首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined peak and reserve cardiovascular function and skeletal muscle oxygenation during unilateral knee extension (ULKE) exercise in five heart transplant recipients (HTR, mean +/- SE; age: 53 +/- 3 years; years posttransplant: 6 +/- 4) and five age- and body mass-matched healthy controls (CON). Pulmonary oxygen uptake (Vo(2)(p)), heart rate (HR), stroke volume (SV), cardiac output (Q), and skeletal muscle deoxygenation (HHb) kinetics were assessed during moderate-intensity ULKE exercise. Peak exercise and reserve Vo(2)(p), Q, and systemic arterial-venous oxygen difference (a-vO(2diff)) were 23-52% lower (P < 0.05) in HTR. The reduced Q and a-vO(2diff) reserves were associated with lower HR and HHb reserves, respectively. The phase II Vo(2)(p) time delay was greater (HTR: 38 +/- 2 vs. CON: 25 +/- 1 s, P < 0.05), while time constants for phase II Vo(2)(p) (HTR: 54 +/- 8 vs. CON: 31 +/- 3 s), Q (HTR: 66 +/- 8 vs. CON: 28 +/- 4 s), and HHb (HTR: 27 +/- 5 vs. CON: 13 +/- 3 s) were significantly slower in HTR. The HR half-time was slower in HTR (113 +/- 21 s) vs. CON (21 +/- 2 s, P < 0.05); however, no significant difference was found between groups for SV kinetics (HTR: 39 +/- 8 s vs. CON 31 +/- 6 s). The lower peak Vo(2)(p) and prolonged Vo(2)(p) kinetics in HTR were secondary to impairments in both cardiovascular and skeletal muscle function that result in reduced oxygen delivery and utilization by the active muscles.  相似文献   

2.
Dynamic cardiac baroreflex responses are frequently investigated by analyzing the spontaneous reciprocal changes in arterial pressure and heart rate (HR). However, whether the spontaneous baroreflex-induced changes in HR translate into changes in cardiac output (CO) is unknown. In addition, this linkage between changes in HR and changes in CO may be different in subjects with heart failure (HF). We examined these questions using conscious dogs before and after pacing-induced HF. Spontaneous baroreflex sensitivity in the control of HR and CO was evaluated as the slopes of the linear relationships between HR or CO and left ventricular systolic pressure (LVSP) during spontaneous sequences of greater or equal to three consecutive beats when HR or CO changed inversely versus pressure. Furthermore, the translation of baroreflex HR responses into CO responses (HR-CO translation) was examined by computing the overlap between HR and CO sequences. In normal resting conditions, 44.0 +/- 4.4% of HR sequences overlapped with CO sequences, suggesting that only around half of the baroreflex HR responses cause CO responses. In HF, HR-LVSP, CO-LVSP, and the HR-CO translation significantly decreased compared with the normal condition (-2.29 +/- 0.5 vs. -5.78 +/- 0.7 beats.min(-1).mmHg(-1); -70.95 +/- 11.8 vs. -229.89 +/- 29.6 ml.min(-1).mmHg(-1); and 19.66 +/- 4.9 vs. 44.0 +/- 4.4%, respectively). We conclude that spontaneous baroreflex HR responses do not always cause changes in CO. In addition, HF significantly decreases HR-LVSP, CO-LVSP, and HR-CO translation.  相似文献   

3.
The nature of the activity of vasopressin which is responsible for the inhibition of renin secretion was studied by comparing the effects of vasopressin (AVP) and analogs of AVP in anesthetized water-loaded dogs. Infusion of AVP (1.0 ng/kg/min) increased mean arterial pressure (MAP) and decreased heart rate (HR) and free water clearance (CH2O). Plasma renin activity (PRA) decreased from 11.9 +/- 4.7 to 3.8 +/- 1.7 ng/ml/3 hr (p less than 0.05). A selective antidiuretic agonist, 1-deamino-8-D-arginine vasopressin (1.0 ng/kg/min), which had no effect on MAP or HR but was effective as AVP in decreasing CH2O, decreased PRA from 13.5 +/- 4.6 to 7.0 +/- 2.9 ng/ml/3 hr (p less than 0.05). Infusion of a selective vasoconstrictor agonist, 2-phenylalanine-8-ornithine oxytocin (1.0 ng/kg/min), increased MAP and decreased HR but did not decrease CH2O or PRA. A vasoconstrictor antagonist, d(CH2)5Tyr(Me)AVP (10 micrograms/kg), completely blocked the MAP and HR responses to AVP but did not block the decrease in CH2O or PRA (5.9 +/- 1.8 to 2.9 +/- 1.6 ng/ml/3 hr) (p less than 0.001). Infusion of the 0.45% saline vehicle had no significant effect on MAP, HR, CH2O or PRA. These results indicate that the inhibition of renin secretion by vasopressin in anesthetized water-loaded dogs is due to its antidiuretic activity.  相似文献   

