首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of phytate on the hydrolysis of lactose with β-galactosidases from bovine liver and Escherichia coli were investigated. The activities of both β-galactosidases were decreased to the same extent by increased concentrations of phytate. The rates of inhibition of β-galactosidase activity from E. coli in a reaction mixture containing 10 mm of phytate were 78.9% and 64.4%, respectively, in the absence of and with 4 mm of Mg2 +. Therefore, it was found that the stimulatory effect of Mg2+ was hardly affected by the presence of phytate in the range from 2 to 10 mm. The β-galactosidase activity was also not influenced by preincubating β-galactosidase or lactose with phytate. Kinetic studies showed that the inhibition of β-galactosidase activity by phytate was of an uncompetitive type with a Ki value of 3.46 mm. Therefore, it is considered that phytate may interact with a complex of ß-galactosidase and lactose.  相似文献   

2.
Phytase (myo-inositol hexaphosphate phosphohydrolase) belongs to phosphatases. It catalyzes the hydrolysis of phytate to less-phosphorylated inorganic phosphates and phytate. Phytase is used primarily for the feeding of simple hermit animals in order to increase the usability of amino acids, minerals, phosphorus and energy. In the present study, phytase isolation from the Lactobacillus coryniformis strain, isolated from Lor cheese sources, phytase purification and characterization were studied. The phytase was purified in simple three steps. The enzyme was obtained with 2.60% recovery and a specific activity of 202.25 (EU/mg protein). The molecular mass of the enzyme was determined to be 43.25 kDa with the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) method. The optimum temperature and pH for the enzyme were found as 60 °C and 5.0 and respectively. To defined the substrate specificity of the phytase, the hydrolysis of several phosphorylated compounds by the purified enzyme was studied and sodium phytate showed high specificity. Furthermore, the effects of Ca2+, Ag+, Mg2+, Cu2+, Co2+, Pb2+, Zn2+ and Ni2+ metal ions on the enzyme were studied.  相似文献   

3.
A periplasmatic phytate-degrading enzyme from Pantoea agglomerans isolated from soil was purified about 470-fold to apparent homogeneity with a recovery of 16% referred to the phytate-degrading activity in the crude extract. It behaved as a monomeric protein with a molecular mass of about 42 kDa. The purified enzyme exhibited a single pH optimum at 4.5. Optimum temperature for the degradation of phytate was 60°C. The kinetic parameters for the hydrolysis of sodium phytate were determined to be KM = 0.34 mmol/l and kcat = 21 s-1 at pH 4.5 and 37°C. The enzyme exhibited a narrow substrate selectivity. Only phytate and glucose-1-phosphate were identified as good substrates. Since this Pantoea enzyme has a strong preference for glucose-1-phosphate over phytate, under physiological conditions glucose-1-phosphate is its most likely substrate. The maximum amount of phosphate released from phytate by the purified enzyme suggests myo-inositol pentakisphosphate as the final product of enzymatic phytate degradation.  相似文献   

4.
A periplasmatic phytase from a bacterium isolated from Malaysian waste water was purified about 173-fold to apparent homogeneity with a recovery of 10% referred to the phytase activity in the crude extract. It behaved as a monomeric protein with a molecular mass of about 42 kDa. The purified enzyme exhibited a single pH optimum at 4.5. Optimum temperature for the degradation of phytate was 65°C. The kinetic parameters for the hydrolysis of sodium phytate were determined to be K M = 0.15 mmol/l and k cat = 1164 s−1 at pH 4.5 and 37°C. The purified enzyme was shown to be highly specific. Among the phosphorylated compounds tested, phytate was the only one which was significantly hydrolysed. Some properties such as considerable activity below pH 3.0, thermal stability and resistance to pepsin make the enzyme attractive for an application as a feed supplement.  相似文献   

5.
Beta-propeller phytases in the aquatic environment   总被引:1,自引:0,他引:1  
Phytate, which is one of the dominant organic phosphorus compounds in nature, is very stable in soils. Although a substantial amount of phytate is carried from terrestrial to aquatic systems, it is a minor component of organic phosphorus in coastal sediments. The ephemeral nature of phytate implies the rapid hydrolysis of phytate under aquatic conditions. Among the four classes of known phytases that have been identified in terrestrial organisms, only β-propeller phytase-like sequences have been identified in the aquatic environment. A novel β-propeller phytase gene (phyS), cloned from Shewanella oneidensis MR-1, was found to encode a protein with two beta-propeller phytase domains. The characterization of recombinant full-length PhyS and its domains demonstrated that Domain II was the catalytic domain responsible for phytate hydrolysis. The full-length PhyS displayed a Km of 83 μM with a kcat of 175.9 min−1 and the Domain II displayed a Km of 474 μM with a kcat of 10.6 min−1. These results confirm that the phyS gene encodes a functional β-propeller phytase, which is expressed in S. oneidensis under phosphorus deficienct condition. The presence of multiple sequences with a high similarity to phyS in aquatic environmental samples and the widespread occurrence of the Shewanella species in nature suggest that the β-propeller phytase family is the major class of phytases in the aquatic environment, and that it may play an important role in the recycling of phosphorus.  相似文献   

