首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is evidence that the stretch-induced residual force enhancement observed in skeletal muscles is associated with 1) cross-bridge dynamics and 2) an increase in passive force. The purpose of this study was to characterize the total and passive force enhancement and to evaluate whether these phenomena may be associated with a slow detachment of cross bridges. Single fibers from frog lumbrical muscles were placed at a length 20% longer than the plateau of the force-length relationship, and active and passive stretches (amplitudes of 5 and 10% of fiber length and at a speed of 40% fiber length/s) were performed. Experiments were conducted in Ringer solution and with the addition of 2, 5, and 10 mM of 2,3-butanedione monoxime (BDM), a cross-bridge inhibitor. The steady-state active and passive isometric forces after stretch of an activated fiber were higher than the corresponding forces measured after isometric contractions or passive stretches. BDM decreased the absolute isometric force and increased the total force enhancement in all conditions investigated. These results suggest that total force enhancement is directly associated with cross-bridge kinetics. Addition of 2 mM BDM did not change the passive force enhancement after 5 and 10% stretches. Addition of 5 and 10 mM did not change (5% stretches) or increased (10% stretches) the passive force enhancement. Increasing stretch amplitudes and increasing concentrations of BDM caused relaxation after stretch to be slower, and because passive force enhancement is increased at the greatest stretch amplitudes and the highest BDM concentrations, it appears that passive force enhancement may be related to slow-detaching cross bridges.  相似文献   

2.
Stretch-induced force enhancement has been observed in a variety of muscle preparations and on structural levels ranging from single fibers to in vivo human muscles. It is a well-accepted property of skeletal muscle. However, the mechanism causing force enhancement has not been elucidated, although the sarcomere-length non-uniformity theory has received wide support. The purpose of this paper was to re-investigate stretch-induced force enhancement in frog single fibers by testing specific hypotheses arising from the sarcomere-length non-uniformity theory. Single fibers dissected from frog tibialis anterior (TA) and lumbricals (n=12 and 22, respectively) were mounted in an experimental chamber with physiological Ringer's solution (pH=7.5) between a force transducer and a servomotor length controller. The tetantic force-length relationship was determined. Isometric reference forces were determined at optimum length (corresponding to the maximal, active, isometric force), and at the initial and final lengths of the stretch experiments. Stretch experiments were performed on the descending limb of the force-length relationship after maximal tetanic force was reached. Stretches of 2.5-10% (TA) and 5-15% lumbricals of fiber length were performed at 0.1-1.5 fiber lengths/s. The stretch-induced, steady-state, active isometric force was always equal or greater than the purely isometric force at the muscle length from which the stretch was initiated. Moreover, for stretches of 5% fiber length or greater, and initiated near the optimum length of the fiber, the stretch-enhanced active force always exceeded the maximal active isometric force at optimum length. Finally, we observed a stretch-induced enhancement of passive force. We conclude from these results that the sarcomere length non-uniformity theory alone cannot explain the observed force enhancement, and that part of the force enhancement is associated with a passive force that is substantially greater after active compared to passive muscle stretch.  相似文献   

3.
The purpose of this study was to evaluate the relationship between force and stiffness after stretch of activated fibers, while simultaneously changing contractility by interfering with the cross-bridge kinetics and muscle activation. Single fibers dissected from lumbrical muscles of frogs were placed at a length 20% longer than the plateau of the force-length relationship, activated, and stretched by 5 and 10% of fiber length (speed: 40% fiber length/s). Experiments were conducted with maximal and submaximal stimulation in Ringer solution and with the addition of 2 and 5 mM of the myosin inhibitor 2,3-butanedione monoxime (BDM) to the solution. The steady-state force after stretch of an activated fiber was higher than the isometric force produced at the corresponding length in all conditions investigated. Lowering the frequency of stimulation decreased the force and stiffness during isometric contractions, but it did not change force enhancement and stiffness enhancement after stretch. Administration of BDM decreased the force and stiffness during isometric contractions, but it increased the force enhancement and stiffness enhancement after stretch. The relationship between force enhancement and stiffness suggests that the increase in force after stretch may be caused by an increase in the proportion of cross bridges attached to actin. Because BDM places cross bridges in a weakly bound, pre-powerstroke state, our results further suggest that force enhancement is partially associated with a recruitment of weakly bound cross bridges into a strongly bound state.  相似文献   