4.
Chronic, rapid ventricular pacing produces congestive heart failure in dogs. The objectives of this study were to determine whether or not (i) in vitro myocardial biochemical alterations reported for heart failure by volume or pressure overload also occurred with heart failure due to rate overload, and (ii) these biochemical alterations were related to relevant in vivo cardiac physiologic alterations. We compared 27 dogs that were paced to advanced heart failure with 21 sham-operated dogs. Dogs with heart failure had 55% lower left ventricular ejection fraction (22.5 +/- 7.6 vs. 50.5 +/- 5.1%) and cardiac index (81 +/- 22 vs. 178 +/- 48 mL.min-1.kg-1), 287% higher pulmonary capillary wedge pressure (27.5 +/- 6.8 vs. 7.1 +/- 3.4 mmHg; 1 mmHg = 133.3 Pa), and 64% greater left ventricular diastolic area (18.4 +/- 3.7 vs. 11.2 +/- 1.3 cm2) (all p less than 0.05). Dogs with heart failure also had (i) 69% lower norepinephrine (232 +/- 139 vs. 747 +/- 220 ng/g protein), (ii) 25-50% lower activities of myofibrillar Ca ATPase (0.188 +/- 0.026 vs. 0.253 +/- 0.051 U/mg myofibrils), sarcoplasmic reticulum Ca-transport ATPase (0.155 +/- 0.074 vs. 0.288 +/- 0.043 U/mg membrane), and the glycolytic enzyme phosphofructokinase (33.4 +/- 10.0 and 47.7 +/- 15.8 U/g), (iii) 32% higher activity of the beta-oxidation enzyme hydroxyacyl-CoA dehydrogenase (11.43 +/- 1.48 vs. 8.67 +/- 1.70 U/g), and (iv) 60% higher activity of Krebs cycle oxoglutarate dehydrogenase (2.89 +/- 0.77 vs. 1.81 +/- 0.95 U/g) (all p less than 0.05). No differences between groups were observed for isozyme patterns and ATPase activity of myosin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Isoproterenol-induced cardiac hypertrophy is associated with increased expression of endothelial nitric oxide synthase in the aorta but without signs of improved endothelial function. The aim was to examine the hypothesis that increased expression of eNOS allosteric inhibitor caveolin-1 could be associated with unimproved endothelium-dependent relaxations. Rats received isoproterenol (5 mg/kg body mass, i.p., n = 13) or its vehicle (n = 14) during 1 week. Systolic blood pressure (SBP) and heart rate (HR) were measured by the tail-cuff method. Expression of eNOS and caveolin-1 was measured using immunoblotting analysis. Relaxations of isolated aorta to acetylcholine and sodium nitroprusside were evaluated ex vivo. After 1 week of isoproterenol administration, basal SBP and HR were decreased (SBP 110 +/- 3 vs. 126 +/- 3 mmHg, p < 0.05; HR 342 +/- 8 vs. 366 +/- 6 beats/min, p < 0.05). Isoproterenol increased the mass of the left ventricle (+33% +/- 4% vs. control; p < 0.05) and right ventricle (+40% +/- 9%; p < 0.05). Isoproterenol administration increased the expression of eNOS (+53% +/- 12%; p < 0.05) and caveolin-1 (+54% +/- 20%, p < 0.05) in the aorta. Relaxation of isolated aorta to acetylcholine and sodium nitroprusside showed a trend towards a worsened endothelial function and a lower sensitivity to exogenous NO. Thus, 1 week of isoproterenol administration led to increased eNOS expression in the aorta without amelioration of endothelial vasorelaxation function. Concomitant increase in caveolin-1 expression may be responsible for this paradox.  相似文献   

