首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hydrazino nicotinate (HYNIC) has been shown to produce technetium-99m (99mTc)-labeled proteins and peptides of high stability with high specific activities. However, persistent localization of radioactivity was observed in nontarget tissues such as the liver and kidney after administration of [99mTc]HYNIC-labeled proteins and peptides, which compromises the diagnostic accuracy of the radiopharmaceuticals. Since lysosomes are the principal sites of intracellular catabolism of proteins and peptides, 99mTc-HYNIC-labeled galactosyl-neoglycoalbumin (NGA) was prepared using tricine as a co-ligand to investigate the fate of the radiolabel after lysosomal proteolysis in hepatocytes. When injected into mice, over 90% of the injected radioactivity was accumulated in the liver after 10 min injection. At 24 h postinjection, ca. 40% of the injected radioactivity still remained in liver lysosomes. Size-exclusion HPLC analyses of liver homogenates at 24 h postinjection showed a broad radioactivity peak ranging from molecular masses of 0.5-50 kDa. RP-HPLC analyses of liver homogenates suggested the presence of multiple radiolabeled species. However, most of the radioactivity migrated to lower molecular weight fractions on size-exclusion HPLC after treatment of the liver homogenates with sodium triphenylphosphine-3-monosulfonate (TPPMS). The TPPMS-treated liver homogenates showed a major peak at a retention time similar to that of [[99mTc](HYNIC-lysine)(tricine)(TPPMS)] on RP-HPLC. Similar results were obtained with urine and fecal samples. These findings suggested that the chemical bonding between 99mTc and HYNIC remains stable in the lysosomes and following excretion from the body. The persistent localization of radioactivity in the liver could be attributed to the slow elimination rate of the final radiometabolite, [[99mTc](HYNIC-lysine)(tricine)2], from lysosomes, and subsequent dissociation of one of the tricine co-ligands in the low pH environment of the lysosomes in the absence of excess co-ligands, followed by binding proteins present in the organelles. The findings in this study also suggested that the development of appropriate co-ligands capable of preserving stable bonding with the Tc center is essential to reduce the residence time of radioactivity in nontarget tissues after administration of [99mTc]HYNIC-labeled proteins and peptides.  相似文献   

2.
In this study, EDDA (ethylenediamine- N, N'-diacetic acid) was used as the coligand for 99mTc-labeling of cyclic RGDfK conjugates: HYNIC-dimer (HYNIC = 6-hydrazinonicotinamide; dimer = E[c(RGDfK)]2) and HYNIC-tetramer (tetramer = E{E[c(RGDfK)]2}2). First, HYNIC-dimer was allowed to react with 99mTcO4 (-) in the presence of excess tricine and stannous chloride to form the intermediate complex [99mTc(HYNIC-dimer)(tricine)2], which was then allowed to react with EDDA to afford [99mTc(HYNIC-dimer)(EDDA)] with high yield (>90%) and high specific activity ( approximately 8.0 Ci/micromol). Under the same radiolabeling conditions, the yield for [99mTc(HYNIC-tetramer)(EDDA)] was always <65%. The results from a mixed-ligand experiment show that there is only one EDDA bonding to the 99mTc-HYNIC core in [99mTc(HYNIC-dimer)(EDDA)]. The athymic nude mice bearing subcutaneous U87MG human glioma xenografts were used to evaluate the impact of EDDA coligand on the biodistribution characteristics and excretion kinetics of the 99mTc-labeled HYNIC-dimer and HYNIC-tetramer. Surprisingly, [99mTc(HYNIC-dimer)(EDDA)] and [99mTc(HYNIC-tetramer)(EDDA)] had almost identical tumor uptake over the 2 h period. The use of EDDA as coligand to replace tricine/TPPTS (TPPTS = trisodium triphenylphosphine-3,3',3'-trisulfonate) did not significantly change the uptake of the 99mTc-labeled HYNIC-dimer in noncancerous organs, such as the liver, kidneys, and lungs; but it did result in a significantly lower kidney uptake for the 99mTc-labeled HYNIC-tetramer due to faster renal excretion. It was also found that the radiotracer tumor uptake decreases in a linear fashion as the tumor size increases. The smaller the tumors are, the higher the tumor uptake is regardless of the identity of radiotracer.  相似文献   