4.
When a stretch is imposed to activated muscles, there is a residual force enhancement that persists after the stretch; the force is higher than that produced during an isometric contraction in the corresponding length. The mechanisms behind the force enhancement remain elusive, and there is disagreement if it represents a sarcomeric property, or if it is associated with length nonuniformities among sarcomeres and half-sarcomeres. The purpose of this study was to investigate the effects of stretch on single sarcomeres and myofibrils with predetermined numbers of sarcomeres (n = 2, 3. . . , 8) isolated from the rabbit psoas muscle. Sarcomeres were attached between two precalibrated microneedles for force measurements, and images of the preparations were projected onto a linear photodiode array for measurements of half-sarcomere length (SL). Fully activated sarcomeres were subjected to a stretch (5-10% of initial SL, at a speed of 0.3 μm·s(-1)·SL(-1)) after which they were maintained isometric for at least 5 s before deactivation. Single sarcomeres showed two patterns: 31 sarcomeres showed a small level of force enhancement after stretch (10.46 ± 0.78%), and 28 sarcomeres did not show force enhancement (-0.54 ± 0.17%). In these preparations, there was not a strong correlation between the force enhancement and half-sarcomere length nonuniformities. When three or more sarcomeres arranged in series were stretched, force enhancement was always observed, and it increased linearly with the degree of half-sarcomere length nonuniformities. The results show that the residual force enhancement has two mechanisms: 1) stretch-induced changes in sarcomeric structure(s); we suggest that titin is responsible for this component, and 2) stretch-induced nonuniformities of half-sarcomere lengths, which significantly increases the level of force enhancement.  相似文献   

5.
The residual force enhancement following muscle stretch might be associated with an increase in the proportion of attached cross-bridges, as supported by stiffness measurements. In this case, it could be caused by an increase in the attachment or a decrease in the detachment rate of cross-bridges, or a combination of the two. The purpose of this study was to investigate if the stretch-induced force enhancement is related to cross-bridge attachment/detachment kinetics. Single muscle fibres dissected from the lumbrical muscle of frog were place at a length approximately 20% longer than the plateau of the force-length relationship; they were maximally activated, and after full isometric force was reached, ramp stretches were imposed with amplitudes of 5 and 10% fibre length, at a speed of 40% fibre length s(-1). Experiments were performed in Ringer's solution, and with the addition of 2, 5 and 10 nM of 2,3-butanedione monoxime (BDM), a drug that places cross-bridges in a pre-power-stroke, state, inhibiting force production. The total force following stretch was higher than the corresponding force measured after isometric contraction at the corresponding length. This residual force enhancement was accompanied by an increase relaxation time. BDM, which decreases force production during isometric contractions, considerably increased the relative levels of force enhancement. BDM also increased relaxation times after stretch, beyond the levels observed during reference contractions in Ringer's solution, and beyond isometric control tests at the corresponding BDM concentrations. Together, these results support the idea that force enhancement is caused, at least in part, by a decrease in cross-bridge detachment rates, as manifested by the increased relaxation times following fibre stretch.  相似文献   

6.
The purpose of this study was to examine the effects of stretching and shortening on the isometric forces at different lengths on the descending limb of the force-length relationship. Cat soleus (N = 10) was stretched and shortened by various amounts on the descending limb of the force-length relationship, and the steady-state forces following these dynamic contractions were compared to the isometric forces at the corresponding muscle lengths. We found a shift of the force-length relationship to greater force values following muscle stretching, and to smaller force values following muscle shortening. Shifts in both directions critically depended on the magnitude of stretching/shortening and the final muscle length. We confirm recent findings that the steady-state isometric force following some stretch conditions clearly exceeded the maximal isometric forces at optimum muscle length, and that force enhancement was associated with an increase in the passive force, i.e., a passive force enhancement. When the passive force enhancement was subtracted from the total force enhancement, forces following stretch were always equal to or smaller than the isometric force at optimum muscle length. Together, these findings led to the conclusions: (a). that force enhancement is composed of an "active and a "passive" component; (b). that the "passive" component of force enhancement allows for forces greater than the maximal isometric forces at the muscle's optimum length; and (c). that force enhancement and force depression are critically affected by muscle length and stretch/shortening amplitude.  相似文献   

