首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The chloroplast H+-ATP synthase is a key component for the energy supply of higher plants and green algae. An oligomer of identical protein subunits III is responsible for the conversion of an electrochemical proton gradient into rotational motion. It is highly controversial if the oligomer III stoichiometry is affected by the metabolic state of any organism. Here, the intact oligomer III of the ATP synthase from Chlamydomonas reinhardtii has been isolated for the first time. Due to the importance of the subunit III stoichiometry for energy conversion, a gradient gel system was established to distinguish oligomers with different stoichiometries. With this methodology, a possible alterability of the stoichiometry in respect to the metabolic state of the cells was examined. Several growth parameters, i.e., light intensity, pH value, carbon source, and CO2 concentration, were varied to determine their effects on the stoichiometry. Contrary to previous suggestions for E. coli, the oligomer III of the chloroplast H+-ATP synthase always consists of a constant number of monomers over a wide range of metabolic states. Furthermore, mass spectrometry indicates that subunit III from C. reinhardtii is not modified posttranslationally. Data suggest a subunit III stoichiometry of the algae ATP synthase divergent from higher plants.  相似文献   

2.
Previous studies suggested that the hydrophobic protein chargerin II, which is encoded in the A6L of mitochondrial DNA, may have a key role in the energy transduction by mitochondrial H(+)-ATP synthase because an antibody against chargerin II inhibited ATP synthesis and ATP-Pi exchange, in an energy-dependent fashion. In the present work, the contents of chargerin II in the H(+)-ATP synthase purified from rat liver mitochondria and in submitochondrial particles were determined by radioimmunoassay. Results showed that the H(+)-ATP synthase contained chargerin II in a molar ratio of one to one. This is the first report on the stoichiometry of the A6L-product in mitochondrial H(+)-ATP synthase.  相似文献   

3.
Unlike most organisms, the mitochondrial DNA (mtDNA) of Chlamydomonas reinhardtii, a green alga, does not encode subunit 6 of F(0)F(1)-ATP synthase. We hypothesized that C. reinhardtii ATPase 6 is nucleus encoded and identified cDNAs and a single-copy nuclear gene specifying this subunit (CrATP6, with eight exons, four of which encode a mitochondrial targeting signal). Although the algal and human ATP6 genes are in different subcellular compartments and the encoded polypeptides are highly diverged, their secondary structures are remarkably similar. When CrATP6 was expressed in human cells, a significant amount of the precursor polypeptide was targeted to mitochondria, the mitochondrial targeting signal was cleaved within the organelle, and the mature polypeptide was assembled into human ATP synthase. In spite of the evolutionary distance between algae and mammals, C. reinhardtii ATPase 6 functioned in human cells, because deficiencies in both cell viability and ATP synthesis in transmitochondrial cell lines harboring a pathogenic mutation in the human mtDNA-encoded ATP6 gene were overcome by expression of CrATP6. The ability to express a nucleus-encoded version of a mammalian mtDNA-encoded protein may provide a way to import other highly hydrophobic proteins into mitochondria and could serve as the basis for a gene therapy approach to treat human mitochondrial diseases.  相似文献   

4.
Previous studies have revealed that residues 34-65 of subunit e of mitochondrial H(+)-ATP synthase are homologous with the Ca(2+)-dependent tropomysin-binding region for troponin T and have suggested that subunit e could be involved in the Ca(2+)-dependent regulation of H(+)-ATP synthase activity. In this study, we determined the content of subunit e in H(+)-ATP synthase purified from rat liver mitochondria, and we also investigated the membrane topology of a putative Ca(2+)-dependent regulatory region of subunit e using an antibody against peptide corresponding to residues 34-65 of subunit e. Quantitative immunoblot analysis of subunit e in the purified H(+)-ATP synthase revealed that 1 mol of H(+)-ATP synthase contained 2 mol of subunit e. The ATPase activity of mitoplasts, in which the C-side of F(0) is present on the outer surface of the inner membrane, was significantly stimulated by the addition of the antibody, while the ATPase activity of submitochondrial particles and purified H(+)-ATP synthase was not stimulated. The antibody bound to mitoplasts but not to submitochondrial particles. These results suggest that the putative Ca(2+)-dependent regulatory region of subunit e is exposed on the surface of the C-side of F(0) and that subunit e is involved in the regulation of mitochondrial H(+)-ATP synthase activity probably via its putative Ca(2+)-dependent regulatory region.  相似文献   