3.
Liu S  He Z  Hsieh WY  Kim YS  Jiang Y 《Bioconjugate chemistry》2006,17(6):1499-1507
This report describes synthesis of three new cyclic RGDfK peptide conjugates, HYNIC-PKM-SU016 (PKM = E, K and PEG4) and in vivo evaluation of the impact of PKM linkers on biodistribution characteristics of their ternary ligand complexes [99mTc(HYNIC-PKM-SU016)1(tricine)(TPPTS)] in athymic nude mice bearing the MDA-MB-435 human breast cancer xenografts. Results from biodistribution studies show that PKM linkers have minimal impact on the integrin alphavbeta3 binding capability of radiotracers. Even though they have different charges under physiological conditions, all three linkers (E, K, and PEG4) are able to reduce the uptake of 99mTc-labeled E[c(RGDfK)]2 in blood, kidneys, liver, and lungs, and increase target-to-background (T/B) ratios at >30 min postinjection. E and K may have advantages over PEG4 due to a combination of relatively low liver uptake and high tumor/liver and tumor/lung ratios of ternary ligand complexes [99mTc(HYNIC-PKM-SU016)(tricine)(TPPTS)] (PKM = E and K).  相似文献   

4.
As a continuation of our interest in novel 99mTc chelating systems, several pyridine-containing HYNIC (6-hydrazinonicotinamide) derivatives (L1-L5) have been synthesized and characterized by NMR (1H and 13C) and LC-MS. 99mTc complexes of L1-L5 were prepared by the reaction of the HYNIC derivative with 99mTcO4- in the presence of excess tricine and stannous chloride. Results from this study show that the attachment site of the linker is critical for the formation of macrocyclic 99mTc complexes. For example, the pyridine-N in L3 is not able to bond to the Tc, because the lysine linker is attached to the 4-position. When the linker is at the 2-position, L1 forms the macrocyclic complex [99mTc(L1)(tricine)], but the radiochemical purity is relatively low. If the linker is attached to the 3-position of the pyridine ring, the HYNIC derivatives form macrocyclic complexes [99mTc(L)(tricine)] (L2, L4, and L5) in high yield (>95%). The HPLC data suggest that the macrocyclic complex [(99m)Tc(L2)(tricine)] exists in solution as four isomers: two diastereomers and two conformational isomers. Diastereomers are due to a combination of the chirality of the lysine linker and of the Tc chelate. Replacing lysine with a pentamethylenediamine linker results in the macrocyclic complex [99mTc(L4)(tricine)] with two conformational isomers, which interconvert rapidly at room temperature. Changing the linker from pentamethylenediamine to hexamethylenediamine did not eliminate the minor isomer; but the percentage of the minor isomer was reduced from approximately 10% for [99mTc(L4)(tricine)] to only 6% for [99mTc(L5)(tricine)]. The linker length is an important parameter to minimize the minor isomer. LC-MS data of complexes [99mTc(L)(tricine)] (L2, L4, and L5) are completely consistent with their proposed compositions. On the basis of these data, it is concluded that pyridine-containing HYNIC derivatives have the potential as bifunctional chelators for 99mTc-labeling of small biomolecules if the linker is attached to the 3-position of the pyridine ring.  相似文献   

5.
Integrin alphavbeta3 plays a critical role in tumor angiogenesis and metastasis. Radiolabeled RGD peptides that are integrin alphavbeta3-specific are very useful for noninvasive imaging of integrin expression in rapidly growing and metastatic tumors. In this study, we determined the binding affinity of E{E[c(RGDfK)]2}2 (tetramer) and its 6-hydrazinonicotinamide conjugate (HYNIC-tetramer) against the binding of 125I-echistatin to the integrin alphavbeta3-positive MDA-MB-435 breast cancer cells. The athymic nude mice bearing MDA-MB-435 xenografts were used to evaluate the potential of ternary ligand complex [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] (TPPTS = trisodium triphenylphosphine-3,3',3' '-trisulfonate) as a new radiotracer for imaging breast cancer integrin alphavbeta3 expression by single photon emission computed tomography (SPECT). It was found that the binding affinity of tetramer (IC50 = 51 +/- 11 nM) was slightly higher than that of its dimeric analogue (IC50 = 78 +/- 27 nM) and is comparable to that of the HYNIC-tetramer conjugate (IC50 = 55 +/- 11 nM) within the experimental error. Biodistribution data showed that [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] had a rapid blood clearance (4.61 +/- 0.81 %ID/g at 5 min postinjection (p.i.) and 0.56 +/- 0.12 %ID/g at 120 min p.i.) and was excreted mainly via the renal route. [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] had high tumor uptake with a long tumor retention (5.60 +/- 0.87 %ID/g and 7.30 +/- 1.32 %ID/g at 5 and 120 min p.i., respectively). The integrin alphavbeta3-specificity was demonstrated by co-injection of excess E[c(RGDfK)]2, which resulted in a significant reduction in tumor uptake of the radiotracer. The metabolic stability of [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] was determined by analyzing urine and feces samples from the tumor-bearing mice at 120 min p.i. In the urine, about 20% of [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] remained intact while only approximately 15% metabolized species was detected in feces. SPECT images displayed significant radiotracer localization in tumor with good contrast as early as 1 h p.i. The high tumor uptake and fast renal excretion make [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] a promising radiotracer for noninvasive imaging of the integrin alphavbeta3-positive tumors by SPECT.  相似文献   

