首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzyme RhlI catalyzes the formation of N-butyrylhomoserine lactone from S-adenosylmethionine and N-butyrylacyl carrier protein. N-Butyrylhomoserine lactone serves as a quorum-sensing signal molecule in Pseudomonas aeruginosa, and is implicated in the regulation of many processes involved in bacterial virulence and infectivity. The P. aeruginosa genome contains three genes encoding acyl carrier proteins. We have cloned all three genes, expressed the acyl carrier proteins, and characterized each as a substrate for RhlI. A continuous, spectrophotometric assay was developed to facilitate kinetic and mechanistic studies of RhlI. Acp1, which has not been characterized previously, was a good substrate for RhlI, with a K(m) of 7 microM; the reaction proceeded with a k(cat) value of 0.35 s(-1). AcpP, which supports fatty acid biosynthesis, was also a good substrate in the RhlI reaction, where k(cat) was 0.46 s(-1), and the K(m) for AcpP was 6 microM. The third acyl carrier protein, Acp3, was a poor substrate for RhlI, with a K(m) of 280 microM; k(cat) was 0.03 s(-1). Taken together with microarray data from the literature which show that expression of the gene encoding Acp1 is under the control of the quorum-sensing system, our data suggest that Acp1 is likely to be the substrate for RhlI in vivo. Isotope labeling studies were conducted to investigate the chemical mechanism of the RhlI-catalyzed lactonization reaction. Solvent deuterons were not incorporated into product, which implicates a direct attack mechanism in which the carboxylate oxygen of the presumptive N-butyryl-SAM intermediate attacks the methylene carbon adjacent to the sulfonium ion. Alternative mechanisms, in which N-butyrylvinylglycine is formed via elimination of methylthioadenosine, were ruled out on the basis of the observation that RhlI failed to convert authentic N-butyrylvinylglycine to N-butyryl-L-homoserine lactone.  相似文献   

2.
In Pseudomonas aeruginosa , synthesis of the quorum-sensing signal molecules N -butanoyl- L -homoserine lactone (BHL) and N -hexanoyl- L -homoserine lactone (HHL) requires the LuxI homologue RhlI(VsmI). By using thin-layer chromatography in conjunction with high-performance liquid chromatography (HPLC) and mass spectrometry, we show that purified RhlI can catalyse the biosynthesis of BHL and HHL using either S -adenosylmethionine (SAM) or homoserine lactone (HSL) but not homoserine as the source of the homoserine lactone moiety. As we were unable to detect homoserine lactone in cytoplasmic extracts of Escherichia coli , we conclude that SAM is the natural substrate for RhlI-directed N -acylhomoserine lactone (AHL) biosynthesis. The N -acyl chain of BHL and HHL can be supplied by the appropriately charged coenzyme A derivative (either n -butanoyl-CoA or n -hexanoyl-CoA). The specificity of RhlI for charged CoA derivatives is demonstrated as RhlI was unable to generate AHLs detectable in our bioassays from acetyl-CoA, malonyl-CoA, n -octanoyl-CoA, n -decanoyl-CoA, DL-β-hydroxybutanoyl-CoA or crotonoyl-CoA. RhlI was also unable to use N -acetyl- S -3-oxobutanoylcysteamine, a chemical mimic for 3-oxobutanoyl-CoA. Furthermore, the RhlI-catalysed synthesis of BHL and HHL was most efficiently driven when NADPH was included in the reaction mixture.  相似文献   

3.
Two novel Enterococcus faecalis-Escherichia coli shuttle vectors that utilize the promoter and ribosome binding site of bacA on the E. faecalis plasmid pPD1 were constructed. The vectors were named pMGS100 and pMGS101. pMGS100 was designed to overexpress cloned genes in E. coli and E. faecalis and encodes the bacA promoter followed by a cloning site and stop codon. pMGS101 was designed for the overexpression and purification of a cloned protein fused to a Strep-tag consisting of 9 amino acids at the carboxyl terminus. The Strep-tag provides the cloned protein with an affinity to immobilized streptavidin that facilitates protein purification. We cloned a promoterless beta-galactosidase gene from E. coli and cloned the traA gene of the E. faecalis plasmid pAD1 into the vectors to test gene expression and protein purification, respectively. beta-Galactosidase was expressed in E. coli and E. faecalis at levels of 10(3) and 10 Miller units, respectively. By cloning the pAD1 traA into pMGS101, the protein could be purified directly from a crude lysate of E. faecalis or E. coli with an immobilized streptavidin matrix by one-step affinity chromatography. The ability of TraA to bind DNA was demonstrated by the DNA-associated protein tag affinity chromatography method using lysates prepared from both E. coli and E. faecalis that overexpress TraA. The results demonstrated the usefulness of the vectors for the overexpression and cis/trans analysis of regulatory genes, purification and copurification of proteins from E. faecalis, DNA binding analysis, determination of translation initiation site, and other applications that require proteins purified from E. faecalis.  相似文献   

