首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine enterokinase was incorporated into vesicles reconstituted from a soybean phospholipid mixture. A thin film hydration procedure (MacDonald, R. I., and MacDonald, R. C. (1975) J. Biol. Chem. 250, 9206-9214) produced vesicles with 40% of the enterokinase activity bound in the membrane. The highest incorporation was observed when cholesterol or dimyristoylphosphatidylethanolamine was added to the soybean phospholipids. Crude and highly purified enterokinase preparations were incorporated to the same extent suggesting that other membrane components were not required for a successful reconstitution. The properties of enterokinase in phospholipid vesicles were compared with those of alkaline phosphatase, which was also added to the reconstitution system, and with the enzyme activities present in vesicles prepared from brush-border membranes. The enzyme activities were not released by solutions of high ionic strength and remained associated with the phospholipid vesicles on gel filtration, ultracentrifugation, and sucrose density centrifugation. Enterokinase and alkaline phosphatase had their active sites exposed to substrate in the brush-border membrane vesicles. In soybean phospholipid vesicles half of the active sites of both enzymes were on the outside, since release of the enzyme with Triton X-100 almost doubled the units of enzyme present. Incubation of the soybean phospholipid and brush-border membrane vesicles with papain released the exposed molecules of enterokinase. The released enzyme molecules were fully active but could not be reincorporated into phospholipid vesicles. This suggests that the structure imbedded in the lipid bilayer was essential for a successful reconstitution. We conclude that the reconstituted soybean phospholipid vesicles are a suitable membrane system for the further study of membrane-bound enterokinase.  相似文献   

2.
1. Liver and bone alkaline phosphatase isoenzymes were solubilized with the zwitterionic detergent sulphobetaine 14, and purified to homogeneity by using a monoclonal antibody previously raised against a partially-purified preparation of the liver isoenzyme. Both purified isoenzymes had a specific activity in the range 1100-1400 mumol/min per mg of protein with a subunit Mr of 80,000 determined by SDS/polyacrylamide gel electrophoresis. Butanol extraction instead of detergent solubilization, before immunoaffinity purification of the liver enzyme, resulted in the same specific activity and subunit Mr. The native Mr of the sulphobetaine 14-solubilized enzyme was consistent with the enzyme being a dimer of two identical subunits and was higher than that of the butanol-extracted enzyme, presumably due to the binding of the detergent micelle. 2. Pure bone and liver alkaline phosphatase were used to raise further antibodies to the two isoenzymes. Altogether, 27 antibody-producing cell lines were cloned from 12 mice. Several of these antibodies showed a greater than 2-fold preference for bone alkaline phosphatase in the binding assay used for screening. No antibodies showing a preference for liver alkaline phosphatase were successfully cloned. None of the antibodies showed significant cross-reaction with placental or intestinal alkaline phosphatase. Epitope analysis of the 27 antibodies using liver alkaline phosphatase as antigen gave rise to six groupings, with four antibodies unclassified. The six major epitope groups were also observed using bone alkaline phosphatase as antigen. 3. Serum from patients with cholestasis contains soluble and particulate forms of alkaline phosphatase. The soluble serum enzyme had the same size and charge as butanol-extracted liver enzyme on native polyacrylamide-gel electrophoresis. Cellulose acetate electrophoresis separated the soluble and particulate serum alkaline phosphatases as slow- and fast-moving forms respectively. In the presence of sulphobetaine 14 all the serum enzyme migrated as the slow-moving form on cellulose acetate electrophoresis. Monoclonal anti-(alkaline phosphatase) immunoadsorbents did not bind the particulate form of alkaline phosphatase in cholestatic serum but bound the soluble form. In the presence of sulphobetaine 14 all the cholestatic serum alkaline phosphatase bound to the immunoadsorbents. 4. The electrophoretic and immunological data are consistent with both particulate and soluble forms of alkaline phosphatase in cholestatic serum being derived from the hepatocyte membrane.  相似文献   

