首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
β-galactosidases (GUS, EC 3.2.1.23) are character- ized by their ability to hydrolyze terminal, non-re- ducing β-D-galactosyl residues from β-D-galactosides and are widely distributed in microbes, plants and animals. To date, the primary structures of …  相似文献   

3.
4.
5.
The β-carotene ketolase gene (bkt1) is a key enzyme in the biosynthesis of astaxanthin in the green alga Haematococcus pluvialis. We constructed a genomic library of H. pluvialis from which the upstream sequence of bkt1 was cloned. It was just 27% identical to the β-C-4-oxygenase gene (crto1) promoter. A TATA-box and a number of CAAT-boxes were found in the bkt1 promoter region. Analysis of the sequence revealed the presence of cis-acting elements associated with light and stress-related responses. Seven novel GTAC core sequences involved in copper response were also detected. The bkt1 promoter was transferred into Chlamydomonas reinhardtii CC-849 to drive the expression of ble. The antibiotic resistance and expression of ble in TranBCO transgenic lines confirmed the promoter activity of the cloned bkt1 promoter sequence. The results of this study confirm that the bkt1 promoter owned cis-acting elements involved in light and environmental stresses and the genetic transformation system of C. reinhardtii can be used to study the functions of bkt1promoters from H. pluvialis.  相似文献   

6.
Eukaryotic microtubular cytoskeleton plays crucial roles in various cellular processes, in-cluding cell division, polar cell expansion and cell differentiation[1, 2]. The basic filament-forming unit of microtubules is a heterodimer protein composed of a-tubulin and b-tubulin polypeptides. In the higher plants studied, both a- and b-tubulin genes form multigene families. While some of these tubulin genes are expressed constitutively, many others exhibit tissue-, organ- or cell type-specific exp…  相似文献   

7.
8.
Tomato (Lycopersicon esculentum Mill. cv. Better Boy) plants were transformed with a fused gene containing a 2.2-kb promoter fragment of the tomato prosystemin gene and the coding region of the β-glucuronidase (GUS) reporter gene. The transgenic plants exhibited a low constitutive level of prosystemin-β-glucuronidase gene expression, assayed by histochemical staining and GUS enzyme activity, that was associated in the vascular bundles of leaf main veins, petiolules, petioles and stems. The GUS activity in the vascular bundles in each tissue was increased by wounding and by treatment of the plants with methyl jasmonate, similar to the induction of prosystemin in wild-type plants. The increase in GUS activity in the vascular bundles of leaves in response to wounding correlated with the wound-inducible increase in prosystemin mRNA. Tissue printing, using rabbit anti-serum prepared against prosystemin, confirmed that inducible prosystemin protein was localized in vascular bundles of petiolules, petioles and stems of wild-type tomato plants. The evidence indicates that the 2.2-kb promoter region of the tomato prosystemin gene contains elements conferring its correct temporal and spatial expression in the vascular bundles of transgenic tomato plants. Received: 7 January 1997 / Accepted: 2 April 1997  相似文献   

9.
10.
The strawberry ( Fragaria spp) is regarded as a false fruit because it originates from the receptacle, which is a non-ovarian tissue. For this reason, fruit-specific promoters isolated from plant species in which the fruit is derived from the ovary wall might not be suited to control gene expression in a fruit-specific way in strawberry. In order to achieve (false) fruit-specific expression in strawberry, we tested the petunia FBP7 (floral binding protein7) promoter, which proved to be active in the receptacles of petunia flowers, in transgenic strawberry fruits. In strawberry plants containing the FBP7 promoter fused to the ß-glucuronidase (GUS) reporter gene ( gus), GUS activity was found in floral and fruit tissues of all developmental stages tested but not in leaf, petiole and root tissue . Surprisingly, Northern blot analysis showed the presence of gus-derived mRNAs in root (strong) and petiole (weak) tissue of fbp7- gus plants in addition to the floral and fruit tissues. Therefore, it is concluded that the histological GUS phenotype does not necessarily correspond with expression at the mRNA level. mRNA quantification using the TaqMan polymerase chain reaction technology confirmed the Northern results and showed that in red strawberry tissue the cauliflower mosaic virus 35S promoter is at least sixfold stronger than the FBP7 promoter.  相似文献   

11.
A gene of β-galactosidase from Bacillus circulans ATCC 31382 was cloned and sequenced on the basis of N-terminal and internal peptide sequences isolated from a commercial enzyme preparation, Biolacta(?). Using the cloned gene, recombinant β-galactosidase and its deletion mutants were overexpressed as His-tagged proteins in Escherichia coli cells and the enzymes expressed were characterized.  相似文献   