6.
Normotensive adults homozygous for glycine (Gly) of the Arg16/Gly beta2-adrenergic-receptor polymorphism have 1) greater forearm beta2-receptor mediated vasodilation and 2) a higher heart rate (HR) response to isometric handgrip than arginine (Arg) homozygotes. To test the hypothesis that the higher HR response in Gly16 subjects serves to maintain the pressor response [increased cardiac output (CO)] in the setting of augmented peripheral vasodilation to endogenous catecholamines, we measured continuous HR (ECG), arterial pressure (Finapres), and CO (transthoracic echocardiography) during isometric, 40% submaximal handgrip to fatigue in healthy subjects homozygous for Gly (n = 30; mean age +/- SE: 30 +/- 1.2, 13 women) and Arg (n = 17, age 30 +/- 1.6, 11 women). Resting data were similar between groups. Handgrip produced similar increases in arterial pressure and venous norepinephrine and epinephrine concentrations; however, HR increased more in the Gly group (60.1 +/- 4.3% increase from baseline vs. 45.5 +/- 3.9%, P = 0.03), and this caused CO to be higher (Gly: 7.6 +/- 0.3 l/m vs. Arg: 6.5 +/- 0.3 l/m, P = 0.03), whereas the decrease in systemic vascular resistance in the Gly group did not reach significance (P = 0.09). We conclude that Gly16 homozygotes generate a higher CO to maintain the pressor response to handgrip. The influence of polymorphic variants in the beta2-adrenergic receptor gene on the cardiovascular response to sympathoexcitation may have important implications in the development of hypertension and heart failure.  相似文献   

7.
The purpose of this investigation was to relate the heart rate and lactate response during simulated cycling time trials to incremental laboratory tests. Subjects (N = 10) were tested for .V(O2)max (56.1 +/- 2.4 ml.kg(-1).min(-1) ) and lactate threshold during incremental tests to exhaustion. Power output and heart rate (HR) at threshold was assessed by 3 methods: lactate deflection point (LaT), onset of blood lactate accumulation (OBLA), and the point on the lactate curve at maximal distance from a line connecting starting and finishing power output (Dmax). Power output determined at these thresholds was 282.1 +/-4.2, 302.5 +/-1.3, and 296.0 +/- 1.8 W, respectively, whereas HR was determined to be 88.6 +/- 0.01, 92.2 +/- 0.01, and 91.0 +/- 0.01% of maximum, respectively. Power output and HR were significantly lower for LaT than for the other 2 methods (p < 0.05). On separate visits, cyclists were instructed to perform maximum efforts for 30 and 60 minutes (30TT and 60TT). Lactate, HR, perceived exertion (RPE), and metabolic variables were measured during the time trials. During the 30TT, participants sustained a significantly higher lactate level (5.29 +/- 0.3 vs. 3.43 +/- 0.3 mmol.L(-1), p < 0.001), percentage of maximum HR (%HRmax) (90.3 +/- 0.02 vs. 84.6 +/- 0.01, p = 0.009), and overall RPE (15.5 +/- 0.5 vs. 14.4 +/- 0.5, p = 0.009), than during the 60TT. .V(O2) was not significantly different between the time trials; however, .V(CO2) (p = 0.008), ventilation (p = 0.004), and respiratory exchange ratio (p = 0.02) were significantly higher during the 30TT. Correlations were found between HR at LaT (r = 0.78), OBLA (r = 0.78), and Dmax (r = 0.71) for the 60TT, but not for the 30TT. These data suggest that despite a large variability in blood lactate during time trial efforts of 30 and 60 minutes (from 1.8 to 10.8 mmol.L(-1)), HR was consistently 90% of maximum for the 30TT and 85% for the 60TT. HR during the 30TT was approximated by HR corresponding to OBLA and Dmax, whereas HR during 60TT was approximated by LaT.  相似文献   