6.
Because of the low safety factor estimated for the normal content of Cd in human foods, it is important to establish the influence of food constituents such as phytate on the bioavailability of this toxic metal. We studied the retention of radioactive109Cd administered to rats as a chloride or a phytate in a single dose by stomach tube. The animals were fed either a normal rat chow containing 0.29% of phytate or a low phytate diet containing less than 0.1% phytate. Highly elevated levels of109Cd were found only in the animals that were supplied with109Cd as a chloride and had been fed the low phytate diet. In the animals supplied with109Cd as a phytate, which had also received the low phytate diet, the levels of109Cd in the intestine were as high as those in the group mentioned before, but the retentions in all other tissues resembled those of the respective groups fed the normal chow. The findings indicate that phytate is responsible for a considerable decrease in the intestinal absorption of Cd. Furthermore, it appears to exert an influence on the kinetics of Cd retention in the intestine.  相似文献   

7.
Phytate hydrolysis was followed through rat gastrointestinal tracts by (31)P nuclear magnetic resonance spectroscopy. No phytate hydrolysis products were detected in the diet, stomach, or small intestine. It was concluded that cecal bacteria were responsible for phytate hydrolysis, which continued in the colon and fecal pellet.  相似文献   

8.
Adequate phosphorus (P) nutrition during early stages is critical for maize growth. Our objective was to evaluate the relative contribution of seed P reserves and exogenous P to maize nutrition during early growth stages. Seedlings were grown with labeled nutrient solution (32P). Seedlings were harvested periodically over the course of the three-week study. Initially, 87% and 77% of the total C and N in seeds were located in the endosperm, whereas 86% of seed P was located in the scutellum as phytate. Up to the 7th day after sowing, 96% of phytate was hydrolyzed. Hydrolyzed forms of P were temporarily stored in the seed before being translocated to growing organs, suggesting that the hydrolysis of phytate was not a limiting step for P supply to seedlings. Significant P uptake by roots was observed from the 5th day after sowing on. Both sources of P supplied roots and leaves, with a slightly higher proportion of P from seed reserves going to leaves rather than to roots. Of total seed P, 60% and 92% was exported towards newly growing seedlings till 7th and 17th days after sowing and ceased to be a significant source of P for growth thereafter. We conclude that although both P supply processes overlap in time, seed P was the main P source during early growth stages.  相似文献   

9.
The interactions of VO2+ with phytate to form both soluble and insoluble complexes, have been studied by electronic absorption spectroscopy. A soluble 1∶1 VO2+: phytate complex is formed at pH <1. At higher pH-values insoluble complexes are produced. Two different solid complexes, obtained respectively at pH=2 and 4, were isolated and characterized. The maximal bonding ratio of VO2+: phytate was found to be 4, on the basis of a pH binding profile.  相似文献   

10.
High-pressure liquid chromatography (HPLC) analysis established myo-inositol pentakisphosphate as the final product of phytate dephosphorylation by the phytate-degrading enzyme from Pantoea agglomerans. Neither product inhibition by phosphate nor inactivation of the Pantoea enzyme during the incubation period were responsible for the limited phytate hydrolysis as shown by addition of phytate-degrading enzyme and phytate, respectively, after the observed stop of enzymatic phytate degradation. In additon, the Pantoea enzyme did not possess activity toward the purified myo-inositol pentakisphosphate. Using a combination of High-Performance Ion Chromatography (HPIC) analysis and kinetic studies, the nature of the generated myo-inositol pentakisphosphate was established. The data demonstrate that the phytate-degrading enzyme from Pantoea agglomerans dephosphorylates myo-inositol hexakisphosphate in a stereospecific way to finally D-myo-inositol(1,2,4,5,6)pentakisphosphate.  相似文献   

11.
The effect of heat treatment on rumen degradation of phytate in soybean meal and rapeseed meal was studied on three sheep fitted with rumen cannula. Soybean meal and rapeseed meal were roasted at 133°, 143° or 153°C for 3 h and the rumen degradation of phytate phosphorus in untreated and heat treated oilseed meals was examined using the nylon-bag technique. Effective degradability of phytate phosphorus in soybean and rapeseed meals, estimated at ruminal outflow rates of 0.02, 0.05 and 0.08 h−1, was significantly (p < 0.05) reduced by heat treatment. The reduction was more marked in rapeseed meal than in soybean meal. These results suggest that heat processing of oilseed meals suppresses phytate degradation in the rumen and leads to a low availability of dietary phytate phosphorus.  相似文献   

12.