6.
Zhou Y  Kim YS  Lu X  Liu S 《Bioconjugate chemistry》2012,23(3):586-595
The main objective of this study is to explore the impact of cyclic RGD peptides and (99m)Tc chelates on biological properties of (99m)Tc radiotracers. Cyclic RGD peptide conjugates, HYNIC-K(NIC)-RGD(2) (HYNIC = 6-hydrazinonicotinyl; RGD(2) = E[c(RGDfK)](2) and NIC = nicotinyl), HYNIC-K(NIC)-3G-RGD(2) (3G-RGD(2) = Gly-Gly-Gly-E[Gly-Gly-Gly-c(RGDfK)](2)), and HYNIC-K(NIC)-3P-RGD(2) (3P-RGD(2) = PEG(4)-E[PEG(4)-c(RGDfK)](2)), were prepared. Macrocyclic (99m)Tc complexes [(99m)Tc(HYNIC-K(NIC)-RGD(2))(tricine)] (1), [(99m)Tc(HYNIC-K(NIC)-3G-RGD(2))(tricine)] (2), and [(99m)Tc(HYNIC-K(NIC)-3P-RGD(2))(tricine)] (3) were evaluated for their biodistribution and tumor-targeting capability in athymic nude mice bearing MDA-MB-435 human breast tumor xenografts. It was found that 1, 2, and 3 could be prepared with high specific activity (~111 GBq/μmol). All three (99m)Tc radiotracers have two major isomers, which show almost identical uptake in tumors and normal organs. Replacing the bulky and highly charged [(99m)Tc(HYNIC)(tricine)(TPPTS)] (TPPTS = trisodium triphenylphosphine-3,3',3″-trisulfonate) with a smaller [(99m)Tc(HYNIC-K(NIC))(tricine)] resulted in less uptake in the kidneys and lungs for 3. Surprisingly, all three (99m)Tc radiotracers shared a similar tumor uptake (1, 5.73 ± 0.40%ID/g; 2, 5.24 ± 1.09%ID/g; and 3, 4.94 ± 1.71%ID/g) at 60 min p.i. The metabolic stability of (99m)Tc radiotracers depends on cyclic RGD peptides (3P-RGD(2) > 3G-RGD(2) ~ RGD(2)) and (99m)Tc chelates ([(99m)Tc(HYNIC)(tricine)(TPPTS)] > [(99m)Tc(HYNIC-K(NIC))(tricine)]). Immunohistochemical studies revealed a linear relationship between the α(v)β(3) expression levels and tumor uptake or tumor/muscle ratios of 3, suggesting that 3 is useful for monitoring the tumor α(v)β(3) expression. Complex 3 is a very attractive radiotracer for detection of integrin α(v)β(3)-positive tumors.  相似文献   

7.
Three amino acids residues, Arg-Gly-Asp (RGD), in vitronectin and fibronectin show affinity for alpha(V)beta(3) integrins expressed in vascular endothelial cells. That tumor growth can upregulate the expression of these integrins on tumor cells for invasion and metastasis and in tissue neovasculature suggests the potential of developing radiolabeled RGD peptides as antagonists of alpha(V)beta(3) integrins for broad spectrum tumor specific imaging. The polypeptide RGD-4C, which contains four cysteine residues for cyclization, has shown preferential localization on integrins at sites of tumor angiogenesis. Both RGD-4C and RGE (Arg-Gly-Glu)-4C (as control) were purchased and conjugated with 6-hydrazinopyridine-3-carboxylic acid (HYNIC) for 99mTc radiolabeling. After purification of the conjugated peptides by a C18 Sep-Pak cartridge with 20% methanol, both peptides were radiolabeled using tricine. For cell binding studies, both 99mTc peptides were further purified by SE HPLC. High specific radioactivity of labeled cyclized RGD/E (cyclized RGD/E will be simplified as RGD/E through out the text) of about 20 Ci/micromol was achieved. Both 99mTc complexes were stable in the labeling solution for over 24 h at room temperature. In the human umbilical vein endothelial (HUVE) cell studies, the binding at 1 h of radiolabeled RGD/E was determined at 4 degrees C and at concentrations in the picomolar to nanomolar range. Under these conditions, cell accumulation of 99mTc in the case of RGD was as much as 16 times greater than the control RGE. As a check on specificity, 7 nM of native cyclized RGD blocked 50% of the binding of 99mTc-labeled RGD to cells. The binding percentage of 99mTc-labeled RGD to purified alpha(V)beta(3) integrin protein, as determined by SE HPLC, increased with the concentration of the integrin while 99mTc-labeled RGE showed no binding. The association constant for 99mTc-RGD was modest at 7 x 10(6) M(-)(1). In both human renal adenocarcinoma (ACHN) and human colon cancer cell line (LS174T) nude mouse tumor models, the accumulation of 99mTc-labeled RGD/E exhibited no statistical difference. In conclusion, possibly because of limited numbers of alpha(V)beta(3) integrin receptors per tumor cell and low binding affinity, radiolabeled RGD peptides may have limitations as tumor imaging agents.  相似文献   