3.
Alkaline phosphatase (orthophosphoric-monoester phosphohydrolase [alkaline optimum], EC 3.1.3.1) expressed in two human osteosarcoma cell lines (Saos-2 and KTOO5) in culture was the tissue nonspecific type and was released from the plasma membrane by phosphatidylinositol (PI) phospholipase C. Despite a difference of 10-fold between the two cell lines in the amount of alkaline phosphatase expressed, the phospholipase solubilized nearly all of the phosphatase from resuspended cells of the two lines. Alkaline phosphatase released with Nonidet-P40 from Saos-2 cells had a Mr of 445,000 by gradient gel electrophoresis in the absence of detergent; that released by PI-phospholipase C was 200,000. The subunit Mr of both solubilized forms was 86,000. Thus, tetrameric alkaline phosphatase in the membrane is attached by a PI-glycan moiety and is converted to dimers when released by PI-phospholipase C. Tunicamycin treatment of Saos-2 cells in culture affected the release of alkaline phosphatase by a high concentration of PI-phospholipase C, but not by a low concentration; both the rate and extent of release were lower from treated cells. However, the enzyme released from the treated cells was in two forms with different molecular weights; it seems that both glycosylated and nonglycosylated dimers were transported to the cell surface and incorporated into the plasma membrane. Glycosylation does not appear to be necessary for alkaline phosphatase to be anchored in the membrane via PI.  相似文献   

4.
Phosphatidylinositol anchor of HeLa cell alkaline phosphatase   总被引:7,自引:0,他引:7  
R Jemmerson  M G Low 《Biochemistry》1987,26(18):5703-5709
Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either 3H-fatty acids or [3H]ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the 3H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of [3H]ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from 3H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the 3H-fatty acid and the [3H]ethanolamine label from the purified alkaline phosphatase. Subtilisin was also able to remove the [3H]ethanolamine-labeled from purified alkaline phosphatase. The 3H radioactivity in alkaline phosphatase purified from [3H]ethanolamine-labeled cells comigrated with authentic [3H]ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the 3H-fatty acid and [3H]ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.  相似文献   

5.
Biochemical localization of the enzyme as a function of age of cell culture showed the alkaline phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.1) activity of Bacillus licheniformis MC14 predominantly in the particulate cell fraction in early- and mid-log cells. However, in late-log and stationary cells, increasing amounts of activity were found in the soluble fraction of lysed cells. Upon protoplast formation of these cells, the activity was released into the soluble fraction. No alkaline phosphatase activity was found in either the cytoplasmic fraction or in the cell medium during any phase of cell growth. The soluble fraction released on protoplast formation that contained alkaline phosphatase activity showed immunological cross-reactivity with antibody to the purified heat--salt-solubilized membrane alkaline phosphatase (F. M. Hulett-Cowling and L. L. Campbell, 1971). Theparticulate membrane fraction containing a firmly associated alkaline phosphatase also showed similar cross-reactivity. Further, the effectiveness of nonionic detergents, ionic detergents, bile salts, and various concentrations of magnesium and sodium as solubilizing agents for this membrane-bound alkaline phosphatase was investigated. Hexadecyl pyridinium chloride (0.03 M) and magnesium and sodium salts (above 0.2 M) were effective solubilizing agents. The substrate specificities of the various fractions were determined and compared to the substrate specificities of the purified membrane alkaline phosphatase.  相似文献   

