共查询到20条相似文献,搜索用时 15 毫秒
1.
Jürgen M.W. Meyer zu Tittingdorf Eva Schäfer Christoph Giersch Holger Seelert 《BBA》2004,1659(1):92-99
The chloroplast H+-ATP synthase is a key component for the energy supply of higher plants and green algae. An oligomer of identical protein subunits III is responsible for the conversion of an electrochemical proton gradient into rotational motion. It is highly controversial if the oligomer III stoichiometry is affected by the metabolic state of any organism. Here, the intact oligomer III of the ATP synthase from Chlamydomonas reinhardtii has been isolated for the first time. Due to the importance of the subunit III stoichiometry for energy conversion, a gradient gel system was established to distinguish oligomers with different stoichiometries. With this methodology, a possible alterability of the stoichiometry in respect to the metabolic state of the cells was examined. Several growth parameters, i.e., light intensity, pH value, carbon source, and CO2 concentration, were varied to determine their effects on the stoichiometry. Contrary to previous suggestions for E. coli, the oligomer III of the chloroplast H+-ATP synthase always consists of a constant number of monomers over a wide range of metabolic states. Furthermore, mass spectrometry indicates that subunit III from C. reinhardtii is not modified posttranslationally. Data suggest a subunit III stoichiometry of the algae ATP synthase divergent from higher plants. 相似文献
2.
The green alga Chlamydomonas reinhardtii is a model organism for the study of photosynthesis. The chloroplast ATP synthase is responsible for the synthesis of ATP during photosynthesis. Using genetic engineering and biolistic transformation, a string of eight histidine residues has been inserted into the amino-terminal end of the beta subunit of this enzyme in C. reinhardtii. The incorporation of these amino acids did not impact the function of the ATP synthase either in vivo or in vitro and the resulting strain of C. reinhardtii showed normal growth. The addition of these amino acids can be seen through altered gel mobility of the beta subunit and the binding of a polyhistidine-specific dye to the subunit. The purified his-tagged CF1 has normal Mg(2+)-ATPase activity, which can be stimulated by alcohol and detergents and the enzyme remains active while bound to a nickel-coated surface. Potential uses for this tagged enzyme as a biochemical tool are discussed. 相似文献
3.
Dimers and oligomers of F-type ATP synthases have been observed previously in mitochondria of various organisms and for the CF(o)F(1) ATP synthase of chloroplasts of Chlamydomonas reinhardtii. In contrast to mitochondria, however, dimers of chloroplast ATP synthases dissociate at elevated phosphate concentration. This suggests a regulation by cell physiological processes. Stable isotope labeling of living cells and blue-native PAGE have been employed to quantitate changes in the ratio of monomeric to dimeric CF(o)F(1) ATP synthase. Chlamydomonas reinhardtii cells were cultivated photoautotrophically in the presence of (15)N and photomixotrophically at natural (14)N abundance, respectively. As compared to photoautotrophic growth, an increased assembly of ATP synthase dimers on the expense of preexisting monomers during photomixotrophic growth was observed, demonstrating a metabolic control of the dimerization process. 相似文献
4.
Poetsch A Rexroth S Heberle J Link TA Dencher NA Seelert H 《Biochimica et biophysica acta》2003,1618(1):59-66
Proton ATP synthases carry out energy conversion in mitochondria, chloroplasts, and bacteria. A key element of the membrane integral motor CFO in chloroplasts is the oligomer of subunit III: it converts the energy of a transmembrane electrochemical proton gradient into rotational movement. To enlighten prominent features of the structure-function relationship of subunit III from spinach chloroplasts, new isolation methods were established to obtain highly pure monomeric and oligomeric subunit III in milligram quantities. By Fourier-transform infrared (FTIR) and CD spectroscopy, the predominantly alpha-helical secondary structure of subunit III was demonstrated. For monomeric subunit III, a conformational change was observed when diluting the SDS-solubilized protein. Under the same conditions the conformation of the oligomer III did not change. A mass of 8003 Da for the monomeric subunit III was determined by MALDI mass spectrometry (MALDI-MS), showing that no posttranslational modifications occurred. By ionisation during MALDI-MS, the noncovalent homooligomer III14 disaggregated into its III monomers. 相似文献
5.