8.
The purpose of the study was to investigate the physiological cost of running in spring-boots compared with running in running shoes at different speeds. During testing, subjects (n = 7) completed running trials while wearing spring-boots and running shoes. Three speed conditions (2.23, 2.68, and 3.13 m.s(-1)) were completed per shoe condition (i.e., spring-boots and running shoes). Rate of oxygen consumption (Vo(2)), heart rate (HR), rating of perceived exertion (RPE), and stride frequency were recorded for each condition. Order of shoe conditions was balanced, with speeds tested continuously from slow to fast. There was no difference in Vo(2), HR, or RPE between shoe conditions across speeds (p > 0.05). Stride frequency was lower during running in spring-boots vs. running shoes at each speed (speed of spring-boots vs. running shoes for 2.23 m x s(-1): 69.9 +/- 2.9 strides x min(-1) vs. 75.6 +/- 3.5 strides x min(-1); for 2.68 m x s(-1): 71.3 +/- 5.2 strides x min(-1) vs. 79.4 +/- 5.0 strides x min(-1); for 3.13 m x s(-1): 73.6 +/- 7.3 strides x min(-1) vs. 83.1 +/- 8.2 strides x min(-1); p < 0.05). Despite the added mass to the lower extremity and change in stride frequency during running in spring-boots, the physiological cost of running was similar to that of running in running shoes. Exercising while running in spring-boots may provide less impact force with no change in running economy.  相似文献   

9.
To assess if propranolol influences orthostatic intolerance induced by prolonged bed rest (BR), a lower body negative pressure test (LBNP) and left ventricular (LV) echocardiography before and during -40mmHg of LBNP were performed with and without intravenous propranolol administration (0.04mg/kg) in 9 healthy volunteers (mean age: 21 years) before and after 20 days BR. LBNP tolerance time (LBNP-T), endpoint heart rate(HR), and percentage changes from 0 to -40mmHg LBNP in HR, LV diastolic dimension(LVDd), stroke volume (SV), cardiac output (CO), and systemic vascular resistance(SVR) were measured. After BR, percentage changes in CO during LBNP was not altered by propranolol (-12+/-21% vs. -24+/-24%; with and without propranolol; p>0.05) because the effect on percentage changes in HR (18+/-11% vs. 26+/-12%; p<0.05) cancelled out the effects of percentage changes in LVDd (-9+/-6% vs. -15+/-10%; p<0.05) and percentage changes in SV (-26+/-16% vs. -39+/-22%; p<0.05). In addition, propranolol decreased end-point HR (85+/-15bpm vs. 119+/-l4bpm; p<0.05) and percentage changes in SVR (25+/-32% vs. 53+/-57%; p<0.05). As a result, LBNP-T after BR was unchanged by propranolol (8.8+/-3.3min vs. 10.8+/-5.0min; p>0.05). In conclusion, propranolol failed to change orthostatic intolerance induced by BR.  相似文献   

10.
Ventilatory and circulatory drives elicited by exercise-simulating perfusion of the circulatory isolated hindleg were examined in 10 trained (TR) and untrained (UTR) rats. TR were submitted to endurance training on a motordriven treadmill (30.min-1 at a grade of 10%, 5 days a week for 30 min). Exercise was simulated by perfusion with modified tyrode solutions: I.) hypoxic, enriched with lactic acid (15 mmol.l-1), II.) normoxic, enriched with lactic acid. III.) hypoxic without lactic acid. Perfusion was performed in anaesthetized animals through cannulae in the femoral artery and vein; the hindled was connected to the rest of the body only by nerve and bone. 10 min of control perfusion (normoxic tyrode solution) was followed by a 20 min test period and another 10 min control perfusion. Apart from heart rate (HR), respiratory rate (RR) and several outflow parameters were measured ([K+], [Na+], [lactate], pH, PO2, PCO2). During control period HR was slightly higher in UTR than in TR (375.5 +/- 3.9 (SE) vs. 364.1 +/- 5.5 beats/min-1, p less than 0.6 n.s.), and RR in UTR was significantly higher than those in TR (61.5 +/- 0.4 bpm vs. 55.5 +/- 3.9 breaths.min-1, p less than 0.001). During the test periods both HR and RR in UTR increased significantly while in TR they did not (e.g. in series I mean HR and RR in UTR increased by 8.9 +/- 1.2 beats.min-1 and 1.4 +/- 0.1 breaths.min-1 respectively, whereas in TR the changes were - 2.9 +/- 1.5 beats/min-1 and -0.8 +/- 0.2 breaths.min-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In isovolumic blood-perfused dog hearts, left ventricular developed pressure (DP) was recorded while a sudden ventricular dilation was promoted at three heart rate (HR) levels: low (L: 52 +/- 1.7 beats/min), intermediate (M: 82 +/- 2.2 beats/min), and high (H: 117 +/- 3.5 beats/min). DP increased instantaneously with chamber expansion (Delta(1)DP), and another continuous increase occurred for several minutes (Delta(2)DP). HR elevation did not alter Delta(1)DP (32.8 +/- 1.6, 33.6 +/- 1.5, and 34.3 +/- 1.2 mmHg for L, M, and H, respectively), even though it intensified Delta(2)DP (17.3 +/- 0.9, 20.7 +/- 1.0, and 26.8 +/- 1.2 mmHg for L, M, and H, respectively), meaning that the treppe phenomenon enhances the length dependence of the contraction component related to changes in intracellular Ca(2+) concentration. Frequency increments reduced the half time of the slow response (82 +/- 3.6, 67 +/- 2.6, and 53 +/- 2.0 s for L, M, and H, respectively), while the number of beats included in half time increased (72 +/- 2.9, 95 +/- 2.9, and 111 +/- 3.2 beats for L, M, and H, respectively). HR modulation of the slow response suggests that L-type Ca(2+) channel currents and/or the Na(+)/Ca(2+) exchanger plays a relevant role in the stretch-triggered Ca(2+) gain when HR increases in the canine heart.  相似文献   