5.
The ATP synthase of Propionigenium modestum encloses a rotary motor involved in the production of ATP from ADP and inorganic phosphate utilizing the free energy of an electrochemical Na(+) ion gradient. This enzyme clearly belongs to the family of F(1)F(0) ATP synthases and uses exclusively Na(+) ions as the physiological coupling ion. The motor domain, F(0), comprises subunit a and the b subunit dimer which are part of the stator and the subunit c oligomer acting as part of the rotor. During ATP synthesis, Na(+) translocation through F(0) proceeds from the periplasm via the stator channel (subunit a) onto a Na(+) binding site of the rotor (subunit c). Upon rotation of the subunit c oligomer versus subunit a, the occupied rotor site leaves the interface with the stator and the Na(+) ion can freely dissociate into the cytoplasm. Recent experiments demonstrate that the membrane potential is crucial for ATP synthesis under physiological conditions. These findings support the view that voltage generates torque in F(0), which drives the rotation of the gamma subunit thus liberating tightly bound ATP from the catalytic sites in F(1). We suggest a mechanochemical model for the transduction of transmembrane Na(+)-motive force into rotary torque by the F(0) motor that can account quantitatively for the experimental data.  相似文献   

6.
Arakaki N  Kita T  Shibata H  Higuti T 《FEBS letters》2007,581(18):3405-3409
Here we show that the cell-surface expression of the alpha subunit of H(+)-ATP synthase is markedly increased during adipocyte differentiation. Treatment of differentiated adipocytes with small molecule inhibitors of H(+)-ATP synthase or antibodies against alpha and beta subunits of H(+)-ATP synthase leads to a decrease in cytosolic lipid droplet accumulation. Apolipoprotein A-I, which has been shown to bind to the ectopic beta-chain of H(+)-ATP synthase and inhibit the activity of cell-surface H(+)-ATP synthase, also was found to inhibit cytosolic lipid accumulation. These results suggest that the cell-surface H(+)-ATP synthase has a previously unsuspected role in lipid metabolism in adipocytes.  相似文献   

7.
The atp6 gene, encoding the ATP6 subunit of F(1)F(0)-ATP synthase, has thus far been found only as an mtDNA-encoded gene. However, atp6 is absent from mtDNAs of some species, including that of Chlamydomonas reinhardtii. Analysis of C. reinhardtii expressed sequence tags revealed three overlapping sequences that encoded a protein with similarity to ATP6 proteins. PCR and 5'- and 3'-RACE were used to obtain the complete cDNA and genomic sequences of C. reinhardtii atp6. The atp6 gene exhibited characteristics of a nucleus-encoded gene: Southern hybridization signals consistent with nuclear localization, the presence of introns, and a codon usage and a polyadenylation signal typical of nuclear genes. The corresponding ATP6 protein was confirmed as a subunit of the mitochondrial F(1)F(0)-ATP synthase from C. reinhardtii by N-terminal sequencing. The predicted ATP6 polypeptide has a 107-amino acid cleavable mitochondrial targeting sequence. The mean hydrophobicity of the protein is decreased in those transmembrane regions that are predicted not to participate directly in proton translocation or in intersubunit contacts with the multimeric ring of c subunits. This is the first example of a mitochondrial protein with more than two transmembrane stretches, directly involved in proton translocation, that is nucleus-encoded.  相似文献   