6.
When membrane-bound human liver alkaline phosphatase was treated with a phosphatidylinositol (PI) phospholipase C obtained from Bacillus cereus, or with the proteases ficin and bromelain, the enzyme released was dimeric. Butanol extraction of the plasma membranes at pH 7.6 yielded a water-soluble, aggregated form that PI phospholipase C could also convert to dimers. When the membrane-bound enzyme was solubilized with a non-ionic detergent (Nonidet P-40), it had the Mr of a tetramer; this, too, was convertible to dimers with PI phospholipase C or a protease. Butanol extraction of whole liver tissue at pH 6.6 and subsequent purification yielded a dimeric enzyme on electrophoresis under nondenaturing conditions, whereas butanol extraction at pH values of 7.6 or above and subsequent purification by immunoaffinity chromatography yielded an enzyme with a native Mr twice that of the dimeric form. This high molecular weight form showed a single Coomassie-stained band (Mr = 83,000) on electrophoresis under denaturing conditions in sodium dodecyl sulfate, as did its PI phospholipase C cleaved product; this Mr was the same as that obtained with the enzyme purified from whole liver using butanol extraction at pH 6.6. These results are highly suggestive of the presence of a butanol-activated endogenous enzyme activity (possibly a phospholipase) that is optimally active at an acidic pH. Inhibition of this activity by maintaining an alkaline pH during extraction and purification results in a tetrameric enzyme. Alkaline phosphatase, whether released by phosphatidylinositol (PI) phospholipase C or protease treatment of intact plasma membranes, or purified in a dimeric form, would not adsorb to a hydrophobic medium. PI phospholipase C treatment of alkaline phosphatase solubilized from plasma membranes by either detergent or butanol at pH 7.6 yielded a dimeric enzyme that did not absorb to the hydrophobic medium, whereas the untreated preparations did. This adsorbed activity was readily released by detergent. Likewise, alkaline phosphatase solubilized from plasma membranes by butanol extraction at pH 7.6 would incorporate into phosphatidylcholine liposomes, whereas the enzyme released from the membranes by PI phospholipase C would not incorporate. The dimeric enzyme purified from a butanol extract of whole liver tissue carried out at pH 6.6 did not incorporate. We conclude that PI phospholipase C converts a hydrophobic tetramer of alkaline phosphatase into hydrophilic dimers through removal of the 1,2-diacylglycerol moiety of phosphatidylinositol. Based on these and others' findings, we devised a model of alkaline phosphatase's conversion into its various forms.  相似文献   

7.
Alkaline phosphatase is required for the mineralization of bone and cartilage. This enzyme is localized in the matrix vesicle, which plays a role key in calcifying cartilage. In this paper, we standardize a method for construction an alkaline phosphatase liposome system to mimic matrix vesicles and examine a some kinetic behavior of the incorporated enzyme. Polidocanol-solubilized alkaline phosphatase, free of detergent, was incorporated into liposomes constituted from dimyristoylphosphatidylcholine (DMPC), dilaurilphosphatidylcholine (DLPC) or dipalmitoylphosphatidylcholine (DPPC). This process was time-dependent and >95% of the enzyme was incorporated into the liposome after 4h of incubation at 25 degrees C. Although, incorporation was more rapid when vesicles constituted from DPPC were used, the incorporation was more efficient using vesicles constituted from DMPC. The 395nm diameter of the alkaline phosphatase-liposome system was relatively homogeneous and more stable when stored at 4 degrees C.Alkaline phosphatase was completely released from liposome system only using purified phosphatidylinositol-specific phospholipase C (PIPLC). These experiments confirm that the interaction between alkaline phosphatase and lipid bilayer of liposome is via GPI anchor of the enzyme, alone. An important point shown is that an enzyme bound to liposome does not lose the ability to hydrolyze ATP, pyrophosphate and p-nitrophenyl phosphate (PNPP), but a liposome environment affects its kinetic properties, specifically for pyrophosphate.The standardization of such system allows the study of the effect of phospholipids and the enzyme in in vitro and in vivo mineralization, since it reproduces many essential features of the matrix vesicle.  相似文献   

8.
Isolated human intestinal brush border membranes were used as sources of enzyme to study their degradation by proteolytic enzymes. Human intestinal brush border hydrolases undergo degradation by two separate proteolytic systems. Sucrase and alkaline phosphatase are degraded by pancreatic proteases (e.g. chymotrypsin) at neutral pH, whereas trehalase is degraded by lysosomal extracts at acid pH. Both the membrane bound and membrane free isolated enzymes had similar sensitivity to proteolytic enzymes. Thus, initial removal from the membrane is not essential as a prerequisite to proteolysis. It is postulated that the brush border membrane of the intestine is subject to proteolysis by pancreatic enzymes from the external cell surface and by lysosomal proteases within the cell.  相似文献   