8.
The synthesis of conjugates of two somatostatin analogues, RC-160 and [Tyr3]octreotide with different bifunctional chelators for labeling with Tc-99m, is described. Conjugates with hydrazinonicotinamide (HYNIC) and two N3S compounds (benzoyl MAG3 and a N3S adipate derivative) were prepared on a small scale with high purity allowing evaluation of different bifunctional chelators on the same peptide without extensive peptide synthesis. High in vitro stability and retained binding affinity was found for all conjugates except for the N3S adipate. Peptide conjugates could be labeled at high specific activities (>1 Ci/micromol) with 99mTc, and different coligands were explored for the HYNIC conjugates. The resulting radiolabeled complexes were highly stable and showed binding affinity to somatostatin receptors in the nanomolar range. Varying labeling yield, stability, lipophilicity, and isomerism were found for different coligands used for labeling HYNIC conjugates, with lower lipophilicity, higher stability, and fewer coordination isomers for EDDA and tricine/nicotinic acid as ternary coligand compared to tricine. In particular, HYNIC complexes showed promising results for further in vivo evaluation.  相似文献   

9.
99mTc-labeled bombesin analogues have shown promise for noninvasive detection of many tumors that express bombesin (BN)/gastrin-releasing peptide (GRP) receptors. 99mTc-labeled peptides, however, have a tendency to accumulate in the liver and intestines due to hepatobiliary clearance as a result of the lipophilicity of the 99mTc chelates. This makes the imaging of lesions in the abdominal area difficult. In this study, we have synthesized a new high affinity 99mTc-labeled BN analogue, [DTPA1, Lys3(99mTc-Pm-DADT), Tyr4]BN, having a built-in pharmacokinetic modifier, DTPA, and labeled with 99mTc using a hydrophilic diaminedithiol chelator (Pm-DADT) to effect low hepatobiliary clearance. In vitro binding studies using human prostate cancer PC-3 cell membranes showed that the inhibition constant (Ki) for [DTPA1, Lys3(99Tc-Pm-DADT), Tyr4]BN was 4.1 +/- 1.4 nM. Biodistribution studies of [DTPA1, Lys3(99mTc-Pm-DADT), Tyr4]BN in normal mice showed very low accumulation of radioactivity in the liver and intestines (1.32 +/- 0.13 and 4.58 +/- 0.50% ID, 4 h postinjection, respectively). There was significant uptake (7.71 +/- 1.37% ID/g, 1 h postinjection) in the pancreas which expresses BN/GRP receptors. The uptake in the pancreas could be blocked by BN, partially blocked by neuromedin B, but not affected by somatostatin, indicating that the in vivo binding was BN/GRP receptor specific. Scintigraphic images showed specific, high contrast delineation of prostate cancer PC-3 xenografts in SCID mice. Thus, the new peptide has a great potential for imaging BN/GRP receptor-positive cancers located even in the abdomen.  相似文献   

10.
External imaging of energy production activity of living cells with 99mTc-labeled compounds is a challenging task requiring good design of 99mTc-radiopharmaceuticals. On the basis of our recent findings that 11C- and 123I-labeled medium-chain fatty acids are useful for measuring beta-oxidation activity of hepatocytes, we focused on development of 99mTc-labeled medium-chain fatty acid analogues that reflect beta-oxidation activity of the liver. In the present study, monoamine-monoamide dithiol (MAMA) ligand and triamido thiol (MAG) ligand were chosen as chelating groups because of the stability and size of their complexes with 99mTc and their ease of synthesis. Each ligand was attached to the omega-position of hexanoic acid (MAMA-HA and MAG-HA, respectively). In biodistribution studies, [99mTc]MAMA-HA showed high initial accumulation in the liver followed by clearance of the radioactivity in the urine. Analysis of the urine revealed [99mTc]MAMA-BA as the sole radiometabolite. Furthermore, when [99mTc]MAMA-HA was incubated with living liver slices, generation of [99mTc]MAMA-BA was observed. However, [99mTc]MAMA-HA remained intact when the compound was incubated with liver slices in the presence of 2-bromooctanoate, an inhibitor of beta-oxidation. The findings in this study indicated that [99mTc]MAMA-HA was metabolized by beta-oxidation after incorporation into the liver. On the other hand, poor hepatic accumulation was observed after administration of [99mTc]MAG-HA.  相似文献   

