being activated in response to colony stimulating factor-1, whereas inhibition of G2/M progression has not been fully elucidated. In this report we analyzed the effect of cAMP on G2/M progression in a mouse macrophage cell line, BAC1.2F5A. Flow cytometric analysis and mitotic index measurement using both synchronized and asynchronized cells revealed that addition of cAMP-elevating agents (8-bromoadenosine 3':5'-cyclic monophosphate and 3-isobutyl-methyl-xanthine), although they did not affect S phase progression or M/G1 transition, temporarily arrested cells in G2 but eventually the cells proceeded to M phase, resulting in about 4 hours delay of G2 progression. Timing of cyclin B1/Cdc2 kinase activation was also retarded by about 4 hours, which was accompanied by inhibition of efficient accumulation of cyclin B1 proteins. Initial induction and accumulation of cyclin B1 mRNA were not hampered, but the half life of cyclin B1 proteins was significantly shorter during G2 phase in the presence of cAMP-elevating agents compared with that of the cells blocked from progressing through M phase by nocodazole. These results imply that the cAMP/PKA pathway regulates G2 phase progression by altering the stability of a crucial cell cycle regulator.  相似文献   

12.
Phosphatidylinositol-3 kinase (PI3K) proteins are important regulators of cell survival and proliferation. PI3K-dependent signalling regulates cell proliferation by promoting G1- to S-phase progression during the cell cycle. However, a definitive role for PI3K at other times during the cell cycle is less clear. In these studies, we provide evidence that PI3K activity is required during DNA synthesis (S-phase) and G2-phase of the cell cycle. Inhibition of PI3K with LY294002 at the onset of S-phase caused a 4- to 5-h delay in progression through G2/M. LY294002 treatment at the end of S-phase caused an approximate 2-h delay in progression through G2/M, indicating that PI3K activity functions for both S- and G2-phase progression. The expression of constitutively activated Akt partially reversed the inhibitory effects of LY294002 on mitotic entry, which demonstrated that Akt was one PI3K target that was required during G2/M transitions. Inhibition of PI3K resulted in enhanced susceptibility of G2/M synchronized cells to undergo apoptosis in response to DNA damage as compared to asynchronous cells. Thus, similar to its role in promoting cell survival and cell cycle transitions from G1 to S phase, PI3K activity appears to promote entry into mitosis and protect against cell death during S- and G2-phase progression.  相似文献   

13.
BACKGROUND: In a previous work, we demonstrated with flow cytometry (FCM) methods that accumulation of human cyclin B1 in leukemic cell lines begins during the G(1) phase of the cell cycle (Viallard et al. , Exp Cell Res 247:208-219, 1999). In the present study, FCM was used to compare the localization and the kinetic patterns of cyclin B1 expression in Jurkat leukemia cell line and phytohemagglutinin (PHA)-stimulated normal T lymphocytes. METHODS: Cell synchronization was performed in G(1) with sodium n-butyrate, at the G(1)/S transition with thymidine and at mitosis with colchicine. Cells (leukemic cell line Jurkat or PHA-stimulated human T-lymphocytes) were stained for DNA and cyclin B1 and analyzed by FCM. Western blotting was used to confirm certain results. RESULTS: Under asynchronous growing conditions and for both cell populations, cyclin B1 expression was essentially restricted to the G(2)/M transition, reaching its maximal level at mitosis. When the cells were synchronized at the G(1)/S boundary by thymidine or inside the G(1) phase by sodium n-butyrate, Jurkat cells accumulated cyclin B1 in both situations, whereas T lymphocytes expressed cyclin B1 only during the thymidine block. The cyclin B1 fluorescence kinetics of PHA-stimulated T lymphocytes was strictly similar when considering T lymphocytes blocked at the G(1)/S phase transition by thymidine and in exponentially growing conditions. These FCM results were confirmed by Western blotting. The detection of cyclin B1 by Western blot in cells sorted in the G(1) phase of the cell cycle showed that cyclin B1 was present in the G(1) phase in leukemic T cells but not in normal T lymphocytes. Cyclin B1 degradation was effective at mitosis, thus ruling out a defective cyclin B1 proteolysis. CONCLUSIONS: We found that the leukemic T cells behaved quite differently from the untransformed T lymphocytes. Our data support the notion that human cyclin B1 is present in the G(1) phase of the cell cycle in leukemic T cells but not in normal T lymphocytes. Therefore, the restriction point from which cyclin B1 can be detected is different in the two models studied. We hypothesize that after passage through a restriction point differing in T lymphocytes and in leukemic cells, the rate of cyclin B1 synthesis becomes constant in the S and G(2)/M phases and independent from the DNA replication cycle.  相似文献   