9.
1. Cytochemical studies of the intracellular distribution of alkaline phosphatase in rat liver have been made, using a fractionation procedure recently developed in this laboratory (8) and a similar but modified method not described previously. Aqueous media were used in both cases. 2. The alkaline phosphatase was found to consist of two forms, one of which is strongly activated by magnesium and one of which is not sensitive to this metal. 3. The form of the enzyme that is not activated by magnesium occurs mainly in the nuclear fraction, where it seems to be rather firmly bound. Some of this form of the enzyme is also found in the microsomes, but very little if any occurs in the soluble supernatant fraction. 4. The form of alkaline phosphatase which is activated by magnesium occurs mainly in the soluble supernatant fraction, but what is believed are significant amounts also occur in nuclei. A significant portion of this form of the enzyme can be extracted from the isolated nuclei with cold, isotonic saline solution. Some activity of this form of the enzyme is also found in the microsomal fraction. 5. Mitochondria appear to contain relatively little alkaline phosphatase of either kind. 6. The concept of a porous nuclear membrane has been invoked to explain some of the results obtained in this work. It is postulated that part at least of the form of the enzyme that is activated by magnesium is free to diffuse back and forth through pores in the nuclear membrane, whereas this is considered not to be possible for the form of the enzyme that is insensitive to magnesium as a result of the firm binding of the latter to nuclear substance.  相似文献   

10.
Purification and characterization of phytase from rat intestinal mucosa.   总被引:1,自引:0,他引:1  
Phytase (myo-inositol hexakisphosphate phosphohydrolase; EC 3.1.3.8 or 3.1.3.26) was purified from rat intestinal mucosa. The purified enzyme preparation exhibited two protein bands on SDS-polyacrylamide gel electrophoresis with estimated molecular masses of 70 kDa and 90 kDa. Rabbit antisera prepared against the 90K subunit cross-reacted with the 70K subunit on immunoblotting. The peptide maps of the 70K and 90K subunits were similar, and the N-terminal amino acid sequences of the two subunit proteins were almost identical. Treatments to remove sugar moieties from the proteins showed that the two subunit proteins had different oligosaccharide chains, although the difference in their molecular masses was not due to the difference in their oligosaccharide compositions. The purified enzyme also showed activity of alkaline phosphatase (orthophosphoric monoester phosphohydrolase; EC 3.1.3.1), but the properties of the two enzyme activities were different; the optimum pH for phytase activity was 7.5, while that for alkaline phosphatase was 10.4. Phytase activity did not necessarily require divalent cations, while Mg2+ was essential for alkaline phosphatase activity. Phenylalanine, a specific inhibitor of intestine-type alkaline phosphatase had no effect on the phytase activity.  相似文献   

11.
Alkaline phosphatase activity of HeLa cells is increased 5-20-fold during growth in medium with cortisol. The increase in enzyme activity is due to an enhanced catalytic efficiency rather than an increase in alkaline phosphatase protein in induced cells. In the present study the chemical composition of control and induced forms of alkaline phosphatase were investigated to determine the enzyme modification that may be responsible for the increased catalytic activity. HeLa alkaline phosphatase is a phosphoprotein and the induced form of the enzyme has approximately one-half of the phosphate residues associated with control enzyme. The decrease in phosphate residues of the enzyme apparently alters its catalytic activity. Other chemical components of purified alkaline phosphatase from control and induced cells are similar; these include sialic acid, hexosamine and sulfhydryl residues.  相似文献   