8.
We describe here purification and biochemical characterization of the F(1)F(o)-ATP synthase from the thermoalkaliphilic organism Bacillus sp. strain TA2.A1. The purified enzyme produced the typical subunit pattern of an F(1)F(o)-ATP synthase on a sodium dodecyl sulfate-polyacrylamide gel, with F(1) subunits alpha, beta, gamma, delta, and epsilon and F(o) subunits a, b, and c. The subunits were identified by N-terminal protein sequencing and mass spectroscopy. A notable feature of the ATP synthase from strain TA2.A1 was its specific blockage in ATP hydrolysis activity. ATPase activity was unmasked by using the detergent lauryldimethylamine oxide (LDAO), which activated ATP hydrolysis >15-fold. This activation was the same for either the F(1)F(o) holoenzyme or the isolated F(1) moiety, and therefore latent ATP hydrolysis activity is an intrinsic property of F(1). After reconstitution into proteoliposomes, the enzyme catalyzed ATP synthesis driven by an artificially induced transmembrane electrical potential (Deltapsi). A transmembrane proton gradient or sodium ion gradient in the absence of Deltapsi was not sufficient to drive ATP synthesis. ATP synthesis was eliminated by the electrogenic protonophore carbonyl cyanide m-chlorophenylhydrazone, while the electroneutral Na(+)/H(+) antiporter monensin had no effect. Neither ATP synthesis nor ATP hydrolysis was stimulated by Na(+) ions, suggesting that protons are the coupling ions of the ATP synthase from strain TA2.A1, as documented previously for mesophilic alkaliphilic Bacillus species. The ATP synthase was specifically modified at its c subunits by N,N'-dicyclohexylcarbodiimide, and this modification inhibited ATP synthesis.  相似文献   

9.
Methanosarcina mazei Gö1 couples the methyl transfer from methyl-tetrahydromethanopterin to 2-mercaptoethanesulfonate (coenzyme M) with the generation of an electrochemical sodium ion gradient (delta mu Na+) and the reduction of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreoninephosphate with the generation of an electrochemical proton gradient (delta muH+). Experiments with washed inverted vesicles were performed to investigate whether both ion gradients are used directly for the synthesis of ATP. delta mu Na+ and delta mu H+ were both able to drive the synthesis of ATP in the vesicular system. ATP synthesis driven by heterodisulfide reduction (delta mu H+) or an artificial delta pH was inhibited by the protonophore SF6847 but not by the sodium ionophore ETH157, whereas ETH157 but not SF6847 inhibited ATP synthesis driven by a chemical sodium ion gradient (delta pNa) as well as the methyl transfer reaction (delta mu Na+). Inhibition of the Na+/H+ antiporter led to a stimulation of ATP synthesis driven by the methyl transfer reaction (delta mu Na+), as well as by delta pNa. These experiments indicate that delta mu Na+ and delta mu H+ drive the synthesis of ATP via an Na(+)- and an H(+)-translocating ATP synthase, respectively. Inhibitor studies were performed to elucidate the nature of the ATP synthase(s) involved. delta pH-driven ATP synthesis was specifically inhibited by bafilomycin A1, whereas delta pNa-driven ATP synthesis was exclusively inhibited by 7-chloro-4-nitro-2-oxa-1,3-diazole, azide, and venturicidin. These results are evidence for the presence of an F(1)F(0)-ATP synthase in addition to the A(1)A(0)-ATP synthase in membranes of M. Mazei Gö1 and suggest that the F(1)F(0)-type enzyme is an Na+-translocating ATP synthase, whereas the A(1)A(0)-ATP synthase uses H+ as the coupling ion.  相似文献   

10.
H(+)-F(O)F(1)-ATP synthase couples proton flow through its membrane portion, F(O), to the synthesis of ATP in its headpiece, F(1). Upon reversal of the reaction the enzyme functions as a proton pumping ATPase. Even in the simplest bacterial enzyme the ATPase activity is regulated by several mechanisms, involving inhibition by MgADP, conformational transitions of the epsilon subunit, and activation by protonmotive force. Here we report that the Met23Lys mutation in the gamma subunit of the Rhodobacter capsulatus ATP synthase significantly impaired the activation of ATP hydrolysis by protonmotive force. The impairment in the mutant was due to faster enzyme deactivation that was particularly evident at low ATP/ADP ratio. We suggest that the electrostatic interaction of the introduced gammaLys23 with the DELSEED region of subunit beta stabilized the ADP-inhibited state of the enzyme by hindering the rotation of subunit gamma rotation which is necessary for the activation.  相似文献   