12.
The hemodynamic response to submaximal exercise was investigated in 38 mongrel dogs with healed anterior wall myocardial infarctions. The dogs were chronically instrumented to measure heart rate (HR), left ventricular pressure (LVP), LVP rate of change, and coronary blood flow. A 2 min coronary occlusion was initiated during the last minute of an exercise stress test and continued for 1 min after cessation of exercise. Nineteen dogs had ventricular fibrillation (susceptible) while 19 animals did not (resistant) during this test. The cardiac response to submaximal exercise was markedly different between the two groups. The susceptible dogs exhibited a significantly higher HR and left ventricular end-diastolic pressure (LVEDP) but a significantly lower left ventricular systolic pressure (LVSP) in response to exercise than did the resistant animals. (For example, response to 6.4 kph at 8% grade; HR, susceptible 201.4 +/- 5.1 beats/min vs. resistant 176.2 +/- 5.6 beats/min; LVEDP, susceptible 19.4 +/- 1.1 mmHg vs. resistant 12.3 +/- 1.7 mmHg; LVSP, susceptible 136.9 +/- 7.9 mmHg vs. resistant 154.6 +/- 9.8 mmHg.) beta-Adrenergic receptor blockade with propranolol reduced the difference noted in the HR response but exacerbated the LVP differences (response to 6.4 kph at 8% grade; HR, susceptible 163.4 +/- 4.7 mmHg vs. resistant 150.3 +/- 6.4 mmHg; LVEDP susceptible 28.4 +/- 2.1 mmHg vs. resistant 19.6 +/- 3.0 mmHg; LVSP, susceptible 122.2 +/- 8.1 mmHg vs. resistant 142.8 +/- 10.7 mmHg). These data indicate that the animals particularly vulnerable to ventricular fibrillation also exhibit a greater degree of left ventricular dysfunction and an increased sympathetic efferent activity.  相似文献   

13.
Abdominal aortic pressure (AAP), heart rate (HR), and aortic nerve activity (ANA) during parabolic flight were measured by using a telemetry system to clarify the acute effect of microgravity (microG) on hemodynamics in rats. While the animals were conscious, AAP increased up to 119 +/- 3 mmHg on exposure to microG compared with the value at 1 G (95 +/- 3 mmHg; P < 0.001), whereas AAP decreased immediately on exposure to microG under urethane anesthesia (microG: 72 +/- 9 mmHg vs. 1 G: 78 +/- 8 mmHg; P < 0.05). HR also increased during microG in conscious animals (microG: 349 +/- 12 beats/min vs. 1 G: 324+9 beats/min; P < 0.01), although no change was observed under anesthesia. ANA, which was measured under anesthesia, decreased in response to acute microG exposure (microG: 33 +/- 7 counts/s vs. 1 G: 49 +/- 5 counts/s; P < 0.01). These results suggest that microG essentially induces a decrease of arterial pressure; however, emotional stress and body movements affect the responses of arterial pressure and HR during exposure to acute microG.  相似文献   