Three fundamentally different chloroplast ATP synthase samples of increasing complexity were visualized by atomic force microscopy. The samples are distinguishable in respect to the isolation technique, the detergent employed, and the final subunit composition. The homo-oligomer III was isolated following SDS treatment of ATP synthase, the proton-turbine III+IV was obtained by blue-native electrophoresis, and complete CFO was isolated by anion exchange chromatography of NaSCN splitted ATP synthase. In all three ATP synthase subcomplexes 14 and only 14 circularly arranged subunits III composed the intact transmembrane rotor. Therefore, 14 protomers built the membrane-resident proton turbine. The observed stoichiometry of 14 is not a biochemical artifact or affected by natural growth variations of the spinach, as previously suggested. A correlation between the presence of subunit IV in the imaged sample and the appearance of a central protrusion in the narrower orifice of the oligomeric cylinder III14 has been observed. In contrast to current predictions, in chloroplast FO the subunit IV can be found inside the cylinder III14 and not at its periphery, at least in the reconstituted 2D arrays imaged. 相似文献
6.
The chloroplast ATP synthase in Chlamydomonas reinhardtii. I. Characterization of its nine constitutive subunits 总被引:4,自引:0,他引:4
We have characterized the subunit composition of the chloroplast ATP synthase from Chlamydomonas reinhardtii by means of a comparison of the polypeptide deficiencies in a mutant defective in photophosphorylation, with the polypeptide content in purified coupling factor (CF)1 and CF1.CF0 complexes. We could distinguish nine subunits in the enzyme, four of which were CF0 subunits. Further characterization of these subunits was undertaken by immunoblotting experiments, [14C]dicyclohexylcarbodiimide binding and analysis of their site of translation. In particular, we were able to show the presence of an as yet unidentified delta subunit in CF1 from C. reinhardtii. We have identified a 70-kDa peripheral membrane protein in the thylakoid membranes of C. reinhardtii, which is immunologically related to the beta subunit of CF1. We discuss its conceivable ATPase function with respect to the Ca2+-dependent ATPase activity previously reported in the thylakoid membranes from C. reinhardtii. 相似文献
7.
Chlamydomonas reinhardtii mutants defective in the chloroplast ATP synthase are highly sensitive to light. The ac46 mutant is affected in the MDH1 gene, required for production or stability of the monocistronic atpH mRNA encoding CF(O)-III. In this and other ATP synthase mutants, we show that short-term exposure to moderate light intensities-a few minutes-induces an inhibition of electron transfer after the primary quinone acceptor of photosystem II (PSII), whereas longer exposure-several hours-leads to a progressive loss of PSII cores. An extensive swelling of thylakoids accompanies the initial inhibition of electron flow. Thylakoids deflate as PSII cores are lost. The slow process of PSII degradation involves the participation of ClpP, a chloroplast-encoded peptidase that is part of a major stromal protease Clp. In the light of the above findings, we discuss the photosensitivity of ATP synthase mutants with respect to the regular photoinhibition process that affects photosynthetic competent strains at much higher light intensities. 相似文献
8.
9.
10.
Petroutsos D Busch A Janssen I Trompelt K Bergner SV Weinl S Holtkamp M Karst U Kudla J Hippler M 《The Plant cell》2011,23(8):2950-2963
The plant-specific calcium binding protein CAS (calcium sensor) has been localized in chloroplast thylakoid membranes of vascular plants and green algae. To elucidate the function of CAS in Chlamydomonas reinhardtii, we generated and analyzed eight independent CAS knockdown C. reinhardtii lines (cas-kd). Upon transfer to high-light (HL) growth conditions, cas-kd lines were unable to properly induce the expression of LHCSR3 protein that is crucial for nonphotochemical quenching. Prolonged exposure to HL revealed a severe light sensitivity of cas-kd lines and caused diminished activity and recovery of photosystem II (PSII). Remarkably, the induction of LHCSR3, the growth of cas-kd lines under HL, and the performance of PSII were fully rescued by increasing the calcium concentration in the growth media. Moreover, perturbing cellular Ca(2+) homeostasis by application of the calmodulin antagonist W7 or the G-protein activator mastoparan impaired the induction of LHCSR3 expression in a concentration-dependent manner. Our findings demonstrate that CAS and Ca(2+) are critically involved in the regulation of the HL response and particularly in the control of LHCSR3 expression. 相似文献
11.
