首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SIRT1, the mammalian homolog of yeast Sir2, is a founding member of a family of 7 protein and histone deacetylases that are involved in numerous biological functions. Previous studies revealed that SIRT1 deficiency results in genome instability, which eventually leads to cancer formation, yet the underlying mechanism is unclear. To investigate this, we conducted a proteomics study and found that SIRT1 interacted with many proteins involved in replication fork protection and origin firing. We demonstrated that loss of SIRT1 resulted in increased replication origin firing, asymmetric fork progression, defective intra-S-phase checkpoint, and chromosome damage. Mechanistically, SIRT1 deacetylates and affects the activity of TopBP1, which plays an essential role in DNA replication fork protection and replication origin firing. Our study demonstrated that ectopic over-expression of the deacetylated form of TopBP1 in SIRT1 mutant cells repressed replication origin firing, while the acetylated form of TopBP1 lost this function. Thus, SIRT1 acts upstream of TopBP1 and plays an essential role in maintaining genome stability by modulating DNA replication fork initiation and the intra-S-phase cell cycle checkpoint.  相似文献   

2.
Li A  Blow JJ 《The EMBO journal》2005,24(2):395-404
In late mitosis and G1, Mcm2-7 are assembled onto replication origins to 'license' them for initiation. At other cell cycle stages, licensing is inhibited, thus ensuring that origins fire only once per cell cycle. Three additional factors--the origin recognition complex, Cdc6 and Cdt1--are required for origin licensing. We examine here how licensing is regulated in Xenopus egg extracts. We show that Cdt1 is downregulated late in the cell cycle by two different mechanisms: proteolysis, which occurs in part due to the activity of the anaphase-promoting complex (APC/C), and inhibition by a protein called geminin. If both these regulatory mechanisms are abrogated, extracts undergo uncontrolled re-licensing and re-replication. The extent of re-replication is limited by checkpoint kinases that are activated as a consequence of re-replication itself. These results allow us to build a comprehensive model of how re-replication of DNA is prevented in Xenopus, with Cdt1 regulation being the key feature. The results also explain the original experiments that led to the proposal of a replication licensing factor.  相似文献   

3.
The genome integrity checkpoint is a conserved signaling pathway that is regulated in yeast by the Mec1 (homologous to human ATR) and Rad53 (homologous to human Chk1) kinases. The pathway coordinates a multifaceted response that allows cells to cope with DNA damage and DNA replication stress. The full activation of the checkpoint blocks origin firing, stabilizes replication forks, activates DNA repair proteins and may lead to senescence or apoptosisin higher eukaryotes. We have recently demonstrated that endogenous replication stress can activate the genome integrity checkpoint in budding yeast at a low level that does not go so far as to interfere with cell cycle progression, but it does activate DNA damage-inducible proteins. Here we demonstrate that the low level pre-activation of the checkpoint, either by endogenous replication stress or by the nucleotide-depleting drug hydroxyurea, can increase damage tolerance to multiple DNA-damaging agents. These results may provide new strategies for using the checkpoint to protect normal cells from genotoxic stress.  相似文献   

4.
Conventional paradigm ascribes the cell proliferative function of the human oncoprotein mouse double minute2 (MDM2) primarily to its ability to degrade p53. Here we report that in the absence of p53, MDM2 induces replication stress eliciting an early S-phase checkpoint response to inhibit further firing of DNA replication origins. Partially synchronized lung cells cultured from p53−/−:MDM2 transgenic mice enter S phase and induce S-phase checkpoint response earlier than lung cells from p53−/− mice and inhibit firing of DNA replication origins. MDM2 activates chk1 phosphorylation, elevates mixed lineage lymphoma histone methyl transferase levels and promotes checkpoint-dependent tri-methylation of histone H3 at lysine 4, known to prevent firing of late replication origins at the early S phase. In the absence of p53, a condition that disables inhibition of cyclin A expression by MDM2, MDM2 increases expression of cyclin D2 and A and hastens S-phase entry of cells. Consistently, inhibition of cyclin-dependent kinases, known to activate DNA replication origins during firing, inhibits MDM2-mediated induction of chk1 phosphorylation indicating the requirement of this activity in MDM2-mediated chk1 phosphorylation. Our data reveal a novel pathway, defended by the intra-S-phase checkpoint, by which MDM2 induces unscheduled origin firing and accelerates S-phase entry of cells in the absence of p53.  相似文献   