7.
Sarcomere overextension has been widely implicated in stretch-induced muscle injury. Yet, sarcomere overextensions are typically inferred based on indirect evidence obtained in muscle and fibre preparations, where individual sarcomeres cannot be observed during dynamic contractions. Therefore, it remains unclear whether sarcomere overextensions are permanent following injury-inducing stretch-shortening cycles, and thus, if they can explain stretch-induced force loss. We tested the hypothesis that overextended sarcomeres can regain filament overlap in isolated myofibrils from rabbit psoas muscles. Maximally activated myofibrils (n=13) were stretched from an average sarcomere length of 2.6±0.04μm by 0.9μm sarcomere(-1) at a speed of 0.1μm sarcomere(-1)s(-1) and immediately returned to the starting lengths at the same speed (sarcomere strain=34.1±2.3%). Myofibrils were then allowed to contract isometrically at the starting lengths (2.6μm) for ~30s before relaxing. Force and individual sarcomere lengths were measured continuously. Out of the 182 sarcomeres, 35 sarcomeres were overextended at the peak of stretch, out of which 26 regained filament overlap in the shortening phase while 9 (~5%) remained overextended. About 35% of the sarcomeres with initial lengths on the descending limb of the force-length relationship and ~2% of the sarcomeres with shorter initial lengths were overextended. These findings provide first ever direct evidence that overextended sarcomeres can regain filament overlap in the shortening phase following stretch, and that the likelihood of overextension is higher for sarcomeres residing initially on the descending limb.  相似文献   

8.
The force-velocity relation of single frog fibers was measured at sarcomere lengths of 2.15, 2.65, and 3.15 microns. Sarcomere length was obtained on-line with a system that measures the distance between two markers attached to the surface of the fiber, approximately 800 microns apart. Maximal shortening velocity, determined by extrapolating the Hill equation, was similar at the three sarcomere lengths: 6.5, 6.0, and 5.7 microns/s at sarcomere lengths of 2.15, 2.65, and 3.15 microns, respectively. For loads not close to zero the shortening velocity decreased with increasing sarcomere length. This was the case when force was expressed as a percentage of the maximal force at optimal fiber length or as a percentage of the sarcomere-isometric force at the respective sarcomere lengths. The force-velocity relation was discontinuous around zero velocity: load clamps above the level that kept sarcomeres isometric resulted in stretch that was much slower than when the load was decreased below isometric by a similar amount. We fitted the force-velocity relation for slow shortening (less than 600 nm/s) and for slow stretch (less than 200 nm/s) with linear regression lines. At a sarcomere length of 2.15 microns the slopes of these lines was 8.6 times higher for shortening than for stretch. At 2.65 and 3.15 microns the values were 21.8 and 14.1, respectively. At a sarcomere length of 2.15 microm, the velocity of stretch abruptly increased at loads that were 160-170% of the sarcomere isometric load, i.e., the muscle yielded. However, at a sarcomere length of 2.65 and 3.15 microm yield was absent at such loads. Even the highest loads tested (260%) resulted in only slow stretch.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Single fibers from the tibialis anterior muscle of Rana temporaria at 0.8-3.8 degrees C were subjected to long tetani lasting up to 8 s. Stretch of the fiber early in the tetanus caused an enhancement of force above the isometric control level which decayed only slowly and stayed higher throughout the contraction. This residual enhancement was uninfluenced by velocity of stretch and occurred only on the descending limb of the length-tension curve. The absolute magnitude of the effect increased with sarcomere length to a maximum at approximately 2.9 micrometers and then declined. The phenomenon was further characterized by its dependence on the amplitude of stretch. The final force level reached after stretch was usually higher than the isometric force level corresponding to the starting length of the stretch. The possibility that the phenomenon was caused by nonuniformity of sarcomere length along the fiber was examined by (a) laser diffraction studies that showed sarcomere stretch at all locations and (b) studies of 9-10 segments of approximately 0.6-0.7 mm along the entire fiber, which all elongated during stretch. Length-clamped segments showed residual force enhancement after stretch when compared with the tetanus produced by the same segment held at the short length as well as at the long length. It is concluded that residual force enhancement after stretch is a property shown by all individual segments along the fiber.  相似文献   