14.
E1A + c-Ha-ras-transformants overexpressing bcl-2 oncogene are able to be arrested at the G1/S boundary of the cell cycle after DNA damage and upon serum starvation, this cell cycle blockage being accompanied by a decrease in the activity of cyclin E--Cdk2 complexes. Roscovitine-induced inhibition of cyclin-dependent kinases (Cdks) activity does not result in the G1/S arrest of E1A + c-Ha-ras + bcl-2-transformants. Roscovitine treatment causes an accumulation of G2/M cells, mainly at the expense of mitotic cells. However, the expression of Bcl-2 oncoproducts does not re-establish the regulation of mitotic events broken by introduction of E1A and c-Ha-ras oncogenes in normal cells, as revealed by the treatment of E1A + c-Ha-ras + bcl-2-transformants with nocodazole inducing mitotic arrest in normal cells. In spite of the elevated expression of antiapoptotic bcl-2 gene in transformants, nocodazole treatment results in mass apoptotic death preceded by polyploidy. Roscovitine also induces apoptosis with no polyploid cell accumulation being observed. Inhibition of Cdks activity with Roscovitine, as well as violation of microtubule depolymerization with nocodazole result in the apoptotic death in the tested cell lines sensitive (E1A + c-Ha-ras) and resistant (E1A + c-Ha-ras + bcl-2) to damaging agents. Thus, the application of Roscovitine, a specific inhibitor of Cdks, suggests that the decrease in Cdks activity in E1A + c-Ha-ras + bcl-2-transformants is not likely to be responsible for G1/S cell cycle arrest realization after damaging influences. Moreover, an antiproliferative effect of Bcl-2 in E1A + c-Ha-ras-transformants is restricted by restoration of cell cycle events at G1/S and G2/M boundaries, and does not concern the program of mitotic events regulation.  相似文献   

15.
Regulation of eukaryotic cell cycle progression requires sequential activation and inactivation of cyclin-dependent kinases (CDKs). Activation of the cyclin B-cdc2 kinase complex is a pivotal step in mitotic initiation and the tyrosine kinase Wee1 is a key regulator of cell cycle sequence during G2/M transition and inhibits mitotic entry by phosphorylating the inhibitory tyrosine 15 on the cdc2 M-phase-inducing kinase. Wee1 degradation is essential for the exit from the G2 phase. In trypanosomatids, little is known about the genes that regulate cyclin B-cdc2 complexes at the G2/M transition of their cell cycle. Although canonical tyrosine kinases are absent in the genome of trypanosomatids, phosphorylation on protein tyrosine residues has been reported in Trypanosoma brucei. Here, we characterized a Wee1-like protein kinase gene from T. brucei. Expression of TbWee1 in a Schizosaccharomyces pombe strain null for Wee1 inhibited cell division and caused cell elongation. This demonstrates the lengthening of G2, which provided cells with extra time to grow before dividing. The Wee1-like protein kinase was expressed in the procyclic and bloodstream proliferative slender forms of T. brucei and the role of Wee1 in cell cycle progression was analyzed by generating RNA interference cell lines. In the procyclic form of T. brucei, the knock-down of TbWee1 expression by RNAi led to inhibition of parasite growth. Abnormal phenotypes showing an increase in the percentage of cells with 1N0K, 0N1K and 2N1K were observed in these RNAi cell lines. Using parasites with a synchronized cell cycle, we demonstrated that TbWee1 is linked to the G2/M phase. We also showed that TbWee1 is an essential gene necessary for proper cell cycle progression and parasite growth in T. brucei. Our results provide evidence for the existence of a functional Wee1 in T. brucei with a potential role in cell division at G2/M.  相似文献   

16.
Cyclins are cell cycle regulatory proteins. We compared the concurrent kinetics of apoptosis and cyclin expression between HIV-infected cells (J1.1), and uninfected Jurkat cells. Cells were cultured with TNF-alpha and harvested at 24, 48 and 72 hr to examine cyclin expression and DNA content. We found a decline in the levels of the mitotic B cyclin in Jurkat cells (16 to 2%, 48 hr), while in J1.1 cells it was observed in cyclin E (60 to 37%, 72 hr). Because cyclin B is mitotic, results suggest that Jurkat cells undergo apoptosis at G2, while J1.1 cells enter mitosis and then die by apoptosis, as no changes in cyclin B or DNA content at G2M were observed. G1 cyclin E decline in J1.1 cells also suggests that they die after entering mitosis. Based on differences in the cyclins involved, it seems that HIV-1 manipulates the cell cycle to protect J1.1 cells from apoptosis induction at G2, a critical cell cycle phase for HIV replication. Thus, cyclins are useful to characterize points in the cell cycle at which apoptosis is induced, and could become excellent tools to evaluate mechanisms of action of antiretroviral drugs in the cell cycle of HIV-infected cells.  相似文献   

