首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic ribosomal proteins are required for production of stable ribosome assembly intermediates and mature ribosomes, but more specific roles for these proteins in biogenesis of ribosomes are not known. Here we demonstrate a particular function for yeast ribosomal protein rpS14 in late steps of 40S ribosomal subunit maturation and pre-rRNA processing. Extraordinary amounts of 43S preribosomes containing 20S pre-rRNA accumulate in the cytoplasm of certain rps14 mutants. These mutations not only reveal a more precise function for rpS14 in ribosome biogenesis but also uncover a role in ribosome assembly for the extended tails found in many ribosomal proteins. These studies are one of the first to relate the structure of eukaryotic ribosomes to their assembly pathway-the carboxy-terminal extension of rpS14 is located in the 40S subunit near the 3' end of 18S rRNA, consistent with a role for rpS14 in 3' end processing of 20S pre-rRNA.  相似文献   

2.
3.
The structure of the gene for a small, very basic ribosomal protein in Sulfolobus solfataricus has been determined and the structure of the protein coded by this gene (L46e) has been confirmed by partial amino acid sequencing. The protein shows substantial sequence homology to the eukaryotic ribosomal proteins L39 in rat and L46 in yeast. There is no sequence homology to any of the eubacterial ribosomal proteins suggesting that this protein is absent in the eubacterial ribosome.  相似文献   

4.
Zinc finger-like motifs in rat ribosomal proteins S27 and S29.   总被引:5,自引:1,他引:4       下载免费PDF全文
The primary structures of the rat 40S ribosomal subunit proteins S27 and S29 were deduced from the sequences of nucleotides in recombinant cDNAs and confirmed by determination of amino acid sequences in the proteins. Ribosomal protein S27 has 83 amino acids and the molecular weight is 9,339. Hybridization of cDNA to digests of nuclear DNA suggests that there are 4-6 copies of the S27 gene; the mRNA for the protein is about 620 nucleotides in length. Ribosomal protein S29 has 55 amino acids and the molecular weight is 6,541. There are 14-17 copies of the S29 gene and its mRNA is about 500 nucleotides in length. Rat ribosomal protein S29 is related to several members of the archaebacterial and eubacterial S14 family of ribosomal proteins. S27 and S29 have zinc finger-like motifs as do other proteins from eukaryotic, archaebacterial, eubacterial, and mitochondrial ribosomes. Moreover, ribosomes and ribosomal subunits appear to contain zinc and iron as well.  相似文献   

5.
The structure of the gene for a small, very basic ribosomal protein in Sulfolobus solfataricus has been determined and the structure of the protein coded by this gene (L46e) has been confirmed by partial amino acid sequencing. The protein shows substantial sequence homology to the eukaryotic ribosomal proteins L39 in rat and L46 in yeast. There is no sequence homology to any of the eubacterial ribosomal proteins suggesting that this protein is absent in the eubacterial ribosome.  相似文献   

6.
Chloroplast ribosomal protein L13 is encoded in the plant nucleus and is considerably larger than its eubacterial homologue by having NH2- and COOH-terminal extensions with no homology to any known sequences (Phua et al., J Biol. Chem. 264, 1968-1971, 1989). We made two gene constructs of L13 cDNA using the polymerase chain reaction (PCR) and expressed them in Escherichia coli. Analysis of the ribosomes and polysomes from these cells, using an antiserum specific to chloroplast L13, shows that the expressed proteins are incorporated, in the presence of the homologous E. coli L13, into functional ribosomes which participate in protein synthesis (i.e. polysomes). Evidence is obtained that the large NH2-terminal extension probably lies on the surface of these 'mosaic ribosomes.' This first report of the assembly into E. coli ribosomes of nuclear-coded chloroplast ribosomal protein with terminal extensions thus suggest an extraordinary conservation in the function of eubacterial type ribosomal proteins, despite the many changes in protein structure during their evolution inside a eukaryotic system.  相似文献   