10.
29 single frog skeletal muscle fibers were stretched during fused tetanic contractions. The force increase during stretch exhibited a breakpoint at a critical length change (average: 16.6 nm per one-half sarcomere) that was independent of velocity of stretch and of sarcomere length between 1.8 and 2.8 microns. After stretch there was an early decaying force component with a force-extension curve similar to that during stretch, which disappeared over approximately 2 s. This component was removed by a small, quick release, leaving a longer- lasting component. The critical amplitude of release required to produce this result was found by clamping the fiber to a load at which there was zero velocity of shortening. This amplitude increased with time up to the angle in the force record during stretch, was constant for the remainder of the stretch, and decreased with time after the end of stretch; it was consistently less than the critical amplitude of stretch required to reach the breakpoint of force enhancement during stretch but was also independent of sarcomere length. The force drop accompanying the critical release showed a small increase up to an optimum magnitude at 2.4--2.7 microns sarcomere length, with a decrease at longer lengths.  相似文献   

11.
Takarada, Yudai, Hiroyuki Iwamoto, Haruo Sugi, YuichiHirano, and Naokata Ishii. Stretch-induced enhancement ofmechanical work production in frog single fibers and human muscle.J. Appl. Physiol. 83(5):1741-1748, 1997.The relations between the velocity of prestretchand the mechanical energy liberated during the subsequent isovelocityrelease were studied in contractions of frog single fibers and humanmuscles. During isometric contractions of frog single fibers, a rampstretch of varied velocity (amplitude, 0.02 fiber length; velocity,0.08-1.0 fiber length/s) followed by a release (amplitude, 0.02 fiber length; velocity, 1.0 fiber length/s) was given, and the amountof work liberated during the release was measured. For human muscles,elbow flexions were performed with a prestretch of variedvelocity (range, 40°; velocity, 30-180°/s) followed by anisokinetic shortening (velocity, 90°/s). In both frog single fibersand human muscles, the work production increased with both the velocityof stretch and the peak of force attained before the release up to acertain level; thereafter it declined with the further increases ofthese variables. In human muscles, the enhancement of work productionwas not associated with a significant increase in integratedelectromyogram. This suggests that changes in intrinsic mechanicalproperties of muscle fibers play an important role in thestretch-induced enhancement of work production.

  相似文献   

12.
In single muscle cell preparations fibers are often suspended between connectors, extending perpendicularly from a force transducer, and the lever arm of a torque motor. The fiber does not move along a horizontal plane when shortened or lengthened by lever arm rotation. An error from the true length (TL) is introduced if the expected length (EL) is calibrated along this horizontal optical plane. Lever arm length (LAL), initial fiber length (FL(i)), connector length (CL), and the magnitude of EL all contribute to this error. A mathematical model was used to determine the TL during shortening (0.96-0.80 FL(i)) and lengthening (1.10-1.50 FL(i)) at a constant LAL of 13.6mm. CL had the greatest impact on error. For FL(i) = 2mm at the longest CL modeled (15 mm), an expected shortening of 0.20 FL(i) produced a true shortening of ~ 0.17 FL(i), and an expected stretch to 1.50 FL(i) resulted in a true stretch to almost 1.60 FL(i). Under these conditions, the true sarcomere length would be 4% and 6% longer than expected during shortening and lengthening, respectively. Because of their non-linear nature, length errors at long CL's may result in an over-estimation of unloaded shortening velocity during slack tests and a left-ward shift in the passive tension-fiber length relationship at long fiber lengths. Measurement errors decreased dramatically with shorter CL's, becoming negligible (<1%) at CL = 3mm. We recommend that investigators keep CL as short as possible. Alternatively, we provide a method for adjusting the magnitude of the EL to yield a desired TL.  相似文献   