11.
Proton ATP synthases carry out energy conversion in mitochondria, chloroplasts, and bacteria. A key element of the membrane integral motor CFO in chloroplasts is the oligomer of subunit III: it converts the energy of a transmembrane electrochemical proton gradient into rotational movement. To enlighten prominent features of the structure-function relationship of subunit III from spinach chloroplasts, new isolation methods were established to obtain highly pure monomeric and oligomeric subunit III in milligram quantities. By Fourier-transform infrared (FTIR) and CD spectroscopy, the predominantly alpha-helical secondary structure of subunit III was demonstrated. For monomeric subunit III, a conformational change was observed when diluting the SDS-solubilized protein. Under the same conditions the conformation of the oligomer III did not change. A mass of 8003 Da for the monomeric subunit III was determined by MALDI mass spectrometry (MALDI-MS), showing that no posttranslational modifications occurred. By ionisation during MALDI-MS, the noncovalent homooligomer III14 disaggregated into its III monomers.  相似文献   

12.
Extracellular ATP synthesis on human umbilical vein endothelial cells (HUVECs) was examined, and it was found that HUVECs possess high ATP synthesis activity on the cell surface. Extracellular ATP generation was detected within 5 s after addition of ADP and inorganic phosphate and reached a maximal level at 15 s. This type of ATP synthesis was almost completely inhibited by mitochondrial H(+)-ATP synthase inhibitors (e.g., efrapeptins, resveratrol, and piceatannol), which target the F(1) catalytic domain. Oligomycin and carbonyl cyanide m-chlorophenylhydrazone, but not potassium cyanide, also inhibited extracellular ATP synthesis on HUVECs, suggesting that cell surface ATP synthase employs the transmembrane electrochemical potential difference of protons to synthesize ATP as well as mitochondrial H(+)-ATP synthase. The F(1)-targeting H(+)-ATP synthase inhibitors markedly inhibited the proliferation of HUVECs, but intracellular ATP levels in HUVECs treated with these inhibitors were only slightly affected, as shown by comparison with the control cells. Interestingly, piceatannol inhibited only partially the activation of Syk (a nonreceptor tyrosine kinase), which has been shown to play a role in a number of endothelial cell functions, including cell growth and migration. These findings suggest that H(+)-ATP synthase-like molecules on the surface of HUVECs play an important role not only in extracellular ATP synthesis but also in the proliferation of HUVECs. The present results demonstrate that the use of small molecular H(+)-ATP synthase inhibitors targeting the F(1) catalytic domain may lead to significant advances in potential antiangiogenic cancer therapies.  相似文献   

13.
In this study, we investigate the structure of the mitochondrial F(0)F(1)-ATP synthase of the colorless alga Polytomella sp. with respect to the enzyme of its green close relative Chlamydomonas reinhardtii. It is demonstrated that several unique features of the ATP synthase in C. reinhardtii are also present in Polytomella sp. The alpha- and beta-subunits of the ATP synthase from both algae are highly unusual in that they exhibit extensions at their N- and C-terminal ends, respectively. Several subunits of the Polytomella ATP synthase in the range of 9 to 66 kD have homologs in the green alga but do not have known equivalents as yet in mitochondrial ATP synthases of mammals, plants, or fungi. The largest of these so-called ASA (ATP Synthase-Associated) subunits, ASA1, is shown to be an extrinsic protein. Short heat treatment of isolated Polytomella mitochondria unexpectedly dissociated the otherwise highly stable ATP synthase dimer of 1,600 kD into subcomplexes of 800 and 400 kD, assigned as the ATP synthase monomer and F(1)-ATPase, respectively. Whereas no ASA subunits were found in the F(1)-ATPase, all but two were present in the monomer. ASA6 (12 kD) and ASA9 (9 kD), predicted to be membrane bound, were not detected in the monomer and are thus proposed to be involved in the formation or stabilization of the enzyme. A hypothetical configuration of the Chlamydomonad dimeric ATP synthase portraying its unique features is provided to spur further research on this topic.  相似文献   