7.
This review contains recent data on the structure of the functionally important ribosomal domain, L12/P stalk, of the large ribosomal subunit. It is the most mobile site of the ribosome; it has been found in ribosomes of all living cells, and it is involved in the interaction between ribosomes and translation factors. The difference between the structures of the ribosomal proteins forming this protuberance (despite their general resemblance) determines the specificity of interaction between eukaryotic and prokaryotic ribosomes and the respective protein factors of translation. In this review, works on the structures of ribosomal proteins forming the L12/P-stalk in bacteria, archaea, and eukaryotes and data on structural aspects of interactions between these proteins and rRNA are described in detail.  相似文献   

8.
Ribosomal antibiotics must discriminate between bacterial and eukaryotic ribosomes to various extents. Despite major differences in bacterial and eukaryotic ribosome structure, a single nucleotide or amino acid determines the selectivity of drugs affecting protein synthesis. Analysis of resistance mutations in bacteria allows the prediction of whether cytoplasmic or mitochondrial ribosomes in eukaryotic cells will be sensitive to the drug. This has important implications for drug specificity and toxicity. Together with recent data on the structure of ribosomal subunits these data provide the basis for development of new ribosomal antibiotics by rationale drug design.  相似文献   

9.
Recent studies have revealed heterogeneity in the structure of eukaryotic cytoplasmic ribosomes, including a difference in protein composition. It has been proposed that this heterogeneity, or the specialized ribosome, contributes to tissue development and homeostasis through selective mRNA translation, although this remains largely unclear. Our previous proteomic survey of rodent ribosomes found the testis-specific ribosomal proteins L10-like and L39-like, which are paralogues of the X-linked ribosomal proteins L10 and L39, respectively. We have hypothesized that the rodent testis provides a good model for examining the possible functional importance of ribosome heterogeneity. In the present study, a new paralogue of X-linked ribosomal protein S4 has been identified in the mouse testis. The gene encoding this paralogue was autosomal, intronless and expressed predominantly in the testis. It appeared that this paralogue was included in polysomes as a component of the ribosome. Although these properties were similar to those of the ribosomal proteins L10-like and L39-like, this S4 paralogue and L10-like showed partially different expression patterns in spermatogenic cells. These findings are discussed in relation to the unique evolution of genes encoding a paralogue of ribosomal protein S4 in mammals and to the significance of testis-specific paralogues of ribosomal proteins in active ribosomes during spermatogenesis.  相似文献   

10.
Crystal structures of the 50 S ribosomal subunit from Haloarcula marismortui complexed with two antibiotics have identified new sites at which antibiotics interact with the ribosome and inhibit protein synthesis. 13-Deoxytedanolide binds to the E site of the 50 S subunit at the same location as the CCA of tRNA, and thus appears to inhibit protein synthesis by competing with deacylated tRNAs for E site binding. Girodazole binds near the E site region, but is somewhat buried and may inhibit tRNA binding by interfering with conformational changes that occur at the E site. The specificity of 13-deoxytedanolide for eukaryotic ribosomes is explained by its extensive interactions with protein L44e, which is an E site component of archaeal and eukaryotic ribosomes, but not of eubacterial ribosomes. In addition, protein L28, which is unique to the eubacterial E site, overlaps the site occupied by 13-deoxytedanolide, precluding its binding to eubacterial ribosomes. Girodazole is specific for eukarytes and archaea because it makes interactions with L15 that are not possible in eubacteria.  相似文献   

11.
Despite the rising knowledge about ribosome function and structure and how ribosomal subunits assemble in vitro in bacteria, the in vivo role of many ribosomal proteins remains obscure both in pro- and eukaryotes. Our systematic analysis of yeast ribosomal proteins (r-proteins) of the small subunit revealed that most eukaryotic r-proteins fulfill different roles in ribosome biogenesis, making them indispensable for growth. Different r-proteins control distinct steps of nuclear and cytoplasmic pre-18S rRNA processing and, thus, ensure that only properly assembled ribosomes become engaged in translation. Comparative analysis of dynamic and steady-state maturation assays revealed that several r-proteins are required for efficient nuclear export of pre-18S rRNA, suggesting that they form an interaction platform with the export machinery. In contrast, the presence of other r-proteins is mainly required before nuclear export is initiated. Our studies draw a correlation between the in vitro assembly, structural localization, and in vivo function of r-proteins.  相似文献   