4.
5.
6.
The opportunistic human pathogen Pseudomonas aeruginosa possesses two cell density-dependent genetic regulatory systems that control expression of a number of secreted virulence factors. These two systems, the lasI–lasR and rhlI–rhlR gene pairs, are members of the luxI–luxR family of quorum-sensing signal generators and signal receptors. The rhlI gene in P. aeruginosa encodes a 201-amino-acid protein that catalyses the synthesis of an autoinducer, butyrylhomoserine lactone. Through a programme of random and site-specific mutagenesis of rhlI we have gained a better understanding of how its protein product functions. Eight residues critical to butyrylhomoserine lactone synthesis by RhlI were identified by random mutagenesis, and all mapped to a conserved region that spans residues 24–104. Seven of the eight residues were charged amino acids and the other was a glycine. By using site-specific mutagenesis we showed that an active-site cysteine or serine was not required for butyrylhomoserine lactone synthesis, and that two conserved aromatic amino acids in the postulated active site region could be altered without complete loss of RhlI activity. Furthermore, two residues towards the C-terminus that align with critical residues in LuxI can be altered in RhlI without loss of activity. These studies suggest that as opposed to the current models for acyl substrate binding to quorum-sensing signal generators, charged amino acid residues participate directly in the catalysis of butyrylhomoserine lactone synthesis rather than cysteines, serines or hydrophobic amino acids.  相似文献   

7.
A major problem in assessing the vaccine and diagnostic potential of various proteins encoded by Mycobacterium tuberculosis genome is the inability to produce large quantities of these proteins, even when Escherichia coli or other heterologous systems are employed for recombinant protein production. To overcome these barriers, we have constructed a modified expression vector, using pGEX-4T-1 vector as the backbone. In addition to the features offered by the pGEX-4T vectors, the new vector allowed easy purification of recombinant proteins on the highly versatile Ni-NTA-agarose affinity matrix. The utility of the new vector was demonstrated by expressing and purifying, to near homogeneity, two M. tuberculosis proteins, i.e., Rv3872 (a member of the multi-gene PE subfamily) and Rv3873 (a member of the multi-gene PPE subfamily), which are encoded by the RD1 region of M. tuberculosis. The proteins encoded by rv3872 and rv3873 were expressed at high levels as fusion proteins with glutathione-S-transferase in E. coli. The recombinant Rv3872 and Rv3873 proteins were purified and isolated free of the fusion partner (GST) by affinity purification on glutathione-Sepharose and/or Ni-NTA-agarose affinity matrix and cleavage of the purified fusion proteins by thrombin protease. The recombinant Rv3872 protein was nearly homogeneous (more than 95% pure) while Rv3873 preparation was more than 90% pure. The recombinant Rv3872 and Rv3873 proteins were immunologically active and reacted with antibodies in sera from TB patients. Our results demonstrate the utility of the newly constructed expression vector with two affinity tags for efficient expression and purification of recombinant M. tuberculosis proteins expressed in E. coli, which could be used for further diagnostic and immunological studies.  相似文献   

8.
The Escherichia coli DNA replication proteins n and n" function in vitro in the assembly of the primosome, a mobile multiprotein replication priming complex thought to operate on the lagging-strand template at the E. coli DNA replication fork. Both proteins have been purified from E. coli HMS83 cells based on their requirement for the reconstitution of bacteriophage phi X174 complementary strand DNA synthesis in vitro with purified proteins. As a step toward understanding the role of these proteins in vivo, the genes for primosomal proteins n and n", designated priB and priC, respectively, have been cloned molecularly. priB encodes a 104-amino acid 11.4-kDa polypeptide and corresponds to an previously identified open reading frame between rpsF and rps R within a ribosomal protein operon at 95.5 min on the E. coli chromosome. priC encodes a 175-amino acid 20.3-kDa polypeptide. These two gene products were overexpressed at least 1000-fold in E. coli using a bacteriophage T7 transient expression system. Both proteins have been purified to apparent homogeneity from extracts prepared from these overproducing strains.  相似文献   

9.
The Crimean-congo hemorrhagic fever virus(CCHFV)is a geographically widespread fatal pathogen. Identification of the epitope regions of the virus is important for the diagnosis and epidemiological studies of CCHFV infections.In this study,expression vectors carrying series truncated fragments of the NP(nucleocapsid protein)gene from the S fragment of CCHFV strain YL04057 were constructed.The recombinant proteins were expressed in E.coli and purified for detection.The antigenic of the truncated fragments of ...  相似文献   