14.
An unresolved question in the bioenergetics of methanogenic archaea is how the generation of proton-motive and sodium-motive forces during methane production is used to synthesize ATP by the membrane-bound A(1)A(o)-ATP synthase, with both proton- and sodium-coupled enzymes being reported in methanogens. To address this question, we investigated the biochemical characteristics of the A(1)A(o)-ATP synthase (MbbrA(1)A(o)) of Methanobrevibacter ruminantium M1, a predominant methanogen in the rumen. Growth of M. ruminantium M1 was inhibited by protonophores and sodium ionophores, demonstrating that both ion gradients were essential for growth. To study the role of these ions in ATP synthesis, the ahaHIKECFABD operon encoding the MbbrA(1)A(o) was expressed in Escherichia coli strain DK8 (Δatp) and purified yielding a 9-subunit protein with an SDS-stable c oligomer. Analysis of the c subunit amino acid sequence revealed that it consisted of four transmembrane helices, and each hairpin displayed a complete Na(+)-binding signature made up of identical amino acid residues. The purified MbbrA(1)A(o) was stimulated by sodium ions, and Na(+) provided pH-dependent protection against inhibition by dicyclohexylcarbodiimide but not tributyltin chloride. ATP synthesis in inverted membrane vesicles lacking sodium ions was driven by a membrane potential that was sensitive to cyanide m-chlorophenylhydrazone but not to monensin. ATP synthesis could not be driven by a chemical gradient of sodium ions unless a membrane potential was imposed. ATP synthesis under these conditions was sensitive to monensin but not cyanide m-chlorophenylhydrazone. These data suggest that the M. ruminantium M1 A(1)A(o)-ATP synthase exhibits all the properties of a sodium-coupled enzyme, but it is also able to use protons to drive ATP synthesis under conditions that favor proton coupling, such as low pH and low levels of sodium ions.  相似文献   

15.
Using the technique of blue native gel electrophoresis, the oligomeric state of the yeast mitochondrial F1F0-ATP synthase was analysed. Solubilization of mitochondrial membranes with low detergent to protein ratios led to the identification of the dimeric state of the ATP synthase. Analysis of the subunit composition of the dimer, in comparison with the monomer, revealed the presence of three additional small proteins. These dimer-specific subunits of the ATP synthase were identified as the recently described subunit e/Tim11 (Su e/Tim11), the putative subunit g homolog (Su g) and a new component termed subunit k (Su k). Although, as shown here, these three proteins are not required for the formation of enzymatically active ATP synthase, Su e/Tim11 and Su g are essential for the formation of the dimeric state. Su e/Tim11 appears to play a central role in this dimerization process. The dimer-specific subunits are associated with the membrane bound F0-sector. The F0-sector may thereby be involved in the dimerization of two monomeric F1F0-ATP synthase complexes. We speculate that the F1F0-ATP synthase of yeast, like the other complexes of oxidative phosphorylation, form supracomplexes to optimize transduction of energy and to enhance the stability of the complex in the membrane.  相似文献   

16.
The molecular mechanism of ATP synthesis by F1F0-ATP synthase   总被引:4,自引:0,他引:4  
ATP synthesis by oxidative phosphorylation and photophosphorylation, catalyzed by F1F0-ATP synthase, is the fundamental means of cell energy production. Earlier mutagenesis studies had gone some way to describing the mechanism. More recently, several X-ray structures at atomic resolution have pictured the catalytic sites, and real-time video recordings of subunit rotation have left no doubt of the nature of energy coupling between the transmembrane proton gradient and the catalytic sites in this extraordinary molecular motor. Nonetheless, the molecular events that are required to accomplish the chemical synthesis of ATP remain undefined. In this review we summarize current state of knowledge and present a hypothesis for the molecular mechanism of ATP synthesis.  相似文献   

17.
Pure mitochondria of the photosynthetic alga Chlamydomonas reinhardtii were analyzed using blue native-polyacrylamide gel electrophoresis (BN-PAGE). The major oxidative phosphorylation complexes were resolved: F(1)F(0)-ATP synthase, NADH-ubiquinone oxidoreductase, ubiquinol-cytochrome c reductase, and cytochrome c oxidase. The oligomeric states of these complexes were determined. The F(1)F(0)-ATP synthase runs exclusively as a dimer, in contrast to the C. reinhardtii chloroplast enzyme, which is present as a monomer and subcomplexes. The sequence of a 60-kD protein, associated with the mitochondrial ATP synthase and with no known counterpart in any other organism, is reported. This protein may be related to the strong dimeric character of the algal F(1)F(0)-ATP synthase. The oxidative phosphorylation complexes resolved by BN-PAGE were separated into their subunits by second dimension sodium dodecyl sulfate-PAGE. A number of polypeptides were identified mainly on the basis of their N-terminal sequence. Core I and II subunits of complex III were characterized, and their proteolytic activities were predicted. Also, the heterodimeric nature of COXIIA and COXIIB subunits in cytochrome c oxidase was demonstrated. Other mitochondrial proteins like the chaperone HSP60, the alternative oxidase, the aconitase, and the ADP/ATP carrier were identified. BN-PAGE was also used to approach the analysis of the major chloroplast protein complexes of C. reinhardtii.  相似文献   