12.
There is accumulating evidence that many ribosomal proteins are involved in shaping rRNA into their functionally correct conformations through RNA-protein interactions. Moreover, although rRNA seems to play the central role in all aspects of ribosome function, ribosomal proteins may be involved in facilitating communication between different functional regions in ribosome, as well as between the ribosome and cellular factors. In an effort to more fully understand how ribosomal proteins may influence ribosome function, we undertook large-scale mutational analysis of ribosomal protein L3, a core protein of the large subunit that has been implicated in numerous ribosome-associated functions in the past. A total of 98 different rpl3 alleles were genetically characterized with regard to their effects on killer virus maintenance, programmed -1 ribosomal frameshifting, resistance/hypersensitivity to the translational inhibitor anisomycin and, in specific cases, the ability to enhance translation of a reporter mRNA lacking the 5' (7)mGppp cap structure and 3' poly(A) tail. Biochemical studies reveal a correlation between an increased affinity for aminoacyl-tRNA and the extent of anisomycin resistance and a decreased peptidyltransferase activity and increased frameshifting efficiency. Immunoblot analyses reveal that the superkiller phenotype is not due to a defect in the ability of ribosomes to recruit the Ski-complex, suggesting that the defect lies in a reduced ability of mutant ribosomes to distinguish between cap(+)/poly(A)(+) and cap(-)/poly(A)(-) mRNAs. The results of these analyses are discussed with regard to how protein-rRNA interactions may affect ribosome function.  相似文献   

13.
Translation of mRNA into proteins by the ribosome is universally conserved in all cellular life. The composition and complexity of the translation machinery differ markedly between the three domains of life. Organisms from the domain Archaea show an intermediate level of complexity, sharing several additional components of the translation machinery with eukaryotes that are absent in bacteria. One of these translation factors is initiation factor 6 (IF6), which associates with the large ribosomal subunit. We have reconstructed the 50S ribosomal subunit from the archaeon Methanothermobacter thermautotrophicus in complex with archaeal IF6 at 6.6?? resolution using cryo-electron microscopy (EM). The structure provides detailed architectural insights into the 50S ribosomal subunit from a methanogenic archaeon through identification of the rRNA expansion segments and ribosomal proteins that are shared between this archaeal ribosome and eukaryotic ribosomes but are mostly absent in bacteria and in some archaeal lineages. Furthermore, the structure reveals that, in spite of highly divergent evolutionary trajectories of the ribosomal particle and the acquisition of novel functions of IF6 in eukaryotes, the molecular binding of IF6 on the ribosome is conserved between eukaryotes and archaea. The structure also provides a snapshot of the reductive evolution of the archaeal ribosome and offers new insights into the evolution of the translation system in archaea.  相似文献   

14.
E R Dabbs 《Biochimie》1991,73(6):639-645
We have isolated and characterized mutants which lack one or two of sixteen of the proteins of the Escherichia coli ribosome. The mutation responsible in each case mapped close to, and probably in, the corresponding gene. A conditional lethal phenotype and a variable degree of impairment in growth was observed. The missing protein was readily restored to the organelle if E coli or other eubacterial ribosomal proteins were added to a suspension of the mutant particles. The mutants have been used to investigate the role of individual proteins in ribosome function and assembly. They have also aided in the topographic pinpointing of proteins on the surface of the organelle.  相似文献   

15.
Many plants express enzymes which specifically remove an adenine residue from the skeleton of the 28 S RNA in the major subunit of the eukaryotic ribosome (ribosome inactivating proteins, RIPs). The site of action of RIPs (A4324 in the rRNA from rat liver) is in a loop structure whose nucleotide sequence all around the target adenine is also conserved in those species which are completely or partially insensitive to RIPs. In this paper we identify a covalent complex between saporin (the RIP extracted from Saponaria officinalis) and ribosomal proteins from yeast (Saccharomyces cerevisiae), by means of chemical crosslinking and immunological or avidin-biotin detection. The main complex (mol. wt. congruent to 60 kDa) is formed only with a protein from the 60 S subunit of yeast ribosomes, and is not detected with ribosomes from E. coli, a resistant species. This observation supports the hypothesis for a molecular recognition mechanism involving one or more ribosomal proteins, which could provide a 'receptor' site for the toxin and favour optimal binding of the target adenine A4324 to the active site of the RIP.  相似文献   