12.
13.
A gene coding for a barley CMd protein was isolated from a genomic library using a cDNA probe encoding the wheat CM3 protein. Promoter sequence analysis reveals motifs found in genes specifically expressed in endosperm and aleurone cells, as well as TATA and other putative functional boxes. 720 bp of the Hv85.1 CMd protein gene promoter, when fused to a gus coding region, were unable to direct GUS activity in the seeds of transgenic tobacco plants. In contrast, the same construction delivered into immature maize kernels by microprojectile bombardment was able to direct expression of GUS in the outermost cell layers of maize endosperm in both a tissue-specific and a developmentally determined manner.  相似文献   

14.
Singer SD  Hily JM  Cox KD 《Planta》2011,234(3):623-637
Interest in phloem-specific promoters for the engineering of transgenic plants has been increasing in recent years. In this study we isolated two similar, but distinct, alleles of the Citrus sinensis sucrose synthase-1 promoter (CsSUS1p) and inserted them upstream of the β-glucuronidase (GUS) gene to test their ability to drive expression in the phloem of transgenic Arabidopsis thaliana and Nicotiana tabacum. Although both promoter variants were capable of conferring localized GUS expression in the phloem, the CsSUS1p-2 allele also generated a significant level of expression in non-target tissues. Unexpectedly, GUS expression was also instigated in a minority of CsSUS1p::GUS lines in response to wounding in the leaves of transgenic Arabidopsis. Deletion analysis of the CsSUS1p suggested that a fragment comprising nucleotides −410 to −268 relative to the translational start site contained elements required for phloem-specific expression while nucleotides −268 to −103 contained elements necessary for wound-specific expression. Interestingly, the main difference between the two CsSUS1p alleles was the presence of a 94-bp insertion in allele 2. Fusion of this indel to a minimal promoter and GUS reporter gene indicated that it contained stamen and carpel-specific enhancer elements. This finding of highly specific and separable regulatory units within the CsSUS1p suggests that this promoter may have a potential application in the generation of constructs for the use in the development of transgenic plants resistant to a wide variety of target pests.  相似文献   

15.
16.
We are investigating the possibilities of transgenic plants as bioreactors for the production of industrial enzymes using cell wall-hydrolysing enzymes as first examples. Within the frame work of this work two distinct domains of the xynD gene from Ruminococcus flavefaciens encoding a xylanase (XYLD-A) and a (1–3, 1–4)glucanase (XYLD-C) were separately cloned into a plant expression vector which would target the proteins into the apoplast. Transgenic tobacco plants were obtained expressing xylan-hydrolysing as well as lichenan-hydrolysing activities. Despite similar steady-state levels of the respective mRNAs xylan hydrolysis rates were between 40 and 170 mol min–1 m–2 leaf area depending on the transgenic plant while (1–3, 1–4)glucan degradation was much more effective ranging between 200 and 2000 mol min–1 m–2. The high activity levels of the XYLD-C expressing plants were reflected on the protein level. XYLD-C accumulated in the intercellular space and was one of the most prominent bands in protein gels. Despite their apoplastic location as confirmed by activity measurements using intercellular fluids the transgenic plants had not undergone any phenotypic alteration.  相似文献   

17.
Expression in Nicotiana tabaccum L. plants containing the -glucuronidase (GUS) gene under the control of the 35S (CaMV promoter) was affected by tissue type and ontogenic development of the leaves. GUS activity in ontogenetically younger leaves was 1003–1022 nmol 7-hydroxy-4-methylcoumarin (MU) formed mg–1 (protein) min–1 and in ontogenetically older leaves was only 140–198 nmol (MU) mg–1 (protein) min–1.  相似文献   

18.
19.
We have investigated targeting to the endoplasmic reticulum (ER) of wild-type GUS and a modified form (GUS S358) by making an N-terminal fusion of the -glucuronidase (GUS) enzyme with the wheat -amylase signal peptide.In vitro studies demonstrated that the modified GUS (S358) lacked the glycosylation site present within the wild-type enzyme. Analysis of transgenic tobacco plants revealed that the modified GUS enzyme retained activity upon passage to the ER. When further experiments were carried out to determine the cellular location of the modified GUS enzyme, it was found that (contrary to expectation) the majority of GUS activity was retained within the cell and was not secreted to the cell surface via the default pathway. The data indicated that the modified GUS enzyme is an unsuitable reporter enzyme for studying protein secretion.  相似文献   

20.
Transgenic plants of Tricyrtis hirta carrying the intron-containing β-glucuronidase (GUS) gene under the control of the CaMV35S promoter have been cultivated for two years. Four independent transgenic plants produced flowers 1–2 years after acclimatization, and all of them contained one copy of the transgene as indicated by inverse polymerase chain reaction (PCR) analysis. All the four transgenic plants showed stable expression of the gus gene in leaves, stems, roots, tepals, stamens and pistils as indicated by histochemical and fluorometric GUS assays, although differences in the GUS activity were observed among different organs of each transgenic plant. No apparent gus gene silencing was observed in transgenic T. hirta plants even after two years of cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号