12.
Previous histochemical and biochemical localizations of alkaline phosphatase in Bacillus licheniformis MC14 have shown that the membrane-associated form of the enzyme is located on the inner surface of the cytoplasmic membrane, and soluble forms are located in the periplasmic space and in the growth medium. The distribution of salt-extractable alkaline phosphatase on the surfaces of the cytoplasmic membrane of B. licheniformis MC14 was determined by using lactoperoxidase-125I labeling techniques. Cells harvested during rapid alkaline phosphatase production were converted to protoplasts or lysed protoplasts and labeled. Analysis of the data obtained indicated that 30% of the salt-extractable, membrane-associated alkaline phosphatase was located on the outer surface of the cytoplasmic membrane, whereas 70% of the membrane-associated enzyme was localized on the inner surface. Controls for protoplast integrity (release of tritiated thymidine or examination of cytoplasmic proteins for label content) indicated excellent protoplast stability. Controls indicated that chemical labeling was not a factor in the apparent distribution of alkaline phosphatase on the membrane. These results support the previously reported histochemical localization of alkaline phosphatase on the membrane inner surface. The presence of alkaline phosphatase on the membrane outer surface is reasonable, considering the soluble forms of the enzyme found in the periplasmic region and in the culture medium.  相似文献   

13.
1. Gel-filtration of an extract from the liver of the local Hausa goat Capra hircus indicated the presence of two molecular forms of alkaline phosphatase (orthophosphoric monoester phosphohydrolase, E.C. 3.1.3.1.). 2. Cellulose acetate electrophoresis showed that the lower-molecular-weight form had a similar electrophoretic mobility to alpha 2-globulin from goat serum, whereas the higher-molecular-weight form had a similar electrophoretic mobility to gamma-globulin. 3. Only the lower-molecular-weight form was detected on electrophoresis of a liver extract which contained some residual n-butanol used in the extraction procedure, whereas dialysed acetone powder obtained from the liver extract contained both molecular-weight forms. 4. The partially purified enzyme showed maximum activity at pH 9.8, and was stimulated by Mg2+. 5. The enzyme was heat-labile, and was competitively inhibited by phosphate ions but uncompetitively inhibited by L-phenylalanine. 6. These results are discussed in terms of the properties of the enzyme from other sources.  相似文献   

14.
Collagen-alkaline phosphatase membranes have been prepared, and their enzymatic kinetics and in-vitro stability analyzed. Collagen-alkaline phosphatase dispersions were prepared by complexation in aqueous alkaline solution and cast into membranes by controlled dehydration. These membranes were then crosslinked in glutaraldehyde solution, washed thoroughly, and dried. Crosslinking in glutaraldehyde confers increased stability of catalytic activity to these collagen-enzyme membranes, especially when compared to uncrosslinked collagen-alkaline phosphatase membranes assayed in a similar fashion. Crosslinking in glutaraldehyde also appears to inhibit gross leaching of the soluble enzyme from the carrier matrix. Apparent intrinsic kinetic properties of the collagen-alkaline phosphatase conjugate were analyzed in membranes of various thickness in order to determine the effect of internal diffusion resistances on the kinetics of the immobilized enzyme. The apparent Michaelis constant of the immobilized enzyme decreased as a function of decreasing membrane thickness, reaching an observed apparent Michaelis constant of 1.6mM at a membrane thickness of 0.2 mm. Extrapolation of the apparent Michaelis constant to zero membrane thickness, using a linear plot of the natural logarithm of the apparent Michaelis constant versus membrane thickness, allowed estimation of the true Michaelis constant of the immobilized enzyme. The estimated value for the true Michaelis constant of the collagen-alkaline phosphatase complex was 0.7mM. This value agrees closely with reported values for several purified mammalian alkaline phosphatase. The apparent Michaelis constant for the 0.2mm collagen-enzyme membrane agrees closely with the Michaelis constant reported for an alkaline phosphate purified from chondrocyte matrix vesicles. The intrinsic maximum reaction velocity (V(m)) of the collagen-enzyme complex was estimated b plotting the observed reaction rate as a function of decreasing membrane thickness and extrapolating such plots, at various substrate concentrations, to the limiting case of zero membrane thickness. The maximum reaction velocity was obtained by the common intercept of these plots as they approached zero membrane thickness.  相似文献   