16.
Translation of mRNA into protein is a fundamental step in eukaryotic gene expression requiring the large (60S) and small (40S) ribosome subunits and associated proteins. By modern proteomic approaches, we previously identified a novel 40S-associated protein named Asc1p in budding yeast and RACK1 in mammals. The goals of this study were to establish Asc1p or RACK1 as a core conserved eukaryotic ribosomal protein and to determine the role of Asc1p or RACK1 in translational control. We provide biochemical, evolutionary, genetic, and functional evidence showing that Asc1p or RACK1 is indeed a conserved core component of the eukaryotic ribosome. We also show that purified Asc1p-deficient ribosomes have increased translational activity compared to that of wild-type yeast ribosomes. Further, we demonstrate that asc1Delta null strains have increased levels of specific proteins in vivo and that this molecular phenotype is complemented by either Asc1p or RACK1. Our data suggest that one of Asc1p's or RACK1's functions is to repress gene expression.  相似文献   

17.
The ribosomal uL10 protein, formerly known as P0, is an essential element of the ribosomal GTPase-associated center responsible for the interplay with translational factors during various stages of protein synthesis. In eukaryotic cells, uL10 binds two P1/P2 protein heterodimers to form a pentameric P-stalk, described as uL10-(P1-P2)2, which represents the functional form of these proteins on translating ribosomes. Unlike most ribosomal proteins, which are incorporated into pre-ribosomal particles during early steps of ribosome biogenesis in the nucleus, P-stalk proteins are attached to the 60S subunit in the cytoplasm. Although the primary role of the P-stalk is related to the process of translation, other extraribosomal functions of its constituents have been proposed, especially for the uL10 protein; however, the list of its activities beyond the ribosome is still an open question. Here, by the combination of biochemical and advanced fluorescence microscopy techniques, we demonstrate that upon nucleolar stress induction the uL10 protein accumulates in the cytoplasm of mammalian cells as a free, ribosome-unbound protein. Importantly, using a novel approach, FRAP-AC (FRAP after photoConversion), we have shown that the ribosome-free pool of uL10 represents a population of proteins released from pre-existing ribosomes. Taken together, our data indicate that the presence of uL10 on the ribosomes is affected in stressed cells, thus it might be considered as a regulatory element responding to environmental fluctuations.  相似文献   

18.
Brodersen DE  Nissen P 《The FEBS journal》2005,272(9):2098-2108
Ribosomal proteins hold a unique position in biology because their function is so closely tied to the large rRNAs of the ribosomes in all kingdoms of life. Following the determination of the complete crystal structures of both the large and small ribosomal subunits from bacteria, the functional role of the proteins has often been overlooked when focusing on rRNAs as the catalysts of translation. In this review we highlight some of the many known and important functions of ribosomal proteins, both during translation on the ribosome and in a wider context.  相似文献   

19.
The ribosomes of dry pea seeds were analysed by polyacrylamide gel electrophoresis. Ribosomes, ribosomal subunits, rRNA and ribosomal proteins were separated by variations of this same basic technique. Pea seed ribosomes were shown to have a subunit structure, rRNA complement and ribosomal protein distribution similar to other eukaryotic ribosomes. A total of 52 ribosomal proteins were identified, 24 on the small and 28 on the large RSU. The molecular weights were mostly in the range 10–35 × 103.  相似文献   

20.
Approximately 40 ribosomal proteins from each Halobacterium marismortui and Bacillus stearothermophilus have been sequenced either by direct protein sequence analysis or by DNA sequence analysis of the appropriate genes. The comparison of the amino acid sequences from the archaebacterium H marismortui with the available ribosomal proteins from the eubacterial and eukaryotic kingdoms revealed four different groups of proteins: 24 proteins are related to both eubacterial as well as eukaryotic proteins. Eleven proteins are exclusively related to eukaryotic counterparts. For three proteins only eubacterial relatives-and for another three proteins no counterpart-could be found. The similarities of the halobacterial ribosomal proteins are in general somewhat higher to their eukaryotic than to their eubacterial counterparts. The comparison of B stearothermophilus proteins with their E coli homologues showed that the proteins evolved at different rates. Some proteins are highly conserved with 64-76% identity, others are poorly conserved with only 25-34% identical amino acid residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号