14.
Anesthetic regimens commonly administered during studies that assess cardiac structure and function in mice are xylazine-ketamine (XK) and avertin (AV). While it is known that XK anesthesia produces more bradycardia in the mouse, the effects of XK and AV on cardiac function have not been compared. We anesthetized normal adult male Swiss Webster mice with XK or AV. Transthoracic echocardiography and closed-chest cardiac catheterization were performed to assess heart rate (HR), left ventricular (LV) dimensions at end diastole and end systole (LVDd and LVDs, respectively), fractional shortening (FS), LV end-diastolic pressure (LVEDP), the time constant of isovolumic relaxation (tau), and the first derivatives of LV pressure rise and fall (dP/dt(max) and dP/dt(min), respectively). During echocardiography, HR was lower in XK than AV mice (250 +/- 14 beats/min in XK vs. 453 +/- 24 beats/min in AV, P < 0.05). Preload was increased in XK mice (LVDd: 4.1 +/- 0.08 mm in XK vs. 3.8 +/- 0.09 mm in AV, P < 0.05). FS, a load-dependent index of systolic function, was increased in XK mice (45 +/- 1.2% in XK vs. 40 +/- 0.8% in AV, P < 0.05). At LV catheterization, the difference in HR with AV (453 +/- 24 beats/min) and XK (342 +/- 30 beats/min, P < 0.05) anesthesia was more variable, and no significant differences in systolic or diastolic function were seen in the group as a whole. However, in XK mice with HR <300 beats/min, LVEDP was increased (28 +/- 5 vs. 6.2 +/- 2 mmHg in mice with HR >300 beats/min, P < 0.05), whereas systolic (LV dP/dt(max): 4,402 +/- 798 vs. 8,250 +/- 415 mmHg/s in mice with HR >300 beats/min, P < 0.05) and diastolic (tau: 23 +/- 2 vs. 14 +/- 1 ms in mice with HR >300 beats/min, P < 0.05) function were impaired. Compared with AV, XK produces profound bradycardia with effects on loading conditions and ventricular function. The disparate findings at echocardiography and LV catheterization underscore the importance of comprehensive assessment of LV function in the mouse.  相似文献   

15.
The renin-angiotensin system (RAS) plays an important role in the regulation of the cardiovascular system and the kallikrein-kinin system (KKS) appears to counteract most of the RAS effects. In this study the vagal and the sympathetic influences on the heart rate and the baroreflex control of the heart rate were evaluated in transgenics rats with human tissue kallikrein gene expression [TGR(hKLK1)], and transgenics rats with tissue renin overexpression [TGR(mREN2)27]. Heart rate was similar in all groups but mean arterial pressure was higher in mREN2 rats than in kallikrein and control rats (149+/-4 vs. 114+/-3 vs. 113+/-3 mm Hg, respectively). The intrinsic heart rate was lower in mREN2 rats than in kallikrein and control rats (324+/-5 vs. 331+/-3 vs. 343+/-7 bpm). The HR response to atropine was similar but the response to propranolol was higher in kallikrein rats than control group (61+/-7 vs. 60+/-9 vs. 38+/-7 bpm, respectively). The vagal tonus was lower in mREN2 than in SD and hKAL rats (18+/-3 vs. 40+/-6 vs. 35+/-6 bpm) whereas the sympathetic tonus was higher in kallikrein rats (118+/-7 vs. 96+/-1 vs. 81+/-9 bpm in the mREN2 and SD rats), respectively. Baroreflex sensitivity to bradycardic responses was attenuated in mREN2 rats (0.37+/-0.05 vs. 1.34+/-0.08 vs. 1.34+/-0,13 bpm/mm Hg) while the tachycardic responses were unchanged. The bradycardic responses to electrical stimulation of the vagal nerve were depressed in both renin and kallikrein rats (129+/-47 vs. 129+/-22 vs. 193+/-25 bpm in control group in response to 32 Hz). In conclusion: 1.The rats with overexpression of renin showed decreased intrinsic heart rate and impairment of vagal function, characterized by decreased vagal tonus, reduced response of HR to electrical stimulation of vagus nerve, and depressed reflex bradycardia provoked by increases of blood pressure. 2. The rats with overexpression of kallikrein showed an increase of sympathetic activity that regulates the heart rate, characterized by increased HR response to propranolol and increased sympathetic tonus, accompanied by decreased bradycardic responses to electrical vagal stimulation.  相似文献   