13.
The influence of stretch and radial compression on the width of mechanically skinned fibers from the semitendinosus muscle of the frog (R. pipiens) was examined in relaxing solutions with high-power light microscopy. Fibers were skinned under mineral oil. We find that, after correcting for water uptake in the oil, fiber width increased by an average of 28% upon transfer from oil to relaxing medium, with some tendency for greater swelling at longer sarcomere lengths. Subsequently, fibers were compressed by addition of the long-chain polymer polyvinylpyrrolidone (PVP-40, number average molecular weight 40,000) to relaxing solutions. Sarcomere length does not appear to be affected by addition of PVP. At any PVP concentration, the inverse square of the fiber width increased smoothly and linearly with increasing stretch for sarcomere lengths between 2.10 and 4.60 micrometer. At any fixed sarcomere length, fiber width decreased linearly with the logarithm of the osmotic compressive pressure exerted by PVP (2-10% concentration). From this logarithmic relation we estimate that the swelling pressure of the intact fiber is 3.40 x 10(3) N/m2, between that of a 2 and a 3% PVP solution. The pressure giving rise to fiber swelling is not due to dilation of the sarcoplasmic reticulum (SR), since the experimental results above were not significantly different after treatment with 0.5% BRIJ-58, a nonionic detergent that disrupts the SR. Swelling may be due simply to elastic structures within the fiber that are constrained in the intact cell. Values of bulk moduli of fibers, calculated from the compression experiments, and preliminary measurements of Young's modulus from stretch experiments, are quantitatively consistent with the idea that skinned fibers behave as nonisotropic elastic bodies.  相似文献   

14.
H Iwamoto 《Biophysical journal》1995,69(3):1022-1035
The dynamic characteristics of the low force myosin cross-bridges were determined in fully calcium-activated skinned rabbit psoas muscle fibers shortening under constant loads (0.04-0.7 x full isometric tension Po). The shortening was interrupted at various times by a ramp stretch (duration, 10 ms; amplitude, up to 1.8% fiber length) and the resulting tension response was recorded. Except for the earlier period of velocity transients, the tension response showed nonlinear dependence on stretch amplitude; i.e., the magnitude of the tension response started to rise disproportionately as the stretch exceeded a critical amplitude, as in the presence of inorganic phosphate (Pi). This result, as well as the result of stiffness measurement, suggests that the low force cross-bridges similar to those observed in the presence of Pi (presumably A.M.ADP.Pi) are significantly populated during shortening. The critical amplitude of the shortening fibers was greater than that of isometrically contracting fibers, suggesting that the low force cross-bridges are more negatively strained during shortening. As the load was reduced from 0.3 to 0.04 P0, the shortening velocity increased more than twofold, but the amount of the negative strain stayed remarkably constant (approximately 3 nm). This This insensitiveness of the negative strain to velocity is best explained if the dissociation of the low force cross-bridges is accelerated approximately in proportion to velocity. Along with previous reports, the results suggest that the actomyosin ATPase cycle in muscle fibers has at least two key reaction steps in which rate constants are sensitively regulated by shortening velocity and that one of them is the dissociation of the low force A.M.ADP.Pi cross-bridges. This step may virtually limit the rate of actomyosin ATPase turnover and help increase efficiency in fibers shortening at high velocities.  相似文献   