5.
Inhibition of cyclin-dependent kinases (CDKs) by Thr14/Tyr15 phosphorylation is critical for normal cell cycle progression and is a converging event for several cell cycle checkpoints. In this study, we compared the relative contribution of inhibitory phosphorylation for cyclin A/B1-CDC2 and cyclin A/E-CDK2 complexes. We found that inhibitory phosphorylation plays a major role in the regulation of CDC2 but only a minor role for CDK2 during the unperturbed cell cycle of HeLa cells. The relative importance of inhibitory phosphorylation of CDC2 and CDK2 may reflect their distinct cellular functions. Despite this, expression of nonphosphorylation mutants of both CDC2 and CDK2 triggered unscheduled histone H3 phosphorylation early in the cell cycle and was cytotoxic. DNA damage by a radiomimetic drug or replication block by hydroxyurea stimulated a buildup of cyclin B1 but was accompanied by an increase of inhibitory phosphorylation of CDC2. After DNA damage and replication block, all cyclin-CDK pairs that control S phase and mitosis were to different degrees inhibited by phosphorylation. Ectopic expression of nonphosphorylated CDC2 stimulated DNA replication, histone H3 phosphorylation, and cell division even after DNA damage. Similarly, a nonphosphorylation mutant of CDK2, but not CDK4, disrupted the G2 DNA damage checkpoint. Finally, CDC25A, CDC25B, a dominant-negative CHK1, but not CDC25C or a dominant-negative WEE1, stimulated histone H3 phosphorylation after DNA damage. These data suggest differential contributions for the various regulators of Thr14/Tyr15 phosphorylation in normal cell cycle and during the DNA damage checkpoint.  相似文献   

6.
In order to maintain genomic stability, cells must coordinate DNA replication such that every origin of replication fires once and only once per cell cycle. In addition, the order of replication and mitosis must be strictly controlled. To accomplish regulated origin firing, multicomponent pre-replicative complexes (pre-RCs) are assembled at origins of replication during G1. The Cdc6 protein (Cdc6p) is one of the essential and highly regulated components of the pre-RC. In addition, Cdc6 appears to be important after DNA replication, specifically during mitosis. In this review, we discuss the role of Cdc6 in regulating cell cycle specific phosphorylation and a newly recognized role in dephosphorylation of substrates important for progression of mitosis. We present a model in which Cdc6 would couple the shift between the two mitotic oscillators contributing to the coordination of the order of mitosis with the initiation of DNA replication.  相似文献   

7.
Studies in budding yeast suggest the protein kinase Rad53 plays novel roles in controlling initiation of DNA replication and in maintaining cellular histone levels, and these roles are independent of Rad53-mediated regulation of the checkpoint and of nucleotide levels. In order to elucidate the role of Rad53 in replication initiation, we isolated a novel allele of RAD53, rad53-rep,that separates the checkpoint function of RAD53 from the DNA replication function. rad53-rep mutants display a chromosome loss phenotype that is suppressed by increased origin dosage, providing further evidence that Rad53 plays a role in the initiation of DNA replication. Deletion of the major histone H3-H4 pair suppresses rad53-rep-cdc7-1 synthetic lethality, suggesting Rad53's functions in degradation of excess cellular histone and in replication initiation are related. Rad53-rep is active as a protein kinase yet fails to interact with origins of replication and like the rad53D mutant, the rad53-rep mutant accumulates excess soluble histones, and it is sensitive to histone dosage. In contrast, a checkpoint defective allele of RAD53 with mutations in both FHA domains, binds origins, and growth of a rad53-FHA mutant is unaffected by histone dosage. Based on these observations, we hypothesize that the origin binding and the histone degradation activities of Rad53 are central to its function in DNA replication and are independent of its checkpoint functions. We propose a model in which Rad53 acts as a "nucleosome buffer," interacting with origins of replication to prevent the binding of excess histones to origin DNA and to maintain proper chromatin configuration.  相似文献   

8.
Studies in budding yeast suggest the protein kinase Rad53 plays novel roles in controlling initiation of DNA replication and in maintaining cellular histone levels, and these roles are independent of Rad53-mediated regulation of the checkpoint and of nucleotide levels. In order to elucidate the role of Rad53 in replication initiation, we isolated a novel allele of RAD53, rad53-rep, that separates the checkpoint function of RAD53 from the DNA replication function. rad53-rep mutants display a chromosome loss phenotype that is suppressed by increased origin dosage, providing further evidence that Rad53 plays a role in the initiation of DNA replication. Deletion of the major histone H3–H4 pair suppresses rad53-rep-cdc7-1 synthetic lethality, suggesting Rad53''s functions in degradation of excess cellular histone and in replication initiation are related. Rad53-rep is active as a protein kinase yet fails to interact with origins of replication and like the rad53Δ mutant, the rad53-rep mutant accumulates excess soluble histones, and it is sensitive to histone dosage. In contrast, a checkpoint defective allele of RAD53 with mutations in both FHA domains, binds origins and growth of this mutant is unaffected by histone dosage. Based on these observations, we hypothesize that the origin binding and the histone degradation activities of Rad53 are central to its function in DNA replication and are independent of its checkpoint functions. We propose a model in which Rad53 acts as a “nucleosome buffer”, interacting with origins of replication to prevent the binding of excess histones to origin DNA and to maintain proper chromatin configuration.Key words: DNA replication, Rad53, histones, checkpoint, origins of replication  相似文献   