16.
Plasma catecholamine concentrations (norepinephrine, NE; epinephrine, E) were measured along with heart rate (HR) and blood pressure (BP) at rest in supine (20 min) and standing (10 min) positions and in response to cycle ergometer exercise (5 min; 60% estimated maximal aerobic power) in 12 hypertensive patients before and after 20 weeks of aerobic training on cycle ergometer (six males, one female) or by jogging (five males). In a control group of labile hypertensive patients (five males, two females), estimated maximal aerobic power as well as HR and BP at rest in the supine and standing positions and in response to exercise were not modified from the first to the second evaluation (43 +/- 4 vs 43 +/- 5 ml.kg-1.min-1). In comparison estimated maximal aerobic power significantly increased in both training groups (cycle: 38 +/- 4 to 43 +/- 4; jogging: 38 +/- 3 to 46 +/- 4 ml.kg-1.min-1). However HR and BP were not modified following training, except for small reductions in systolic (18.9 to 18 kPa: 142 to 135 mmHg) and diastolic pressures (13.3 to 12 kPa: 100 to 90 mmHg) (p less than 0.05) at standing rest in the cycle group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The goal of the present research was try to explain the physiological mechanism for the influence of the geomagnetic field (GMF) disturbance, reflected by the indices of the geomagnetic activity (K, K(p), A(k), and A(p) indices), on cardiovascular regulation. One hundred forty three experimental runs (one daily) comprising 50 min hemodynamic monitoring sequences were carried out in rabbits sedated by pentobarbital infusion (5 mg/kg/h). We examined the arterial baroreflex effects on the short term blood pressure and heart rate (HR) variabilities reflected by the standard deviation (SD) of the average values of the mean femoral arterial blood pressure (MAP) and the HR. Baroreflex sensitivity (BRS) was estimated from blood pressure/HR response to intravenous (i.v.) bolus injections of vasoconstrictor (phenylephrine) and vasodilator (nitroprusside) drugs. We found a significant negative correlation of increasing GMF disturbance (K(p)) with BRS (P = 0.008), HR SD (P =0.022), and MAP SD (P = 0.002) signifying the involvement of the arterial baroreflex mechanism. The abrupt change in geomagnetic disturbance from low (K = 0) to high (K = 4-5) values was associated with a significant increase in MAP (83 +/- 5 vs. 99 +/- 5 mm Hg, P = 0.045) and myocardial oxygen consumption, measured by MAP and HR product (24100 +/- 1800 vs. 31000 +/- 2500 mm Hg. bpm, P = 0.034), comprising an additional cardiovascular risk. Most likely, GMF affects brainstem and higher neural cardiovascular regulatory centers modulating blood pressure and HR variabilities associated with the arterial baroreflex.  相似文献   

18.
Studies were conducted in rats to determine the effect of maternal diabetes and the consequent hyperglycemia on cardiovascular function in the offspring. Diabetes was induced in pregnant Wistar rats through streptozotocin injection (50 mg/kg). Cardiovascular parameters were measured in 2-mo-old offspring animals of diabetic (OD, n=12) and control rats (OC, n=8). Arterial pressure (AP), heart rate (HR), baroreflex sensitivity, and vascular responsiveness to phenylephrine (PH) and sodium nitroprusside (SN) were measured. Angiotensin-converting enzyme (ACE) activity in heart, kidney, and lung was determined. OD rats exhibited increases in systolic AP (138+/-8 vs. 119+/-6 mmHg, OD vs. OC), with no change in HR (342+/-21 vs. 364+/-39 beats per minute (bpm), OD vs. OC). The reflex tachycardia elicited by SN was reduced in OD rats, as indicated by the slope of the linear regression (-2.2+/-0.4 vs. -3.6+/-0.8 bpm/mmHg, OD vs. OC). Vascular responsiveness to PH was increased 63% in OD rats compared with OC. OD rats showed increases in ACE activity in heart, kidney, and lung (1.13+/-0.24, 3.04+/-0.86, 40.8+/-8.9 vs. 0.73+/-0.19, 1.7+/-0.45, 28.1+/-6 nmol His-Leu.min-1 mg protein-1, OD vs. OC). Results suggest that diabetes during pregnancy affects cardiovascular function in offspring, seen as hypertension, baroreflex dysfunction, and activation of tissue renin-angiotensin system.  相似文献   