Background and aims

Phosphorus (P) nutrition is very important during early maize seedling growth. Remobilization of endogenous seed P and uptake of exogenous P are therefore of prime importance during this period. Our objectives were to study the effect of the availability of endogenous and exogenous P on i) remobilization of endogenous seed P, ii) the beginning of exogenous P uptake and its intensity, iii) their interaction and effect on seedling development.

Methods

Seeds with high and low reserves of endogenous seed P were cultivated at three rates of availability of exogenous P (0, 100, 1,000?μM) over a growth period of 530 cumulated degree days after sowing. Exogenous P was labeled with radioactive P (32P) to distinguish the two fluxes of P in seedlings, one due to remobilization of seed P and the other to uptake of exogenous P.

Results

Initially, 86% of endogenous seed P was localized in the scutellum, mainly in the form of phytate, regardless of initial endogenous seed P. At 89 cumulated degree days after sowing (base temperature: 10°C), 98% of seed phytate was hydrolyzed in all treatments. In treatments with available exogenous P, significant uptake of exogenous P started at 71 cumulated degree days after sowing. Efficient uptake of exogenous P depended on its availability, but was independent of phytate hydrolysis and seedling P status. Significant loss of P from germinating seeds due to efflux was observed and was also independent of the availability of exogenous P.

Conclusions

Our results show that hydrolysis of seed P was not influenced by the availability of exogenous P, and conversely, that uptake of exogenous P was not influenced by endogenous P in the seed. This suggests that remobilization of endogenous seed P and uptake of exogenous P by seedling roots are controlled independently.  相似文献   

13.
Purified Aspergillus ficuum phytase's partial primary structure and amino acid and sugar composition were elucidated. Determination of kinetic parameters of the enzyme at different pH values and temperatures indicated no significant alteration of the Km for phytate while the Kcmt was affected. The enzyme was able to release more than 512 of the total available P1 from phytate in a 3.0 hr assay at 58°C, but the Kcmt dropped to 15Z of the initial rate. Substrate selectivity studies revealed phytate to be the preferred substrate. The pH optima of phytase was 5.0, 4.0, and 3.0 for phytate, ATP, and polyphosphate, respectively. The enzyme had varied sensitivity towards cations. While Ca±± and Fe±±produced no effect on the catalytic rate of the enzyme, Cu±, Cu±±, Zn±±, and Fe±±± were found to be inhibitory. Mn±± was observed to enhance enzyme activity by 33Z at 50 μM. Known inhibitors of acid phosphatases e. g. L (±)-tartrate, phosphomycin, and sodium fluoride had no effect on enzyme activity.  相似文献   

14.
Phytate, the major organic phosphorus in soil, is not readily available to plants as a source of phosphorus (P). It is either complexed with cations or adsorbed to various soil components. The present study was carried out to investigate the extracellular phytase activities of tobacco (Nicotiana tabacum variety GeXin No.1) and its ability to assimilate external phytate-P. Whereas phytase activities in roots, shoots and growth media of Pi-fed 14-day-old seedlings were only 1.3–4.9% of total acid phosphatase (APase) activities, P starvation triggered an increase in phytase secretion up to 914.9 mU mg−1 protein, equivalent to 18.2% of total APase activities. Much of the extracellular phytase activities were found to be root-associated than root-released. The plants were not able to utilize phytate adsorbed to sand, except when insoluble phytate salts were preformed with Mg2+ and Ca2+ ions for supplementation. Tobacco grew better in sand supplemented with Mg-phytate salts (31.9 mg dry weight plant−1; 0.68% w/w P concentration) than that with Ca-phytate salts (9.5 mg plant−1; 0.42%), presumably due to its higher solubility. We conclude that insolubility of soil phytate is the major constrain for its assimilation. Improving solubility of soil phytate, for example, by enhancement of citrate secretion, may be a feasible approach to improve soil phytate assimilation.  相似文献   

15.
Summary Saccharomyces cerevisiae in the form of baker's yeast, cells cultivated on a yeast extract-peptone-glucose medium, as well as cells immobilized in 18% (w/v) polyacrylamide gel showed the ability to hydrolyze 1.727 mM sodium phytate solution at 45°C, pH 4.6, in a stirred tank reactor. Seventy percent yield of dephosphorylation was observed after 2 h using a baker's yeast concentration of 5.8 g dry matter per 100 ml. Hydrolytic activity at 1.8–2.0 M Pi min–1 was observed between 1st and 3rd h of the reaction in cells cultured 24 or 48 h. No inhibition by the substrate was found at sodium phytate concentrations of 0.587–1.727 mM. After 1.5 h of hydrolysis a single, well distinguished peak ofmyo-inositol-triphosphate was the main product found. By means of immobilization the stability of the biocatalyst was enhanced 3.3-fold and reached its half-life at 64 ninety-minute runs.  相似文献   