11.
This report describes biodistribution characteristics of three ternary ligand complexes [(99m)Tc(SQ168)(tricine)(L)] (SQ168 = [2-[[[5-[carboonyl]-2-pyridinyl]hydrazono]methyl]-benzenesulfonic acid]-Glu(cyclo{Lys-Arg-Gly-Asp-d-Phe})-cyclo{Lys-Arg-Gly-Asp-d-Phe}; L = TPPTS (trisodium triphenylphosphine-3,3',3' '-trisulfonate), ISONIC (isonicotinic acid) and PDA (2,5-pyridinedicarboxylic acid)) in athymic nude mice bearing MDA-MB-435 human breast cancer xenografts. Ternary ligand complexes [(99m)Tc(SQ168)(tricine)(L)] (L = TPPTS, ISONIC and PDA) were prepared and were analyzed by a reversed HPLC method. Surprisingly, coligands have little impact on log P values of their ternary ligand (99m)Tc complexes even though HPLC retention times suggest that [(99m)Tc(SQ168)(tricine)(PDA)] and [(99m)Tc(SQ168)(tricine)(ISONIC)] are more hydrophilic than [(99m)Tc(SQ168)(tricine)(TPPTS)]. The results from biodistribution studies indicated that excretion kinetics of the (99m)Tc-labeled cyclic RGDfK dimer can be modified by the choice of coligand. The fact that all three radiotracers show high tumor uptake during the 2 h study period suggests that the coligand has minimal effect on the tumor targeting capability of the (99m)Tc-labeled cyclic RGDfK dimer. Results from the blocking experiment suggest that the tumor localization of the (99m)Tc-labeled cyclic RGDfK dimer is integrin alpha(v)beta(3)-mediated. On the basis of their liver uptake and tumor/liver ratios, we believe that PDA has the advantage over TPPTS and ISONIC for the (99m)Tc-labeling of HYNIC-biomolecule conjugates.  相似文献   

12.
Renal localization of radiolabeled antibody fragments constitutes a problem in targeted imaging and radiotherapy. Recently, we reported use of a novel radioiodination reagent, 3'-[131I]iodohippuryl N(epsilon)-maleoyl-L-lysine (HML), that liberates m-iodohippuric acid before antibody fragments are incorporated into renal cells. In mice, HML-conjugated Fab demonstrated low renal radioactivity levels from early postinjection times. In this study, renal metabolism of HML-conjugated Fab fragments prepared by different thiolation chemistries and by direct radioiodination were investigated to determine the mechanisms responsible for the low renal radioactivity levels. Fab fragments were thiolated by 2-iminothiolane modification or by reduction of disulfide bonds in the Fab fragments, followed by conjugation with radioiodinated HML to prepare [131I]HML-IT-Fab and [125I]HML-Fab, respectively. In biodistribution studies in mice, both [131I]HML-IT-Fab and [125I]HML-Fab demonstrated significantly lower renal radioactivity levels than those of [125I]Fab. In subcellular distribution studies, [125I]Fab showed migration of radioactivity from the membrane to the lysosomal fraction of the renal cells from 10 to 30 min postinjection. On the other hand, the majority of the radioactivity was detected only in the membrane fraction at the same time points after injection of both [131I]HML-IT-Fab and [125I]HML-Fab. In metabolic studies, while [125I]Fab remained intact at 10 min postinjection, both HML-conjugated Fab fragments generated m-iodohippuric acid as a radiometabolite at the same postinjection time. [131I]HML-IT-Fab registered two radiometabolites (intact [131I]HML-IT-Fab and m-iodohippuric acid), whereas additional radiometabolites were observed with [125I]HML-Fab. This suggested that metabolism of both HML-conjugated Fab fragments would occur in the membrane fractions of the renal cells. The findings of this study reinforced our previous hypothesis that radiochemical design of antibody fragments that liberate radiometabolites that are excreted into the urine by the action of brush border enzymes would constitute a useful strategy to reduce renal radioactivity levels from early postinjection times.  相似文献   