9.
DNA replication origins are located at random with respect to DNA sequence in Xenopus early embryos and on DNA replicated in Xenopus egg extracts. We have recently shown that origins fire throughout the S phase in Xenopus egg extracts. To study the temporal regulation of origin firing, we have analyzed origin activation in sperm nuclei treated with the DNA polymerase inhibitor aphidicolin. Sperm chromatin was incubated in Xenopus egg extracts in the presence of aphidicolin and transferred to a fresh extract, and digoxigenin-dUTP and biotin-dUTP were added at various times after aphidicolin release to selectively label early and late replicating DNA. Molecular combing analysis of single DNA fibers showed that only a fraction of potential origins were able to initiate in the presence of aphidicolin. After release from aphidicolin, the remaining origins fired asynchronously throughout the S phase. Therefore, initiation during the S phase depends on the normal progression of replication forks assembled at earlier activated origins. Caffeine, an inhibitor of the checkpoint kinases ATR and ATM, did not relieve the aphidicolin-induced block to origin firing. We conclude that a caffeine-insensitive intra-S phase checkpoint regulates origin activation when DNA synthesis is inhibited in Xenopus egg extracts.  相似文献   

10.
We have used gene amplification in Drosophila follicle cells as a model of metazoan DNA replication to address whether changes in histone modifications are associated with replication origin activation. We observe that replication initiation is associated with distinct histone modifications. Acetylated lysines K5, K8, and K12 on histone H4 and K14 on histone H3 are specifically enriched during replication initiation at the amplification origins. Strikingly, H4 acetylation persists at an amplification origin well after replication forks have progressed significantly outward from the origin, indicating that H4 acetylation is associated with origin regulation and not histone deposition at the replication forks. Origin recognition complex subunit 2 (orc2) mutants with severe amplification defects do not abolish H4 acetylation, whereas the dup/cdt1 mutant delays the appearance of acetylation foci, and mutants in rbf result in temporal persistence. These data indicate that core histone acetylation is associated with origin activity. Furthermore, follicle cells undergoing gene amplification exhibit high levels of histone H1 phosphorylation. The patterns of H1 phosphorylation provide insights into cell cycle states during amplification, as H1 kinase activity in follicle cells is responsive to high Cyclin E activity, and it can be abolished by overexpressing the retinoblastoma homolog, Rbf, that represses Cyclin E. These data suggest that amplification origins are able to initiate when the cells are in a late S-phase, when the genome is normally not licensed for replication.  相似文献   

11.
This report provides a global view of how gene expression is affected by DNA replication. We analyzed synchronized cultures of Saccharomyces cerevisiae under conditions that prevent DNA replication initiation without delaying cell cycle progression. We use a higher‐order singular value decomposition to integrate the global mRNA expression measured in the multiple time courses, detect and remove experimental artifacts and identify significant combinations of patterns of expression variation across the genes, time points and conditions. We find that, first, ~88% of the global mRNA expression is independent of DNA replication. Second, the requirement of DNA replication for efficient histone gene expression is independent of conditions that elicit DNA damage checkpoint responses. Third, origin licensing decreases the expression of genes with origins near their 3′ ends, revealing that downstream origins can regulate the expression of upstream genes. This confirms previous predictions from mathematical modeling of a global causal coordination between DNA replication origin activity and mRNA expression, and shows that mathematical modeling of DNA microarray data can be used to correctly predict previously unknown biological modes of regulation.  相似文献   

12.
13.
The regulation of DNA replication initiation is well documented, for both unperturbed and damaged cells. The regulation of elongation, or fork velocity, however, has only recently been revealed with the advent of new techniques allowing us to view DNA replication at the single cell and single DNA molecule levels. Normally in S phase, the progression of replication forks and their stability are regulated by the ATR-Claspin-Chk1 pathway. We recently showed that replication fork velocity varies across the human genome in normal and cancer cells, but that the velocity of a given fork is positively correlated with the distance between origins on the same DNA fiber. Accordingly, in DNA replication-deficient Bloom’s syndrome cells, reduced fork velocity is associated with an increased density of replication origins. Replication elongation is also regulated in response to DNA damage. In human colon carcinoma cells treated with the topoisomerase I inhibitor camptothecin, DNA replication is inhibited both at the level of initiation and at the level of elongation through a Chk1-dependent checkpoint mechanism. Together, these new findings demonstrate that replication fork velocity (fork progression) is coordinated with inter-origin distance and that it can be actively slowed down by Chk1-dependent mechanisms in response to DNA damage. Thus, we propose that the intra-S phase checkpoint consist of at least three elements: (1) stabilization of damaged replication forks; (2) suppression of firing of late origins; and (3) arrests of normal ongoing forks to prevent further DNA lesions by replication of a damaged DNA template.  相似文献   