17.
The relationship between cell cycling and apoptosis/programmed cell death has been perceived as either checkpoint arrests or mitotic aberration where common pathways between mitosis and apoptosis seem suggested. We show here evidence implicating both perceptions of cell cycle involvement. The process was initiated by hydroxyl free radicals (OH*) generated intracellularly from internalized vanadyl(4). Intranuclear sequestration of vanadyl(4) was verified by nuclear microscopy. Resultant high oxidative reactivity in the nucleus was shown by the redox indicator methylene blue, suggesting direct oxidative damage to genomic DNA. Oxidative stress was further enhanced by depletion of glutathione which is the main cellular reducing agent. Genomic degradation and fragmentation was confirmed by flow cytometric evaluation of terminal deoxynucleotidyl transferase (TdT)-mediated 3'OH end-labelling (TUNEL) of DNA nicks, and cell cycle DNA profiling demonstrating sub-G1 (sub-2N) accumulation. With DNA degradation, there was a G2M transient with hyperdiploid right-shifting, consistent with G2 arrest. G2 arrest was subsequently 'released' with abolition of G2M and all other cell cycle phases except for a solitary sub-G1 (apoptotic) peak. The cytological profile of this 'release' phenomenon was initially marked by the appearance of clusters of mitotic and apoptotic cells. At later stages, the cell population was composed exclusively of nuclear ghosts, apoptotic cells, mitotic cells, and mitotic cells with both chromosomes and apoptotic condensations. Concurrent and conjoint expression of cell death and cell division as the exclusive process of an entire cell population refuted the notion of mutual exclusivity between life and death. Zn2+, an endonuclease inhibitor, abolished all observed cytological and DNA profile changes.  相似文献   

18.
Cell progression after selective irradiation of DNA during the cell cycle   总被引:1,自引:0,他引:1  
Chinese hamster ovary cells were labeled with [125I]iododeoxyuridine (125IUdR, 0.1184 MBq/ml for 20 min) and the labeled mitotic cells were collected by selective detachment ("mitotic shake off"). The cells were pooled, plated into replicate flasks, and allowed to progress through the cell cycle. At several times after plating, corresponding to G1, S, late S, and G2 plus M, cells were cooled to stop cell cycle progression and to facilitate accumulation of 125I decays. Evaluation of cell progression into the subsequent mitosis indicated that accumulation of additional 125I decays during G1 or S phase was eight to nine times less effective in inducing progression delay than decays accumulated during G2. The results support our previous hypothesis that DNA damage per se is not responsible for radiation-induced progression delay. Instead, 125I-labeled DNA appears to act as a source of radiation that associates during the G2 phase of the cell cycle with another radiosensitive structure in the cell nucleus, and damage to the latter structure by overlap irradiation is responsible for progression delay (M. H. Schneiderman and K. G. Hofer, Radiat. Res. 84, 462-476 (1980].  相似文献   

19.
Calcium regulates progression through several checkpoints in the cell cycle, including the G1/S-phase transition, G2/M-phase transition, and exit from mitosis. In the GH4C1 rat pituitary cell line, calcium mobilizing polypeptides and calcium channel activation inhibit cell proliferation. This report examines the effects of maitotoxin (MTX), an activator of type L voltage-dependent calcium channels (L-VDCC), on calcium influx and cell cycle progression in GH4C1 cells. MTX causes both a block from G1 to S-phase and a concentration-dependent accumulation of cells in G2+M. MTX does not increase the mitotic index; thus, sustained calcium channel activation by MTX results in an accumulation of cells in G2. In order to temporally localize the MTX-induced G2 block relative to cell cycle regulatory events at the G2/M transition, we assessed the relative activity of two cell cycle regulatory protein kinases, CDC2 and CDK2, in MTX-treated cells. CDC2-specific histone kinase activity in MTX-treated cells is lower than either in cells blocked in mitosis with the microtubule destabilizing agent demecolcine or in randomly cycling cells. In contrast, the activity of CDK2 is highest in MTX-treated cells, consistent with a G2 block prior to CDC2 activation. Together, these results implicate calcium as an intracellular signal required for progression through G2 phase of the cell cycle prior to CDC2 kinase activation. © 1996 Wiley-Liss, Inc.  相似文献   

20.
The relationship between the cell cycle and Fas-mediated apoptosis was investigated using Jurkat cells. Analysis of the inducibility of apoptosis by anti-Fas antibody during the cell cycle synchronized by the thymidine double-block method, showed that apoptosis was induced in only 50% of the G2/M phase cells, while most of cells in the other phases underwent apoptosis. These observations indicate that G2/M phase cells are more resistant to Fas-mediated apoptosis than cells in other phases. Furthermore, a detailed analysis of G2/M phase found that only 20–30% of the cells underwent apoptosis 12 h after the removal of the second thymidine block (pre-G2/M phase). This suggests that Fas-mediated apoptosis is potently suppressed during the pre-G2/M phase. A possible explanation for the observation that cells in the pre-G2/M phase are less sensitive to anti-Fas antibody is lower expression level of Fas. To test this possibility, Fas expression levels on the cell surface during the cell cycle were examined. The content of Fas on the cell surface, however, did not change appreciably during the cell cycle. Thus, the suppression of apoptosis in the pre-G2/M phase is determined downstream after the receipt of the apoptotic signal through Fas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号