13.
Shi J  Jia B  Liu Z  Yang Z  Yu Z  Chen K  Chen X  Liu S  Wang F 《Bioconjugate chemistry》2008,19(6):1170-1178
In this report, we present the synthesis and evaluation of the (99m)Tc-labeled beta-Ala-BN(7-14)NH2 (ABN = beta-Ala-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2) as a new radiotracer for tumor imaging in the BALB/c nude mice bearing HT-29 human colon cancer xenografts. The gastrin releasing peptide receptor binding affinity of ABN and HYNIC-ABN (6-hydrazinonicotinamide) was assessed via a competitive displacement of (125)I-[Tyr4]BBN bound to the PC-3 human prostate carcinoma cells. The IC 50 values were calculated to be 24 +/- 2 nM and 38 +/- 1 nM for ABN and HYNIC-ABN, respectively. HYNIC is the bifunctional coupling agent for (99m)Tc-labeling, while tricine and TPPTS (trisodium triphenylphosphine-3,3',3'-trisulfonate) are used as coligands to prepare the ternary ligand complex [(99m)Tc(HYNIC-ABN)(tricine)(TPPTS)] in very high yield and high specific activity. Because of its high hydrophilicity (log P = -2.39 +/- 0.06), [(99m)Tc(HYNIC-ABN)(tricine)(TPPS)] was excreted mainly through the renal route with little radioactivity accumulation in the liver, lungs, stomach, and gastrointestinal tract. The tumor uptake at 30 min postinjection (p.i.) was 1.59 +/- 0.23%ID/g with a steady tumor washout over the 4 h study period. As a result, it had the best T/ B ratios in the blood (2.37 +/- 0.68), liver (1.69 +/- 0.41), and muscle (11.17 +/- 3.32) at 1 h p.i. Most of the injected radioactivity was found in the urine sample at 1 h p.i., and there was no intact [(99m)Tc(HYNIC-ABN)(tricine)(TPPTS)] detectable in the urine, kidney, and liver samples. Its metabolic instability may contribute to its rapid clearance from the liver, lungs, and stomach. Despite the steady radioactivity washout, the tumors could be clearly visualized in planar images of the BALB/c nude mice bearing the HT-29 human colon xenografts at 1 and 4 h p.i. The favorable excretion kinetics from the liver, lungs, stomach, and gastrointestinal tract makes [(99m)Tc(HYNIC-ABN)(tricine)(TPPTS)] a promising SPECT radiotracer for imaging colon cancer.  相似文献   

14.
This report describes a novel ternary ligand system composed of a phenylhydrazine, a crown ether-containing dithiocarbamate (DTC), and a PNP-type bisphosphine (PNP). The combination of three different ligands with (99m)Tc results in cationic (99m)Tc-diazenido complexes, [(99m)Tc(NNAr)(DTC)(PNP)]+, with potential radiopharmaceuticals for heart imaging. Synthesis of cationic (99m)Tc-diazenido complexes can be accomplished in two steps. For example, the reaction of phenylhydrazine with (99m)TcO4- at 100 degrees C in the presence of excess stannous chloride and 1,2-diaminopropane-N,N,N',N'-tetraacetic acid (PDTA) results in the [(99m)Tc(NNPh)(PDTA)n] intermediate, which then reacts with sodium N-(dithiocarbamato)-2-aminomethyl-15-Crown-5 (L4) and N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]ethoxyethylamine (PNP6) at 100 degrees C for 15 min to give the complex, [(99m)Tc(NNPh)(L4)(PNP6)]+ in high yield (>90%). Cationic complexes [(99m)Tc(NNPh)(DTC)(PNP)]+ are stable for > or = 6 h. Their composition was determined to be 1:1:1:1 for Tc:NNPh:DTC:PNP using the mixed-ligand experiments on the tracer ((99m)Tc) level and was further confirmed by the ESI-MS spectral data of a model compound [Re(NNPh)(L4)(L6)]+. It was found that both DTCs and bisphosphines have a significant impact on the lipophilicity of their cationic (99m)Tc-diazenido complexes. Results from a (99m)Tc-labeling efficiency experiment showed that 4-hydrazinobenzoic acid (HYBA) might be useful as a bifunctional coupling agent for (99m)Tc-labeling of small biomolecules. However, the (99m)Tc-labeling efficiency of HYBA is much lower than that of 6-hydrazinonicotinic acid (HYNIC) with tricine and trisodium triphenylphosphine-3,3',3'-trisulfonate (TPPTS) as coligands.  相似文献   