10.
11.
The gene (crc) responsible for catabolite repression control in Pseudomonas aeruginosa has been cloned and sequenced. Flanking the crc gene are genes encoding orotate phosphoribosyl transferase (pyrE) and RNase PH (rph). New crc mutants were constructed by disruption of the wild-type crc gene. The crc gene encodes an open reading frame of 259 amino acids with homology to the apurinic/apyrimidinic endonuclease family of DNA repair enzymes. However, crc mutants do not have a DNA repair phenotype, nor can the crc gene complement Escherichia coli DNA repair-deficient strains. The crc gene product was overexpressed in both P. aeruginosa and in E. coli, and the Crc protein was purified from both. The purified Crc proteins show neither apurinic/apyrimidinic endonuclease nor exonuclease activity. Antibody to the purified Crc protein reacted with proteins of similar size in crude extracts from Pseudomonas putida and Pseudomonas fluorescens, suggesting a common mechanism of catabolite repression in these three species.  相似文献   

12.
B Nilsson  L Abrahmsn    M Uhln 《The EMBO journal》1985,4(4):1075-1080
Two improved plasmid vectors, containing the gene coding for staphylococcal protein A and adapted for gene fusions, have been constructed. These vectors allow fusion of any gene to the protein A moiety, giving fusion proteins which can be purified, in a one-step procedure by IgG affinity chromatography. One vector, pRIT2, is designed for temperature-inducible expression of intracellular fusion proteins in Escherichia coli and the other pRIT5, is a shuttle vector designed for secretion. The latter gives a periplasmatic fusion protein in E. coli and an extracellular protein in Gram-positive hosts such as Staphylococcus aureus. The usefulness of these vectors is exemplified by fusion of the protein A gene and the E. coli genes encoding the enzymes beta-galactosidase and alkaline phosphatase. High amounts of intact fusion protein are produced which can be immobilized on IgG-Sepharose in high yield (95-100%) without loss of enzymatic activity. Efficient secretion in both E. coli and S. aureus, was obtained for the alkaline phosphatase hybrid, in contrast to beta-galactosidase which was only expressed efficiently using the intracellular system. More than 80% of the protein A alkaline-phosphatase hybrid protein can be eluted from IgG affinity columns without loss of enzymatic activity.  相似文献   

13.
Escherichia coli cells are the most commonly used host cells for large-scale production of recombinant proteins, but some proteins are difficult to express in E. coli. Therefore, we tested the nocardioform actinomycete Rhodococcus erythropolis, which grows at temperatures ranging from 4 to 35 degrees C, as an expression host cell. We constructed inducible expression vectors, where the expression of the target genes could be controlled with the antibiotic thiostrepton. Using these expression vectors, several milligrams of reporter proteins could be isolated from 1 liter of culture of R. erythropolis cells grown at a temperature range from 4 to 35 degrees C. Moreover, we successfully purified serum amyloid A1, NADH dehydorogenase 1 alpha subcomplex 4, cytochrome b5-like protein, apolipoprotein A-V, cathepsin D, pancreatic Rnase, and HMG-1 that are all difficult to express in E. coli. In the case of kallikrein 6, mouse deoxyribonuclease I and Kid1, which are also difficult to express in E. coli, the expression level of each protein increased when proteins were expressed at low temperature (4 degrees C). Based on these results, we conclude that a recombinant protein expression system using R. erythropolis as the host cell is superior to respective E. coli systems.  相似文献   

14.
Rat peroxisomal acyl-CoA oxidase I is a key enzyme for the beta-oxidation of fatty acids, and the deficiency of this enzyme in patients has been previously reported. We cloned the gene of rat peroxisomal acyl-CoA oxidase I into a bacterial expression vector pLM1 with six continuous histidine codons attached to the 5' end of the gene. The cloned gene was overexpressed in Escherichia coli and the soluble protein was purified with a nickel HiTrap chelating metal-affinity column in 90% yield to apparent homogeneity. The specific activity of the purified His-tagged rat peroxisomal acyl-CoA oxidase I was 1.5 micromol/min/mg. It has been proposed that Glu421 is a catalytic residue responsible for deprotonation of alpha-proton of acyl-CoA substrate. We constructed four mutant expression plasmids of the enzyme, pACO(E421D), pACO(E421A), pACO(E421Q), and pACO(E421G) using site-directed mutagenesis. Mutant proteins were overexpressed in E. coli and purified with a nickel metal-affinity column. Kinetic studies of wild-type and mutant proteins were carried out, and the result confirmed that Glu421 is a catalytic residue of rat peroxisomal acyl-CoA oxidase I. Our overexpression in E. coli and one-step purification of the highly active N-terminal His-tagged rat peroxisomal acyl-CoA oxidase I greatly facilitated our further investigation of this enzyme, and our result from site-directed mutagenesis increased our understanding of the mechanism for the reaction catalyzed by peroxisomal acyl-CoA oxidase I.  相似文献   

