首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Facilitated diffusion of a DNA binding protein on chromatin.   总被引:4,自引:1,他引:3       下载免费PDF全文
R Hannon  E G Richards    H J Gould 《The EMBO journal》1986,5(12):3313-3319
Facilitated diffusion accounts for the rapid rate of association of many bacterial DNA binding proteins with specific DNA sequences in vitro. In this mechanism the proteins bind at random to non-specific sites on the DAN and diffuse (by 'sliding' or 'hopping') along the DNA chain until they arrive at their specific functional sites. We have investigated whether such a mechanism can operate in chromatin by using a bacterial DNA binding protein, Escherichia coli RNA polymerase, that depends on linear diffusion to locate initiation sites on DNA. We have measured the competition between chromatin and its free DNA for the formation of initiation complexes. Only the short linker segments exposed by the removal of histone H1 are available for interaction with the polymerase, but the sparsely distributed promoter sites on the linker DNA of such a polynucleosome chain are located at the same rate as those on DNA. We conclude that the polymerase is free to migrate between the separate linker DNA segments of a polynucleosome chain to reach a promoter site. This chain thus permits the 'hopping' of proteins between neighboring linker segments in their search for a target site on the accessible DNA.  相似文献   

4.
1. The 5'-terminal sequence of the RNA transcribed from bacteriophage fd replicative form DNA under the control of promotor region I has been determined to be ppp(Gp)nUpApApApGpApCpCpUpGpApUpUp. . . 2. This sequence is complementary to the 5'-terminal sequence of the minus strand of the corresponding RNA polymerase binding site I, the starting point for RNA synthesis lying approximately in the middle of the binding site. 3. This initial sequence is also transcribed faithfully from isolated complexes of RNA polymerase and binding site I, obtained by DNase digestion of complexes between RNA polymerase and fd replicative form DNA. These highly stable complexes can not be reconstituted from binding site and enzyme. 4. It is concluded that RNA polymerase binding site and initiation site are identical parts of a promoter region, and that no "drift" between these sites is required as a step in RNA chain initiation. An additional non-transcribed outside region is implicated as essential for full promoter function.  相似文献   

5.
6.
7.
Conformation behavior of phase T2 DNA in the process of its interaction with it E. coli RNA polymerase was studied using spin labeling technique. T2 DNA was modified by the spin-labeled imidazole at OH-groups of glucosylated cytidine residues. It was shown that the binding of RNA polymerase under the conditions favoring the formation of open promoter complexes induces specific conformational changes in the spin-labeled DNA. The observed conformational changes encompass not only the promoter regions of DNA which are involved in direct contacts with RNA polymerase molecules but extend over remote DNA sites (long-range effect). In relation to this effect, current theoretical models of DNA dynamics are discussed.  相似文献   

8.
The interaction of RNA polymerase II with non-promoter DNA sites.   总被引:1,自引:0,他引:1       下载免费PDF全文
Various complexes formed between purified RNA polymerase II and simian virus 40 DNA have been characterized with respect to rates of formation, rates of dissociation, and initial velocity of RNA synthesis. Two different types of complexes can form on intact DNA templates. One of these is formed rapidly, but is quite labile; the other forms more slowly, but is moderately stable once formed. The introduction of a single strand break into DNA leads to rapid and stable complex formation, and thus is expected to create the favored binding site. The observed properties of these complexes provide a general framework for describing the interactions of RNA polymerase II at non-promoter DNA sites. This framework appears to be similar to that established for Escherichia coli RNA polymerase interactions, suggesting that the fundamental mode of non-promoter DNA binding is similar for the bacterial, plant, and mammalian enzymes.  相似文献   

9.
10.
11.
We have studied the circular dichroism and ultraviolet difference spectra of T7 bacteriophage DNA and various synthetic polynucleotides upon addition of Escherichia coli RNA polymerase. When RNA polymerase binds nonspecifically to T7 DNA, the CD spectrum shows a decrease in the maximum at 272 but no detectable changes in other regions of the spectrum. This CD change can be compared with those associated with known conformational changes in DNA. Nonspecific binding to RNA polymerase leads to an increase in the winding angle, theta, in T7 DNA. The CD and UV difference spectra for poly[d(A-T)] at 4 degrees C show similar effects. At 25 degrees C, binding of RNA polymerase to poly[d(A-T)] leads to hyperchromicity at 263 nm and to significant changes in CD. These effects are consistent with an opening of the double helix, i.e. melting of a short region of the DNA. The hyperchromicity observed at 263 nm for poly[d(A-T)] is used to determine the number of base pairs disrupted in the binding of RNA polymerase holoenzyme. The melting effect involves about 10 base pairs/RNA polymerase molecule. Changes in the CD of poly(dT) and poly(dA) on binding to RNA polymerase suggest an unstacking of the bases with a change in the backbone conformation. This is further confirmed by the UV difference spectra. We also show direct evidence for differences in the template binding site between holo- and core enzyme, presumably induced by the sigma subunit. By titration of the enzyme with poly(dT) the physical site size of RNA polymerase on single-stranded DNA is approximately equal to 30 bases for both holo- and core enzyme. Titration of poly[d(A-T)] with polymerase places the figure at approximately equal to 28 base pairs for double-stranded DNA.  相似文献   