16.
Saccharomyces cerevisiae CY phytase-producing cells were immobilized in calcium alginate beads and used for the degradation of phylate. The maximum activity and immobilization yield of the immobilized phytase reached 280 mU/g-bead and 43%, respectively. The optimal pH of the immobilized cell phytase was not different from that of the free cells. However, the optimum temperature for the immobilized phytase was 50°C, which was 10°C higher than that of the free cells; pH and thermal stability were enhanced as a consequence of immobilization. Using the immobilized phytase, phytate was degraded in a stirred tank bioreactor. Phytate degradation, both in a buffer solution and in soybean-curd whey mixture, showed very similar trends. At an enzyme dosage of 93.9 mU/g-phytate, half of the phytate was degraded after 1 h of hydrolysis. The operational stability of the immobilized beads was examined with repeated batchwise operations. Based on 50% conversion of the phytate and five times of reuse of the immobilized beads, the specific degradation (g phytate/g dry cell weight) for the immobilized phytase increased 170% compared to that of the free phytase.  相似文献   

17.
18.
Klebsiella sp. strain ASR1 isolated from an Indonesian rice field is able to hydrolyse myo-inositol hexakis phosphate (phytate). The phytase protein was purified and characterised as a 42 kDa protein accepting phytate, NADP and sugar phosphates as substrates. The corresponding gene (phyK) was cloned from chromosomal DNA using a combined approach of protein and genome analysis, and expressed in Escherichia coli. The recombinant enzyme was identified as a 3-phytase yielding myo-inositol monophosphate, Ins(2)P, as the final product of enzymatic phytate hydrolysis. Based on its amino acid sequence, PhyK appears to be a member of a hitherto unknown subfamily of histidine acid phytate-degrading enzymes with the active site RHGXRXP and HD sequence motifs, and is different from other general phosphatases and phytases. Due to its ability to degrade sodium phytate to the mono phosphate ester, the phyK gene product is an interesting candidate for industrial and agricultural applications to make phytate phosphorous available for plant and animal nutrition.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

19.
The present study gives an overview on the whole mechanism of phytate degradation in the gut and the enzymes involved. Based on the similarity of the human and pigs gut, the study was carried out in pigs as model for humans. To differentiate between intrinsic feed phytases and endogenous phytases hydrolysing phytate in the gut, two diets, one high (control diet) and the other one very low in intrinsic feed phytases (phytase inactivated diet) were applied. In the chyme of stomach, small intestine and colon inositol phosphate isomers and activities of phytases and alkaline phosphatases were determined. In parallel total tract phytate degradation and apparent phosphorus digestibility were assessed. In the stomach chyme of pigs fed the control diet, comparable high phytase activity and strong phytate degradation were observed. The predominant phytate hydrolysis products were inositol phosphates, typically formed by plant phytases. For the phytase inactivated diet, comparable very low phytase activity and almost no phytate degradation in the stomach were determined. In the small intestine and colon, high activity of alkaline phosphatases and low activity of phytases were observed, irrespective of the diet fed. In the colon, stronger phytate degradation for the phytase inactivated diet than for the control diet was detected. Phytate degradation throughout the whole gut was nearly complete and very similar for both diets while the apparent availability of total phosphorus was significantly higher for the pigs fed the control diet than the phytase inactivated diet. The pathway of inositol phosphate hydrolysis in the gut has been elucidated.  相似文献   

20.
Using a screening procedure developed for detection of phytate hydrolysing enzymes, the gene agpE encoding glucose-1-phosphatase was cloned from an Enterobacter cloacae VKPM B2254 plasmid library. Sequence analysis revealed 78% identity on nucleotide and 79% identity on peptide level to Escherichia coli glucose-1-phosphatase characterising the respective gene product as a representative of acid histidine phosphatases harbouring the RH(G/N)RXRP motif. The purified recombinant protein displayed maximum specific activity of 196 U mg−1 protein against glucose-1-phosphate but was also active against other sugar phosphates and p-nitrophenyl phosphate. High-performance ion chromatography of hydrolysis products revealed that AgpE can act as a 3-phytase but is only able to cleave off the third phosphate group from the myo-inositol sugar ring. Based on sequence comparison and catalytic behaviour against phytate, we propose to classify bacterial acid histidine phosphatases/phytases in the three following subclasses: (1) AppA-related phytases, (2) PhyK-related phytases and (3) Agp-related phytases. A distinguished activity of 32 U mg−1 of protein towards myo-inositol-hexa-phosphate, which is two times higher than that of E. coli Agp, suggests that possibly functional differences in terms of phytase activity between Agp- and AppA-like acid histidine phosphatases are fluent. Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号