15.
This report describes the biologic evaluations of [99mTc(HYNIC-3P-RGD2)(tricine)(TPPTS)] (99mTc-3P-RGD2: 6-hydrazinonicotinyl; 3P-RGD2 = PEG4-E[PEG4-c(RGDfK)]2; PEG4 = 15-amino-4,7,10,13-tetraoxapentadecanoic acid; and TPPTS = trisodium triphenylphosphine-3,3',3'-trisulfonate), [99mTc(HYNIC-3G-RGD2)(tricine)(TPPTS)] (99mTc-3G-RGD2: 3G-RGD2 = G3-E[G3-c(RGDfK)]2 and G3 = Gly-Gly-Gly), and 99mTcO(MAG2-3G-RGD2) (MAG2 = mercaptoacetylglycylglycyl) as radiotracers for noninvasive imaging of tumor integrin αvβ3 expression in five xenografted tumor-bearing models. Biodistribution and imaging studies were performed in athymic nude mice bearing U87MG, MDA-MB-435, A549, HT29, or PC-3 tumor xenografts. Immunochemistry was performed using the cultured primary tumor cells and xenografted tumor tissues. It was found that the radiotracer tumor uptake followed the trend U87MG > MDA-MB-435 ≈ HT29 ≈ A549 > PC-3. The total integrin β3 expression levels followed the general trend: U87MG > MDA-MB-435 ≈ A549~HT29 > PC-3. There is a linear relationship between the radiotracer injected dose per gram tumor uptake and the total integrin β3 expression levels. On the basis of these, it was concluded that radiotracer tumor uptake is contributed by integrin αvβ3 expressed on tumor cells and activated endothelial cells of the tumor neovasculature. 99mTc-3P-RGD2 has the capability to monitor integrin αvβ3 expression in a noninvasive fashion.  相似文献   

16.
Acetaminophen (AAP), acetylsalicylic acid (ASA) and dipyrone (DIP) are antipyretic and analgesics drugs that have wide use in health sciences. Some drugs can modify the labeling of blood elements with technetium-99m (99mTc). This work has evaluated the effect of AAP, ASA and DIP on the labeling of the blood elements with 99mTc. Blood was incubated with different concentrations of the drugs before the 99mTc-labeled process. Plasma (P), blood cells (BC), insoluble (IF-P, IF-BC) and soluble (SF-P, SF-BC) fractions were separated and percentage of radioactivity (%ATI) in each fraction was determined. Data have shown that the antipyretic drugs used in this study did not significantly modify the fixation of 99mTc on the blood elements when the experiments were carried out with the doses usually used in human beings. Although the experiments were carried out with rats, it is possible to suggest that AAP, ASA or DIP should not interfere with the procedures in nuclear medicine involving the labeling of blood elements with 99mTc.  相似文献   

17.
In our previous studies, interleukin-8 (IL-8) was labeled with (99m)Tc using hydrazinonicotinamide (HYNIC) as bifunctional coupling agent and tricine as coligand. This preparation showed excellent characteristics for imaging of infection in a rabbit model of soft-tissue infection. In the present study, the propylaldehyde hydrazone formulation of HYNIC was introduced to stabilize HYNIC-IL-8. (99m)Tc-HYNIC-IL-8 was prepared using 5 different coligand formulations. The effect of these coligand formulations on the in vitro characteristics and in vivo behavior of (99m)Tc-HYNIC-IL-8 was investigated. HYNIC-conjugated IL-8 was labeled with (99m)Tc in the presence of either (A) tricine, (B) ethylenediaminediacetic acid (EDDA), (C) tricine and trisodium triphenylphosphinetrisulfonate (TPPTS), (D) tricine and nicotinic acid (NIC), or (E) tricine and isonicotinic acid (ISONIC). These preparations were characterized in vitro by RP-HPLC, determination of the octanol/water partition coefficient, stability studies, and receptor binding assays. The in vivo biodistribution of the radiolabel in rabbits with E. coli-induced soft-tissue infection was determined both by gamma-camera imaging as well as by tissue counting at 6 h pi. Specific activity (MBq/microg) was highest for (ISO)NIC (up to 80) > TPPTS (40) > tricine (15) > EDDA (7). RP-HPLC and octanol/water partition coefficients showed a shift toward higher lipophilicity for the TPPTS preparation. The leukocyte receptor binding fractions were around 40-55% for all preparations except for TPPTS, which showed predominantly nonspecific binding. All preparations were stabilized in serum, but the stability in PBS was highest for NIC and TPPTS > EDDA > ISONIC > tricine. The in vivo biodistribution showed highest abscess/muscle for NIC and ISONIC (>200) > EDDA and tricine (approximately 100) > TPPTS (<40). Gamma camera imaging rapidly visualized the abscess from 2 h pi onward for all formulations. The abscess/background (A/B) at 6 h pi for ISONIC was significantly higher (P < 0.05) than that of tricine and the A/B of TPPTS was significantly lower (P < 0.05). IL-8 can be rapidly and easily labeled with (99m)Tc using HYNIC as a chelator in combination with various coligands. The most optimal infection imaging characteristics were found for formulations using nicotinic acid/tricine as coligand system combining a high specific activity and high in vitro stability with high abscess/muscle ratios (>200) and high abscess/background ratios (>20). Protein doses to be administered were as low as 70 ng/kg bodyweight. At these low protein doses, side effects are not to be expected in the human system. This paves the way for infection imaging studies in patients.  相似文献   