The epsilon subunit of the ATP synthases from chloroplasts and Escherichia coli regulates the activity of the enzyme and is required for ATP synthesis. The epsilon subunit is not required for the binding of the catalytic portion of the chloroplast ATP synthase (CF1) to the membrane-embedded part (CFo). Thylakoid membranes reconstituted with CF1 lacking its epsilon subunit (CF1-epsilon) have high ATPase activity and no ATP synthesis activity, at least in part because the membranes are very leaky to protons. Either native or recombinant epsilon subunit inhibits ATPase activity and restores low proton permeability and ATP synthesis. In this paper we show that recombinant epsilon subunit from which 45 amino acids were deleted from the C-terminus is as active as full-length epsilon subunit in restoring ATP synthesis to membranes containing CF1-epsilon. However, the truncated form of the epsilon subunit was significantly less effective as an inhibitor of the ATPase activity of CF1-epsilon, both in solution and bound to thylakoid membranes. Thus, the C-terminus of the epsilon subunit is more involved in regulation of activity, by inhibiting ATP hydrolysis, than in ATP synthesis. 相似文献
12.
Disappearance of the heteroplasmic state for chloroplast markers in zygospores of Chlamydomonas reinhardtii 总被引:1,自引:0,他引:1
In the investigations reported here, the length of zygospore incubation or “maturation” prior to the induction of meiosis was found to affect the inheritance pattern of chloroplast genes. The frequency of zygospores transmitting chloroplast alleles from both parents drops with increasing zygospore age following mating, while the frequencies of zygospores homoplasmic for maternal or paternal chloroplast alleles increase correspondingly. Since there is a negligible reduction in viability, zygospores which are initially biparental appear to become pure for the chloroplast genes from one or the other parent prior to the occurrence of cell division. These results are amplified in crosses of mt+ cells which have been irradiated with ultraviolet (uv) light or grown in the presence of the base analog, 5-fluorodeoxyuridine, which also perturbs maternal inheritance. Low doses of uv irradiation, applied to zygospores derived from crosses in which the maternal parent was also irradiated prior to mating, increase the biparental zygospore frequency while reducing the proportion of maternal zygospores. This indicates that at least some maternal zygospore clones are actually derived from zygospores which still contain both parental chloroplast genomes prior to the induction of germination. Thus, a subclass of zygospores must contain paternal chloroplast genomes which are either eliminated upon germination or are not expressed in the resulting zygospore clone. Tetrad analysis of biparental zygospores derived from uv-irradiated mt+ gametes demonstrates that the frequency of maternal chloroplast alleles in biparental zygospores decreases as they age. One result is an increase in the proportion of meiotic products homoplasmic for all paternal markers. The increased segregation of homoplasmic daughter cells during the meiotic divisions may result from a reduction in chloroplast ploidy by elimination of maternal genomes. Alternatively, it may reflect an altered ratio of maternal:paternal genomes due to continuous rounds of pairing and gene conversion between heterologous chloroplast DNAs leading to genetic drift within the DNA population of the organelle. 相似文献
13.
Intertwined translational regulations set uneven stoichiometry of chloroplast ATP synthase subunits 总被引:1,自引:0,他引:1
下载免费PDF全文

The (C)F1 sector from H(+)-ATP synthases comprises five subunits: alpha, beta, gamma, delta and epsilon, assembled in a 3:3:1:1:1 stoichiometry. Here, we describe the molecular mechanism ensuring this unique stoichiometry, required for the functional assembly of the chloroplast enzyme. It relies on a translational feedback loop operating in two steps along the assembly pathway of CF1. In Chlamydomonas, production of the nucleus-encoded subunit gamma is required for sustained translation of the chloroplast-encoded subunit beta, which in turn stimulates the expression of the chloroplast-encoded subunit alpha. Translational downregulation of subunits beta or alpha, when not assembled, is born by the 5'UTRs of their own mRNAs, pointing to a regulation of translation initiation. We show that subunit gamma, by assembling with alpha(3)beta(3) hexamers, releases a negative feedback exerted by alpha/beta assembly intermediates on translation of subunit beta. Moreover, translation of subunit alpha is transactivated by subunit beta, an observation unprecedented in the biogenesis of organelle proteins. 相似文献
14.
Mitchell BF Pedersen LB Feely M Rosenbaum JL Mitchell DR 《Molecular biology of the cell》2005,16(10):4509-4518
Eukaryotic cilia and flagella are long, thin organelles, and diffusion from the cytoplasm may not be able to support the high ATP concentrations needed for dynein motor activity. We discovered enzyme activities in the Chlamydomonas reinhardtii flagellum that catalyze three steps of the lower half of glycolysis (phosphoglycerate mutase, enolase, and pyruvate kinase). These enzymes can generate one ATP molecule for every substrate molecule consumed. Flagellar fractionation shows that enolase is at least partially associated with the axoneme, whereas phosphoglycerate mutase and pyruvate kinase primarily reside in the detergent-soluble (membrane + matrix) compartments. We further show that axonemal enolase is a subunit of the CPC1 central pair complex and that reduced flagellar enolase levels in the cpc1 mutant correlate with the reduced flagellar ATP concentrations and reduced in vivo beat frequencies reported previously in the cpc1 strain. We conclude that in situ ATP synthesis throughout the flagellar compartment is essential for normal flagellar motility. 相似文献
15.