15.
The authors hypothesized that distraction at a rate of 3 mm/day, compared with mandibular distraction at a rate of 1 mm/day, would produce a maladaptive response in adjacent muscles of mastication. The authors further hypothesized that the maladaptive response would manifest at the single fiber level by means of increased sarcomeric heterogeneity, decreased maximum force output, and increased susceptibility to stretch-induced injury. In an ovine model, distraction osteogenesis of the right hemimandible was performed at either 1 mm/day for 21 days (n = 2) or 3 mm/day for 7 days (n = 2) to achieve a total distraction distance of 21 mm. The left hemimandibles served as controls. After a consolidation period of 2 days, the anterior digastric muscles were harvested; in six randomly selected single fibers from each muscle, maximum calcium-activated force (Po) was measured at optimal sarcomere length. The amount of damage to the sarcomeres in each fiber was assessed microscopically. To test susceptibility to contraction-induced injury, each fiber was given an activated stretch of 20 percent. Compared with control fibers and fibers distracted at 1 mm/day, maximum tetanic force (Po) was significantly lower in fibers distracted at 3 mm/day. Compared with control fibers, specific Po (Po/cross-sectional area) was lower in fibers distracted at 3 mm/day. The number of sarcomeres appearing damaged in fibers distracted at 3 mm/day was significantly higher than in control fibers or in fibers distracted at 1 mm/day. A greater deficit in Po was observed after a single activated stretch in fibers distracted at 3 mm/day than in control fibers or in fibers distracted at 1 mm/day. The authors conclude that distraction of the anterior digastric muscle in sheep at 3 mm/day produces a maladaptive response in the muscle fibers but a rate of 1 mm/day is tolerated by the muscle fibers. These data are consistent with the hypothesis that distraction of skeletal muscle at high rates results in increased heterogeneity of sarcomere lengths and that this increase in heterogeneity is the most likely potential mechanism resulting in whole muscle force deficits and in increased susceptibility to stretch-induced injury in distracted muscles.  相似文献   

16.
Functional performance of lower limb muscles and contractile properties of chemically skinned single muscle fibers were evaluated before and after 8 wk of maximal effort stretch-shortening cycle (SSC) exercise training. Muscle biopsies were obtained from the vastus lateralis of eight men before and after the training period. Fibers were evaluated regarding their mechanical properties and subsequently classified according to their myosin heavy chain content (SDS-PAGE). After training, maximal leg extensor muscle force and vertical jump performance were improved 12% (P<0.01) and 13% (P<0.001), respectively. Single-fiber cross-sectional area increased 23% in type I (P<0.01), 22% in type IIa (P<0.001), and 30% in type IIa/IIx fibers (P<0.001). Peak force increased 19% in type I (P<0.01), 15% in type IIa (P<0.001), and 16% in type IIa/IIx fibers (P<0.001). When peak force was normalized with cross-sectional area, no changes were found for any fiber type. Maximal shortening velocity was increased 18, 29, and 22% in type I, IIa, and hybrid IIa/IIx fibers, respectively (P<0.001). Peak power was enhanced in all fiber types, and normalized peak power improved 9% in type IIa fibers (P<0.05). Fiber tension on passive stretch increased in IIa/IIx fibers only (P<0.05). In conclusion, short-term SSC exercise training enhanced single-fiber contraction performance via force and contraction velocity in type I, IIa, and IIa/IIx fibers. These results suggest that SSC exercises are an effective training approach to improve fiber force, contraction velocity, and therefore power.  相似文献   

17.
It is well accepted that the steady-state isometric force following active stretching of a muscle is greater than the steady-state isometric force obtained in a purely isometric contraction at the same length. This property of skeletal muscle has been called residual force enhancement (FE). Despite decades of research the mechanisms responsible for FE have remained largely unknown. Based on previous studies showing increases in FE in fibers in which cross-bridges were biased towards weakly bound states, we hypothesized that FE might be associated with a stretch-induced facilitation of transitioning from weakly to strongly bound cross-bridges. In order to test this hypothesis, single fibers (n=11) from the lumbrical muscles of frog (Rana pipiens) were used to determine FE at temperatures of 7 and 20 degrees C. At the cold temperature, cross-bridges are biased towards weakly bound states, therefore we expected FE to be greater at 7 degrees C compared to 20 degrees C. The average FE was significantly greater at 7 degrees C (11.5+/-1.1%) than at 20 degrees C (7.8+/-1.0%), as expected. The enhancement of force/stiffness was also significantly greater at the low (13.3+/-1.4%) compared to the high temperature (5.6+/-1.7%), indicating an increased conversion from weakly to strongly bound cross-bridges at the low temperature. We conclude from the results of this study that muscle preparations that are biased towards weakly bound cross-bridge states show increased FE for given stretch conditions, thereby supporting the idea that FE might be caused, in part, by a stretch-induced facilitation of the conversion of weakly to strongly bound cross-bridges.  相似文献   