19.
Baroreflex responses to changes in arterial pressure are impaired in spontaneously hypertensive rats (SHR). Mean arterial pressure (MAP), heart rate (HR), and regional vascular resistances were measured before and during electrical stimulation (5-90 Hz) of the left aortic depressor nerve (ADN) in conscious SHR and normotensive control rats (NCR). The protocol was repeated after beta-adrenergic-receptor blockade with atenolol. SHR exhibited higher basal MAP (150 +/- 5 vs. 103 +/- 2 mmHg) and HR (393 +/- 9 vs. 360 +/- 5 beats/min). The frequency-dependent hypotensive response to ADN stimulation was preserved or enhanced in SHR. The greater absolute fall in MAP at higher frequencies (-68 +/- 5 vs. -38 +/- 3 mmHg at 90-Hz stimulation) in SHR was associated with a preferential decrease in hindquarter (-43 +/- 5%) vs. mesenteric (-27 +/- 3%) resistance. In contrast, ADN stimulation decreased hindquarter and mesenteric resistances equivalently in NCR (-33 +/- 7% and -30 +/- 7%). Reflex bradycardia was also preserved in SHR, although its mechanism differed. Atenolol attenuated the bradycardia in SHR (-88 +/- 14 vs. -129 +/- 18 beats/min at 90-Hz stimulation) but did not alter the bradycardia in NCR (-116 +/- 16 vs. -133 +/- 13 beats/min). The residual bradycardia under atenolol (parasympathetic component) was reduced in SHR. MAP and HR responses to ADN stimulation were also preserved or enhanced in SHR vs. NCR after deafferentation of carotid sinuses and contralateral right ADN. The results demonstrate distinct differences in central baroreflex control in conscious SHR vs. NCR. Inhibition of cardiac sympathetic tone maintains reflex bradycardia during ADN stimulation in SHR despite impaired parasympathetic activation, and depressor responses to ADN stimulation are equivalent or even greater in SHR due to augmented hindquarter vasodilation.  相似文献   

20.
Hypoperfusion of active skeletal muscle elicits a reflex pressor response termed the muscle metaboreflex. Dynamic exercise attenuates spontaneous baroreflex sensitivity (SBRS) in the control of heart rate (HR) during rapid, spontaneous changes in blood pressure (BP). Our objective was to determine whether muscle metaboreflex activation (MRA) further diminishes SBRS. Conscious dogs were chronically instrumented for measurement of HR, cardiac output, mean arterial pressure, and left ventricular systolic pressure (LVSP) at rest and during mild (3.2 km/h) or moderate (6.4 km/h at 10% grade) dynamic exercise before and after MRA (via partial reduction of hindlimb blood flow). SBRS was evaluated as the slopes of the linear relations (LRs) between HR and LVSP during spontaneous sequences of at least three consecutive beats when HR changed inversely vs. pressure (expressed as beats x min(-1) x mmHg(-1)). During mild exercise, these LRs shifted upward, with a significant decrease in SBRS (-3.0 +/- 0.4 vs. -5.2 +/- 0.4, P<0.05 vs. rest). MRA shifted LRs upward and rightward and decreased SBRS (-2.1 +/- 0.1, P<0.05 vs. mild exercise). Moderate exercise shifted LRs upward and rightward and significantly decreased SBRS (-1.2 +/- 0.1, P<0.05 vs. rest). MRA elicited further upward and rightward shifts of the LRs and reductions in SBRS (-0.9 +/- 0.1, P<0.05 vs. moderate exercise). We conclude that dynamic exercise resets the arterial baroreflex to higher BP and HR as exercise intensity increases. In addition, increases in exercise intensity, as well as MRA, attenuate SBRS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号