14.
H Neecke  G Lucchini    M P Longhese 《The EMBO journal》1999,18(16):4485-4497
We studied the response of nucleotide excision repair (NER)-defective rad14Delta cells to UV irradiation in G(1) followed by release into the cell cycle. Only a subset of checkpoint proteins appears to mediate cell cycle arrest and regulate the timely activation of replication origins in the presence of unrepaired UV-induced lesions. In fact, Mec1 and Rad53, but not Rad9 and the Rad24 group of checkpoint proteins, are required to delay cell cycle progression in rad14Delta cells after UV damage in G(1). Consistently, Mec1-dependent Rad53 phosphorylation after UV irradiation takes place in rad14Delta cells also in the absence of Rad9, Rad17, Rad24, Mec3 and Ddc1, and correlates with entry into S phase. Two-dimensional gel analysis indicates that late replication origins are not fired in rad14Delta cells UV-irradiated in G(1) and released into the cell cycle, which instead initiate DNA replication from early origins and accumulate replication and recombination intermediates. Progression through S phase of UV-treated NER-deficient mec1 and rad53 mutants correlates with late origin firing, suggesting that unregulated DNA replication in the presence of irreparable UV-induced lesions might result from a failure to prevent initiation at late origins.  相似文献   

15.
The temperature-sensitive yeast DNA primase mutant pri1-M4 fails to execute an early step of DNA replication and exhibits a dominant, allele-specific sensitivity to DNA-damaging agents. pri1-M4 is defective in slowing down the rate of S phase progression and partially delaying the G1-S transition in response to DNA damage. Conversely, the G2 DNA damage response and the S-M checkpoint coupling completion of DNA replication to mitosis are unaffected. The signal transduction pathway leading to Rad53p phosphorylation induced by DNA damage is proficient in pri1-M4, and cell cycle delay caused by Rad53p overexpression is counteracted by the pri1-M4 mutation. Altogether, our results suggest that DNA primase plays an essential role in a subset of the Rad53p-dependent checkpoint pathways controlling cell cycle progression in response to DNA damage.  相似文献   

16.
Cyclin-dependent kinases (CDKs) play a crucial role in cell cycle progression by controlling the transition from G1 phase into S phase where DNA is replicated. Key to this transition is the regulation of initiation of DNA replication at replication origins. CDKs are thought to regulate origins of replication both positively and negatively by phosphorylating replication proteins at origins. Several replication proteins that are potentially negatively regulated upon CDK phosphorylation have been identified. However, the mechanism by which CDKs activate replication is currently less well understood. New observations revealing that the initiation protein Cdc6 is stabilized by CDK2-dependent phosphorylation may give more insight in this process.  相似文献   

17.
Initiation of DNA replication occurs at origins of replication, traditionally defined by specific sequence elements. Sequence-dependent initiation of replication is the rule in prokaryotes and in the yeast Saccharomyces cereviseae. However, sequence-dependent initiation does not appear to be absolutely required in metazoan eukaryotes. Origin firing is instead likely dependent on stochastic initiation from chromatin-defined loci, despite the demonstration of some specific origins. Based on some recent observations in Xenopus laevis egg extracts and in mammalian cell culture, we propose that timing of origin firing is dependent on feedback from active replicons. This dynamic regulation of replication is mediated by sensing of ongoing replication by the DNA-damage checkpoint kinases ATM and ATR, which in turn downregulate neighboring and distal origins and replicons by inhibition of the S-phase kinases Cdk2 and Cdc7 and by inhibition of the replicative Mcm helicase. Origin selection, activation, and replicon progression are therefore constrained in both space and time via feedback from the cell cycle and ongoing replication.  相似文献   

18.
19.
DNA replication origins fire stochastically in fission yeast   总被引:10,自引:0,他引:10       下载免费PDF全文
DNA replication initiates at discrete origins along eukaryotic chromosomes. However, in most organisms, origin firing is not efficient; a specific origin will fire in some but not all cell cycles. This observation raises the question of how individual origins are selected to fire and whether origin firing is globally coordinated to ensure an even distribution of replication initiation across the genome. We have addressed these questions by determining the location of firing origins on individual fission yeast DNA molecules using DNA combing. We show that the firing of replication origins is stochastic, leading to a random distribution of replication initiation. Furthermore, origin firing is independent between cell cycles; there is no epigenetic mechanism causing an origin that fires in one cell cycle to preferentially fire in the next. Thus, the fission yeast strategy for the initiation of replication is different from models of eukaryotic replication that propose coordinated origin firing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号