18.
We tested the null hypothesis that theseverity of injury to single muscle fibers following a singlepliometric (lengthening) contraction is not dependent on the velocityof stretch. Each single permeabilized fiber obtained from extensordigitorum longus muscles of rats was maximally activated and thenexposed to a single stretch of either 5, 10, or 20% strain [%of fiber length (Lf)] ata velocity of 0.5, 1.0, or 2.0 Lf /s. Theforce deficit, the difference between maximum tetanic isometric force(Po) before and after the stretch expressed as apercentage of the control value forPo before the stretch, provided anestimate of the magnitude of muscle injury. Despite a fourfold rangefrom the lowest to the highest velocities, force deficits were notdifferent among stretches of the same strain. At stretches of 20%strain, even an eightfold range of velocities produced no difference inthe force deficit, although 40% of the fibers were torn apart at a velocity of 4 Lf /s. We conclude that, withinthe range of velocities tolerated by single permeabilized fibers, theseverity of contraction-induced injury is not related to the velocityof stretch.

  相似文献   

19.
Muscle shortening and stretch are associated with force depression and force enhancement, respectively. Previously, we have investigated the effect of combined dynamic contractions (i.e. a single shortening-stretch and stretch-shortening cycle) on force production (Herzog and Leonard, 2000). In order to investigate the relationship between force depression and force enhancement systematically, we studied the effects of a single as well as multiple stretch-shortening and shortening-stretch cycles on the ascending limb of the force-length relationship. Furthermore, by systematically varying the speed and magnitude of stretch preceding shortening and the speed and magnitude of shortening preceding stretch, we investigated the influence of these varying contractile conditions on force depression and force enhancement, respectively. Test contractions were performed on cat soleus (n=6) by electrical stimulation using four conceptually different protocols containing a single or repeated stretch-shortening and shortening-stretch cycles. The results of this study showed that: (1) force depression was not influenced by stretch preceding shortening independent of the speed and amount of stretch; (2) force enhancement was influenced in a dose-dependent manner by the amount of shortening preceding stretch but was not affected by the speed of shortening; (3) repeated stretch-shortening (shortening-stretch) cycles showed cumulative effects; (4) the number of shortening steps over a given distance did not influence the amount of force depression. The findings of this study support the idea that the mechanism of force depression associated with muscle shortening is different from that of force enhancement associated with muscle stretch. Furthermore, they support and extend our previous findings that stretch-shortening and shortening-stretch cycles are not commutative.  相似文献   

20.
Slow stretch ramps (velocity: 0.17 fiber lengths s-1) were imposed during fused tetanic contractions of intact muscle fibers of the frog (1.4-3.0 degrees C; sarcomere length: 2.12-2.21 microns). Instantaneous force-extension relations were derived both under isometric conditions and during slow stretch by applying fast (0.2 ms) length steps to the fiber. An increase in tonicity (98 mM sucrose added to control Ringer solution) led to significant reduction of the maximum isometric tension but at the same time to marked increase in the force enhancement during slow stretch. The maximum force level reached during the stretch was affected very little. Experiments on relaxed fibers showed that recruitment of passive parallel elastic components were of no relevance for these effects. Hypertonicity slightly increased the instantaneous stiffness of the active fiber both in the presence and in the absence of stretch. The total extension of the undamped fiber elasticity was considerably reduced by increased tonicity under isometric conditions but was only slightly affected during slow stretch. The change in length of the undamped cross-bride elasticity upon stretch was thus greater in the hypertonic than in the normotonic solution suggesting a greater increase in force per cross-bridge in the hypertonic medium. The contractile effects are consistent with the assumptions that hypertonicity reduces the capability of the individual cross-bridge to produce active force and, furthermore, that hypertonicity has only minor effects on the number of attached cross-bridges and the maximum load-bearing capacity of the individual bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号