18.
H(+)-transporting, F(1)F(o)-type ATP synthases utilize a transmembrane H(+) potential to drive ATP formation by a rotary catalytic mechanism. ATP is formed in alternating beta subunits of the extramembranous F(1) sector of the enzyme, synthesis being driven by rotation of the gamma subunit in the center of the F(1) molecule between the alternating catalytic sites. The H(+) electrochemical potential is thought to drive gamma subunit rotation by first coupling H(+) transport to rotation of an oligomeric rotor of c subunits within the transmembrane F(o) sector. The gamma subunit is forced to turn with the c-oligomeric rotor due to connections between subunit c and the gamma and epsilon subunits of F(1). In this essay we will review recent studies on the Escherichia coli F(o) sector. The monomeric structure of subunit c, determined by NMR, shows that subunit c folds in a helical hairpin with the proton carrying Asp(61) centered in the second transmembrane helix (TMH). A model for the structural organization of the c(10) oligomer in F(o) was deduced from extensive cross-linking studies and by molecular modeling. The model indicates that the H(+)-carrying carboxyl of subunit c is occluded between neighboring subunits of the c(10) oligomer and that two c subunits pack in a "front-to-back" manner to form the H(+) (cation) binding site. In order for protons to gain access to Asp(61) during the protonation/deprotonation cycle, we propose that the outer, Asp(61)-bearing TMH-2s of the c-ring and TMHs from subunits composing the inlet and outlet channels must turn relative to each other, and that the swiveling motion associated with Asp(61) protonation/deprotonation drives the rotation of the c-ring. The NMR structures of wild-type subunit c differs according to the protonation state of Asp(61). The idea that the conformational state of subunit c changes during the catalytic cycle is supported by the cross-linking evidence in situ, and two recent NMR structures of functional mutant proteins in which critical residues have been switched between TMH-1 and TMH-2. The structural information is considered in the context of the possible mechanism of rotary movement of the c(10) oligomer during coupled synthesis of ATP.  相似文献   

19.
Pisa KY  Huber H  Thomm M  Müller V 《The FEBS journal》2007,274(15):3928-3938
The rotor subunit c of the A(1)A(O) ATP synthase of the hyperthermophilic archaeon Pyrococcus furiosus contains a conserved Na(+)-binding motif, indicating that Na(+) is a coupling ion. To experimentally address the nature of the coupling ion, we isolated the enzyme by detergent solubilization from native membranes followed by chromatographic separation techniques. The entire membrane-embedded motor domain was present in the preparation. The rotor subunit c was found to form an SDS-resistant oligomer. Under the conditions tested, the enzyme had maximal activity at 100 degrees C, had a rather broad pH optimum between pH 5.5 and 8.0, and was inhibited by diethystilbestrol and derivatives thereof. ATP hydrolysis was strictly dependent on Na(+), with a K(m) of 0.6 mM. Li(+), but not K(+), could substitute for Na(+). The Na(+) dependence was less pronounced at higher proton concentrations, indicating competition between Na(+) and H(+) for a common binding site. Moreover, inhibition of the ATPase by N',N'-dicyclohexylcarbodiimide could be relieved by Na(+). Taken together, these data demonstrate the use of Na(+) as coupling ion for the A(1)A(O) ATP synthase of Pyrococcus furiosus, the first Na(+) A(1)A(O) ATP synthase described.  相似文献   

20.
ATP synthesis by oxidative phosphorylation and photophosphorylation, catalyzed by F1F0-ATP synthase, is the fundamental means of cell energy production. Earlier mutagenesis studies had gone some way to describing the mechanism. More recently, several X-ray structures at atomic resolution have pictured the catalytic sites, and real-time video recordings of subunit rotation have left no doubt of the nature of energy coupling between the transmembrane proton gradient and the catalytic sites in this extraordinary molecular motor. Nonetheless, the molecular events that are required to accomplish the chemical synthesis of ATP remain undefined. In this review we summarize current state of knowledge and present a hypothesis for the molecular mechanism of ATP synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号