15.
16.
Here, we present a cloning strategy for the production of recombinant proteins tagged with a polyhistidine sequence that can be cleaved by the exopeptidase, DAPase. The method can be used with most commonly available vectors and results in the expression of a His-tag protein that can be purified in its native form regardless of its natural sequence. This approach takes advantage of the TAGZyme system for the removal of amino-terminal affinity tags. Tag removal is accomplished either with DAPase (a recombinant dipeptidyl peptidase) alone or in combination with two accessory enzymes, Qcyclase and pGAPase. The system has been used for the production of intracellular proteins in Escherichia coli and can be applied to other expression hosts for the production of secreted proteins or proteins that require post-translational modification. The production of human interleukin 1beta in E. coli is used as an example to illustrate this method. The complete protocol from initial PCR to the production of a detagged protein with its authentic N terminus can be performed within 5 days.  相似文献   

17.
18.
The protein NfxB, involved in conferring resistance to quinolones in Pseudomonas aeruginosa, has a helix-turn-helix motif which is similar to that of other DNA-binding proteins. It appears to affect the membrane-associated energy-driven efflux of some antibiotics (H. Nikaido, Science 264:382-388, 1994). We constructed a plasmid that overproduced NfxB in Escherichia coli and purified the protein. Two species of NfxB (23 and 21 kDa), which are probably translated from different initiation codons, were isolated. Both proteins are also expressed in vivo in P. aeruginosa, with the 23-kDa NfxB being the major species. NfxB specifically binds upstream of the nfxB coding region as demonstrated by gel retardation and DNase I footprinting. Expression of the phi (nfxB'-lacZ+) (Hyb) gene was repressed in the presence of the nfxB gene product provided by a second compatible plasmid in E. coli. In the P. aeruginosa wild-type strain (PAO2142), NfxB was undetectable by immunoblotting; however, it was detected in the nfxB missense mutant (PK1013E). These results suggested that NfxB negatively autoregulates the expression of nfxB itself. Since the 54-kDa outer membrane protein (OprJ) (N. Masuda, E. Sakagawa, and S. Ohya, Antimicrob. Agents Chemother. 39:645-649, 1995) was overproduced in nfxB mutants, NfxB may also regulate the expression of membrane proteins that are involved in the drug efflux machinery of P. aeruginosa.  相似文献   

19.
Chimeric proteins were constructed from pyocin S1 or S2 and colicin E3 or E2, and their characteristics were investigated with special reference to the domain structure. The nuclease domains were interchangeable between two bacteriocins so that a new kind of pyocin, with RNase activity, was created. A bacteriocin which can kill both Pseudomonas aeruginosa and Escherichia coli was also constructed. Investigations with various chimeric proteins indicate that the translocation domain as well as the receptor-binding domain is species specific. Inhibition of lipid synthesis, which is characteristic of pyocins, was also observed with chimeric pyocins carrying the DNase domain of colicin E2 but not with those carrying the RNase domain of E3. Thus, the DNase domain is responsible for the inhibition of lipid synthesis.  相似文献   

20.
The Gram positive bacterium, Streptococcus pneumoniae, has two genes, designated ssbA and ssbB, which are predicted to encode single-stranded DNA binding proteins (SSB proteins). We have shown previously that the SsbA protein is similar in size and in biochemical properties to the well-characterized SSB protein from Escherichia coli. The SsbB protein, in contrast, is a smaller protein and has no counterpart in E. coli. This report describes the development of an expression system and purification procedure for the SsbB protein. The ssbB gene was amplified from genomic S. pneumoniae DNA and cloned into the E. coli expression vector, pET21a. Although, we had shown previously that the SsbA protein is strongly expressed from pET21a in the E. coli strain BL21(DE3)pLysS, no expression of the SsbB protein was detected in these cells. However, the SsbB protein was strongly expressed from pET21a in the Rosetta(DE3)pLysS strain, a derivative of BL21(DE3)pLysS which supplies the tRNAs for six codons that are used infrequently in E. coli. The differential expression of the two SSB proteins in the parent BL21(DE3)pLysS strain was apparently due to the presence of two rare codons in the ssbB gene sequence that are not present in the ssbA sequence. Using the Rosetta(DE3)pLysS/pETssbB expression system, a protocol was developed in which the SsbB protein was purified to apparent homogeneity. DNA binding assays confirmed that the purified SsbB protein had single-stranded DNA binding activity. The expression and purification procedures reported here will facilitate further investigations into the biological role of the SsbB protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号