16.
Photosynthesis and state transitions in mitochondrial mutants of Chlamydomonas reinhardtii affected in respiration
下载免费PDF全文

Photosynthetic activities were analyzed in Chlamydomonas reinhardtii mitochondrial mutants affected in different complexes (I, III, IV, I + III, and I + IV) of the respiratory chain. Oxygen evolution curves showed a positive relationship between the apparent yield of photosynthetic linear electron transport and the number of active proton-pumping sites in mitochondria. Although no significant alterations of the quantitative relationships between major photosynthetic complexes were found in the mutants, 77 K fluorescence spectra showed a preferential excitation of photosystem I (PSI) compared with wild type, which was indicative of a shift toward state 2. This effect was correlated with high levels of phosphorylation of light-harvesting complex II polypeptides, indicating the preferential association of light-harvesting complex II with PSI. The transition to state 1 occurred in untreated wild-type cells exposed to PSI light or in 3-(3,4-dichlorophenyl)-1,1-dimethylureatreated cells exposed to white light. In mutants of the cytochrome pathway and in double mutants, this transition was only observed in white light in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. This suggests higher rates of nonphotochemical plastoquinone reduction through the chlororespiratory pathway, which was confirmed by measurements of the complementary area above the fluorescence induction curve in dark-adapted cells. Photo-acoustic measurements of energy storage by PSI showed a stimulation of PSI-driven cyclic electron flow in the most affected mutants. The present results demonstrate that in C. reinhardtii mutants, permanent defects in the mitochondrial electron transport chain stabilize state 2, which favors cyclic over linear electron transport in the chloroplast. 相似文献
17.
18.
D Robertson J P Woessner N W Gillham J E Boynton 《The Journal of biological chemistry》1989,264(4):2331-2337
Two point mutants of Chlamydomonas reinhardtii, previously found by recombination and complementation analysis to map in the chloroplast atpB gene encoding the beta subunit of the CF1/CF0 ATP synthase, are here shown to be missense alterations near the 5' end of that gene. One mutant (ac-u-c-2-9) has a change at amino acid position 47 of the beta subunit from leucine (CTA) to arginine (CGA). In the second mutant (ac-u-c-2-29), the codon AAA (lysine) is changed to AAC (asparagine) at position 154. Spontaneous revertants of each mutant were isolated that restore the original wild type base pair. Northern analysis of total RNA and in vivo pulse labeling followed by immunoprecipitation reveals that both mutant atpB genes are transcribed and translated normally. However, immunoblots show that the amount of beta subunit associated with mutant thylakoids is only approximately 3% of that seen in wild type and that the CF1 alpha and gamma subunits are missing entirely. The disruption of ATP synthase complex assembly in these mutants is much more severe than in Escherichia coli beta subunit gene point mutants, which retain significant amounts of alpha and beta subunits on their membranes (Noumi, T., Oka, N., Kanazawa, H., and Futai, M. (1986) J. Biol. Chem. 261, 7070-7075). These results support the hypothesis that there are differences in assembly of the ATP synthase between E. coli and chloroplasts. In particular they indicate that beta must be present for assembly of the alpha and gamma subunits of CF1 onto chloroplast membranes. 相似文献
19.
20.
A chloroplast gene is required for the light-independent accumulation of chlorophyll in Chlamydomonas reinhardtii. 总被引:1,自引:0,他引:1
下载免费PDF全文

The light-independent pathway of chlorophyll synthesis which occurs in some lower plants and algae is still largely unknown. We have characterized a chloroplast mutant, H13, of Chlamydomonas reinhardtii which is unable to synthesize chlorophyll in the dark and is also photosystem I deficient. The mutant has a 2.8 kb deletion as well as other rearrangements of its chloroplast genome. By performing particle gun mediated chloroplast transformation of H13 with defined wild-type chloroplast DNA fragments, we have identified a new chloroplast gene, chlN, coding for a 545 amino acid protein which is involved in the light-independent accumulation of chlorophyll, probably at the step of reduction of protochlorophyllide to chlorophyllide. The chlN gene is also found in the chloroplast genomes of liverwort and pine, but is absent from the chloroplast genomes of tobacco and rice. 相似文献