15.
In untreated cells of the marine pseudomonad studied here, alkaline phosphatase was found to be located in the periplasmic space, at the cell surface, and in the medium into which it had been shed during growth. Washing in 0.5 M NaCl, which removed the loosely bound outer layer, caused a shift of periplasmic enzyme to the outer aspect of the double-track layer and released some of the cell surface-associated enzyme. When the double-track layer of the cell wall was partially deranged, large amounts of this cell wall-associated enzyme were released, and, when the double-track was removed from the cells to produce mureinoplasts, alkaline phosphatase was released into the menstruum. There was no significant association of the enzyme with the peptidoglycan layer of the cell wall, which is the outermost structure of the mureinoplast, and no association of the enzyme with the cytoplasmic membrane of these modified cells. This study has shown that alkaline phosphatase is specifically associated with the outer layers of the cell walls of cells of this organism and is retained within the cell wall by virtue of this association.  相似文献   

16.
The nonspecific alkaline phosphatase of yeast (Saccharomyces strain 1710) has been purified by ion exchange, hydrophobic, and affinity chromatography. This vacuolar enzyme has a molecular weight of 130,000 and is composed of subunits (probably of 66,000 molecular weight). It also has a small quantity of covalently associated carbohydrate; hydrolysis yielded mannose and glucosamine. The endo-beta-N-acetylglucosaminidase of Streptomyces plicatus released carbohydrate indicating that the latter was attached to protein through an N-acetylglucosaminylasparginyl bond. Synthesis of active alkaline phosphatase by yeast protoplasts is not depressed by tunicamycin, an inhibitor of dolichol-mediated protein glycosylation. Unlike the enzyme normally produced, the alkaline phosphatase which is formed in the presence of the antibiotic does not interact with concanavalin A and, therefore is deficient in or lacking carbohydrate. We infer that there is no regulatory link in yeast between the glycosylation of a protein and its synthesis. The fact that other Asn-GlcNAc-type glycoprotein enzymes of yeast such as acid phosphatase are not produced in their active forms by tunicamycin-treated protoplasts may mean that, as unglycosylated proteins, they cannot be correctly folded or processed. Protoplasts derepressed for phosphatase production contained substantial amounts of a second alkaline phosphatase which differed from the purified enzyme in substrate specificity, sensitivity to calcium, and reactivity with concanavalin A.  相似文献   

17.
We developed a method for selective preparation of two forms of alkaline phosphatase from rat tissues. The enzyme was extracted by n-butanol treatment at pH 5.5 and pH 8.5 as soluble and aggregated (membranous) forms, respectively. The soluble form prepared from liver was found to be identical with the serum enzyme. Complete solubilization of the membrane-bound enzyme without detergents had a great advantage in its purification. Rat hepatoma AH-130 cells enriched in alkaline phosphatase were first used for purification of the liver-type enzyme. The hepatoma enzyme, purified by chromatographies on concanavalin-A-Sepharose, Sephacryl S-300 and hydroxyapatite was used for production of antibodies specific for the liver-type isozyme. An immunoaffinity column, prepared with anti-(hepatoma-enzyme) IgG was utilized for the enzyme purification from other tissues including the membranous form. Analyses of amino acid composition of the purified enzymes revealed that all the liver-type enzymes from hepatoma, liver, kidney and serum had the same composition, whereas the intestinal type consisted of the composition distinctly different from that in the liver type. In addition, there was no significant difference in amino acid composition between the soluble and membranous forms, suggesting a possible involvement in the membranous form of a hydrophobic component other than its polypeptide domain. The present method for selective preparation of the soluble and membranous forms of alkaline phosphatase will be useful for a further investigation on the interaction of the enzyme with membranes.  相似文献   