12.
13.
14.
In this paper we demonstrate that neutron small angle scattering is a suitable method to study the spatial arrangement of large specific protein-DNA complexes. We studied the complex of DNA-dependent RNA polymerase of Escherichia coli and a 130 base-pair DNA fragment containing the strong promoter A1 of bacteriophage T7. Contrast variation of the complex with deuterium allowed us to "visualize" either RNA polymerase, or DNA, or both components in situ. From the corresponding scattering curves information was derived about: (1) Conformational changes of RNA polymerase and DNA by complex formation: comparison of the scattering profiles of the isolated and complexed components showed that by specific complex formation the cross-section of RNA polymerase decreases, while the DNA fragment does not undergo a gross conformational change. (2) The spatial arrangement of RNA polymerase and DNA in the specific complex from the cross-sectional radii of gyration of the complex the normal distance dn between the centre of gravity of the RNA polymerase and the axis of the DNA fragment was derived as 5.0 (+/- 0.3) nm. On the basis of these and footprinting data a low resolution model of the RNA polymerase-promoter complex is proposed. The main feature of this model is the positioning of RNA polymerase to only one side of the DNA.  相似文献   

15.
16.
17.
This paper presents methods developed in order to analyze experimental results concerning the binding of Escherichia coli DNA-dependent RNA polymerase to DNA at high and at low DNA concentrations, using the filter retention assay. The basis hypotheses, under which the mathematical expressions for describing the kinetics of binding are derived, are as follows. (a) At low DNA concentration: equivalence and independence of the specific binding sites; first-order dependence of the binding reaction on both DNA and protein concentration. (b) At high DNA concentration: equivalence and independence of the non-specific binding sites; no direct transfer or one-dimensional sliding of the protein along the DNA. Comparison between theoretical predictions and experimental results at high DNA concentration will allow one to determine the relative value of the rates of binding of RNA polymerase to different promoters (between 1 and 2 in T5 DNA). Binding experiments performed at low DNA concentration are reported in this paper: these results and the analysis which is reported allow one to determine the value of the rate constant of formation of non-filterable complexes for the system fd DNA (replicative form) . RNA-polymerase (kappa a = 3.3 X 10(8) M-1 s-1 in 0.1 M NaCl, 0.01 M MgCl2).  相似文献   

18.
Mutational Analysis of the mRNA Operator for T4 DNA Polymerase   总被引:2,自引:0,他引:2       下载免费PDF全文
M. D. Andrake  J. D. Karam 《Genetics》1991,128(2):203-213
Biosynthesis of bacteriophage T4 DNA polymerase is autogenously regulated at the translational level. The enzyme, product of gene 43, represses its own translation by binding to its mRNA 5' to the initiator AUG at a 36-40 nucleotide segment that includes the Shine-Dalgarno sequence and a putative RNA hairpin structure consisting of a 5-base-pair stem and an 8-base loop. We constructed mutations that either disrupted the stem or altered specific loop residues of the hairpin and found that many of these mutations, including single-base changes in the loop sequence, diminished binding of purified T4 DNA polymerase to its RNA in vitro (as measured by a gel retardation assay) and derepressed synthesis of the enzyme in vivo (as measured in T4 infections and by recombinant-plasmid-mediated expression). In vitro effects, however, were not always congruent with in vivo effects. For example, stem pairing with a sequence other than wild-type resulted in normal protein binding in vitro but derepression of protein synthesis in vivo. Similarly, a C----A change in the loop had a small effect in vitro and a strong effect in vivo. In contrast, an A----U change near the base of the hairpin that was predicted to increase the length of the base-paired stem had small effects both in vitro and in vivo. The results suggest that interaction of T4 DNA polymerase with its structured RNA operator depends on the spatial arrangement of specific nucleotide residues and is subject to modulation in vivo.  相似文献   

19.
The binding sites of calf thymus RNA polymerase (B) II, wheat germ RNA polymerase B and of the Escherichia coli RNA polymerase were mapped on the simian virus 40 genome by observation of enzyme-linear DNA complexes by electron microscopy. Three to four major sites and several minor sites are observed for each enzyme; common binding sites for the three enzymes are found in positions 0.17, 0.53 and 0.90 of the viral physical map. Initiation complexes with these enzymes can be stabilized with specific ribodinucleotides and a single ribonucleoside triphosphate. Whereas ApA and ATP greatly enhances the binding of the E. coli enzyme at position 0.17, they stabilize the binding of the eukaryotic enzyme at many sites, some of them located in close proximity of the origin of replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号