18.
A new labeling approach for incorporating bioactive peptides into a technetium-99m coordination complex is described. This method exploits the chemical properties of the novel metal-nitrido fragment [99mTc(N)(PXP)]2+, composed of a terminal Tc[triple bond] N multiple bond bound to an ancillary diphosphine ligand (PXP). It will be shown that this basic, molecular building block easily forms in solution as the dichloride derivative [99mTc(N)(PXP)Cl2], and that this latter complex selectively reacts with monoanionic and dianionic, bidentate ligands (YZ) having soft, pi-donor coordinating atoms to afford asymmetrical nitrido heterocomplexes of the type [99mTc(N)(PXP)(YZ)]0/+ without removal of the basic motif [99mTc(N)(PXP)]2+. The reactions of the amino acid cysteine was studied in detail. It was found that cysteine readily coordinates to the metal fragment [99mTc(N)(PXP)]2+ either through the [NH2, S-] pair of donor atoms or, alternatively, through the [O-, S-] pair, to yield the corresponding asymmetrical complexes in very high specific activity. Thus, these results were conveniently employed to devise a new, efficient procedure for labeling short peptide sequences having a terminal cysteine group available for coordination to the [99mTc(N)(PXP)]2+ fragment. Examples of the application of this novel approach to the labeling of the short peptide ligand H-Arg-Gly-Asp-Cys-OH (H(2)1) and of the peptidomimetic derivative H-Cys-Val-2-Nal-Met-OH (H2) will be discussed.  相似文献   

19.
Radioactive-iodine-labeled meta-iodobenzylguanidine (MIBG) is currently being used as an in vivo imaging agent to evaluate neuroendocrine tumors as well as the myocardial sympathetic nervous system in patients with myocardial infarct and cardiomyopathy. It is generally accepted that MIBG is an analogue of norepinephrine and its uptake in the heart corresponds to the distribution of norepinephrine and the density of sympathetic neurons. A series of MIBG derivatives containing suitable chelating functional groups N2S2 for the formation of [TcvO]3+N2S2 complex was successfully synthesized, and the 99mTc-labeled complexes were prepared and tested in rats. One of the compounds, [99mTc]2, tested showed significant, albeit lower, heart uptakes post iv injection in rats (0.21% dose/g at 4 h) as compared to [125I]MIBG (1.7% dose/g at 4 h). The heart uptake of the 99mTc-labeled complex appears to be specific and can be reduced by co-injection with nonradioactive MIBG or by pretreatment with desipramine, a selective norepinephrine transporter inhibitor. Further evaluation of the in vitro uptake of [99mTc]2 in cultured neuroblastoma cells displayed consistently lower, but measurable uptake (approximately 10% of that for [125I]MIBG). These preliminary results suggested that the mechanisms of heart uptake of [99mTc]2 may be related to those for [125I]MIBG uptake. If suitable 99mTc-labeled MIBG derivatives can be further developed, the prevalent availability of 99mTc in nuclear medicine clinics will allow them to be readily available for widespread application.  相似文献   

20.
This report describes the (99m)Tc labeling of a HYNIC-conjugated vitronectin receptor antagonist (SQ168 = [2-[[[5-[carboonyl]-2-pyridinyl]hydrazono]methyl]benzenesulfonic acid]-Glu(cyclo[Lys-Arg-Gly-Asp-D-Phe])-cyclo[Lys-Arg-Gly-Asp-D-Phe]). The ternary ligand complex [(99m)Tc(SQ168)(tricine)(TPPTS)] (RP593) was prepared using a non-SnCl(2)-containing formulation. The corresponding (99)Tc analogue, [(99)Tc]RP593, was also prepared and characterized by HPLC and LC-MS. A HPLC concordance experiment using RP593 and [(99)Tc]RP593 showed that the same technetium complex was prepared at both the tracer and macroscopic levels. The LC-MS data is completely consistent with the 1:1:1:1 composition for Tc:SQ168:tricine:TPPTS and provides direct evidence that the two radiometric peaks in the radio-HPLC chromatogram of RP593 are indeed due to the resolution of diastereomers. In an in vitro receptor binding assay, [(99)Tc]RP593 was shown to have comparable binding affinity for the vitronectin receptor to that of SQ168 itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号