18.
Whole cells of Pseudomonas aeruginosa possess rhodanese activity. The enzyme can be released by rapidly resuspending the cells in cold Tris--HCl buffer. Approximately 95% of the rhodanese activity is released by cold shock. Release of the enzyme can be inhibited either by preincubating the cells with Mg2+ or by incorporating Mg2+ into the shocking buffer. The effect of Mg2+ can be reversed by washing the cells twice with buffer prior to cold shock. While rhodanese can be released from P. aeruginosa by cold shock, lactic dehydrogenase, a cytoplasmic enzyme, remains within the cell. Diazo-7-amino-1,3-napthalenedisulfonic acid, a compound which does not penetrate the cytoplasmic membrane, completely inactivated rhodanese and alkaline phosphatase, a periplasmic enzyme, whereas lactic dehydrogenase retained its full activity. These data suggest that rhodanese in P. aeruginosa, like alkaline phosphatase, is located distal to the cytoplasmic membrane in the periplasmic space. Electron micrographs also show that portions of the lipopolysaccharide outer membrane are shed from the cell during cold shock, while cells preincubated with Mg2+ did not release segments of their outer membrane.  相似文献   

19.
As assessed by incorporation into liposomes and by adsorption to octyl-Sepharose, the integrity of the membrane anchor for the purified tetrameric forms of alkaline phosphatase from human liver and placenta was intact. Any treatment that resulted in a dimeric enzyme precluded incorporation and adsorption. An intact anchor also allowed incorporation into red cell ghosts. The addition of hydrophobic proteins inhibited incorporation into liposomes to varying degrees. Alkaline phosphatase was 100% releasable from liposomes and red cell ghosts by a phospholipase C specific for phosphatidylinositol. There was no appreciable difference in the rates of release of placental and liver alkaline phosphatases, although both were approximately 250 x slower in liposomes and 100 x slower in red cell ghosts than the enzyme's release from a suspension of cultured osteosarcoma cells. Both enzymes were released by phosphatidylinositol phospholipase C as dimers and would not reincorporate or adsorb to octyl-Sepharose. However, the enzyme incorporated, resolubilized by Triton X-100, and cleansed of the detergent by butanol treatment was tetrameric by gradient gel electrophoresis, was hydrophobic, and could reincorporate into fresh liposomes. A monoclonal antibody to liver alkaline phosphatase inhibited the enzyme's incorporation into liposomes, and abolished its release from liposomes and its conversion to dimers by phosphatidylinositol phospholipase C.  相似文献   

20.
Treatment of homogenates and plasma membrane preparations from HeLa cells with phospholipase A2 (EC 3.1.1.4) caused a 50% increase in activity of membrane-associated alkaline phosphatase. Lysophosphatidylcholine, dispersed in 0.15 M KCl, affected alkaline phosphatase in a similar fashion by releasing the enzyme from particulate fractions into the incubation medium and by elevating its specific activity. Higher concentrations of lysophosphatidylcholine solubilized additional protein from particulate fractions but did not further increase the specific activity of the released alkaline phosphatase. Particulate fractions from HeLa cells were exposed to the effects of liposomes prepared from lysophosphatidylcholine and cholesterol. The ratio of particulate protein/lysophosphatidylcholine (by weight) required for optimal activation of alkaline phosphatase was one. Kinetic studies indicated that phospholipase A2 and lysophosphatidylcholine enhanced the apparent V of the enzyme but did not significantly alter its apparent Km. The increased release of alkaline phosphatase from the particulate matrix by lysophosphatidylcholine was confirmed by disc electrophoresis. The release of the enzyme by either phospholipase A2 or by lysophosphatidylcholine appeared to be followed by the formation of micelles that contained lysophosphatidylcholine. The new complexes had relatively less cholesterol and more lysophosphatidylcholine than the native membranes. The possibility that lysophosphatidylcholine formed a lipoprotein complex with the solubilized alkaline phosphatase was indicated by a break point in the Arrhenius plot which was evident only in the lysophosphatidylcholine-solubilized enzyme but could not be demonstrated in alkaline phosphatase that had been released with 0.15 M KCl alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号