首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Expression of the gene encoding the cell cycle regulator cyclin D1 is strongly repressed in adenovirus type 5 E1 (Ad5E1)-transformed cells. Since cyclin D1 is a regulator of cell proliferation, modulation of its abundance may affect cell cycle control. Therefore, we studied the importance of cyclin D1 repression for cell transformation by Ad5E1. We found that forced expression of cyclin D1 does not affect the transforming potential of Ad5E1. Similarly, cyclin D1 overexpression did not affect the efficiency of colony formation, the proliferation rate, or the cell cycle distribution of Ad5E1-transformed cell lines, whereas the colony formation of untransformed cell lines was strongly inhibited. Thus, repression of cyclin D1 expression is not required for initiation or maintenance of cell transformation by Ad5E1. In addition, we show that the growth-suppressive effect of cyclin D1 correlates with cyclin D1 binding to cdk4 rather than to proliferating cell nuclear antigen PCNA.  相似文献   

3.
4.
BACKGROUND: D cyclins are essential for the progression of cells through the G1 phase of the cell cycle. There are three distinct D cyclins. Cyclin D1 has been shown to be expressed by many different types of cells but not by lymphocytes. Cyclins D2 and D3 have been found in lymphocytes. METHODS: We used high-resolution enzymatic amplification staining technology in conjunction with flow cytometry and confocal microscopy and with immunoblotting to reassess the expression of the D cyclins in human lymphocytes. RESULTS: Using high-resolution technology for flow cytometry, we found all three D cyclins in quiescent human peripheral blood lymphocytes. Cyclin D1 was expressed in quiescent and activated cells at levels commensurate with those of actively proliferating tumor cell lines. Cyclin D1 was functional inasmuch as it was complexed with CDK4. In the quiescent cells, cyclin D1 was expressed in the cytoplasm but, after activation, was found in the nucleus. CONCLUSIONS: These findings demonstrate that lymphocytes express cyclin D1 and necessitate a reappraisal of the hypothesis that the D cyclins subsume redundant activities with tissue-specific expression.  相似文献   

5.
6.
Unscheduled expression of cyclins D1 and D3 in human tumour cell lines   总被引:2,自引:0,他引:2  
D-type cyclins are involved in regulation of cell traverse through G1 primarily by activating the cyclin-dependent kinase 4 (CDK4) and targeting it to the retinoblastoma tumour suppressor protein. There is a vast body of evidence that defective expression of D-type cyclins is associated with tumour development and/or progression. Immunocytochemical detection of D cyclins combined with multiparameter flow cytometry makes it possible to measure the expression of these proteins in individual cells in relation to their cell cycle position without the need for cell synchronization. This approach was used in the present study to compare the cell cycle phase specific expression of cyclins D3 and D1 in human normal proliferating lymphocytes and fibroblasts, respectively, with nine tumour cell lines of different lineage. During exponential, unperturbed growth, expression of cyclin D1 in fibroblasts from donors of different age, or cyclin D3 in lymphocytes, was limited to mid-G1 cells: Less than 7% of the cells entering S phase or progressing through S and G2 were cyclin D positive. In contrast, expression of either cyclin D1 or cyclin D3 in tumour cell lines of different lineage was not limited to G1 phase. Namely, over 80% of the cells in S and G2+M were cyclin D positive in eight of the nine cell lines studied. The data indicate that while expression of cyclin D1 or D3 in normal cells is discontinuous, occurring transiently in G1, these proteins are expressed in some tumour lines persistently throughout the cell cycle. This suggests that the partner kinase CDK4 is perpetually active throughout the cell cycle in these tumour lines.  相似文献   

7.
8.
A putative G1 cyclin gene, Antma;CycD1;1 (CycD1), from Antirrhinum majus is known to be expressed throughout the cell cycle in the meristem and other actively proliferating cells. To test its role in cell cycle progression, we examined the effect of CycD1 expression in the tobacco (Nicotiana tabacum) cell suspension culture BY-2. Green fluorescent protein:CycD1 is located in the nucleus throughout interphase. Using epitope-tagged CycD1, we show that it interacts in vivo with CDKA, a cyclin dependent protein kinase that acts at both the G1/S and the G2/M boundaries. We examined the effect of induced expression at different stages of the cell cycle. Expression in G0 cells accelerated entry into both S-phase and mitosis, whereas expression during S-phase accelerated entry into mitosis. Consistent with acceleration of both transitions, the CycD1-associated cyclin dependent kinase can phosphorylate both histone H1 and Rb proteins. The expression of cyclinD1 led to the early activation of total CDK activity, consistent with accelerated cell cycle progression. Continuous expression of CycD1 led to moderate increases in growth rate. Therefore, in contrast with animal D cyclins, CycD1 can promote both G0/G1/S and S/G2/M progression. This indicates that D cyclin function may have diverged between plants and animals.  相似文献   

9.
D-type Gl cyclins are the primary cell cycle regulators of G1/S transition in eukaryotic cells, and are differentially expressed in a variety of cell lines in vitro. Little is known, however, about the expression patterns of D-type G1 cyclins in normal mouse in vivo. Thus, in the present study, tissue-specific expressions of cyclin D1 and D3 genes were examined in several tissues derived from adult male mice, and stage-specific expression of cyclin genes was studied in brain, liver, and kidney of developing mice from embryonic day 13 to postnatal day 11. Cell cycle-dependent expression of cyclins was also examined in regenerating livers following partial hepatectomy. Our results indicate that (l) cyclins Dl and D3 are expressed in a tissue-specific manner, with cyclin Dl being highly expressed in kidney and D3 in thymus; (2) cyclin D3 mRNA is abundantly expressed in young proliferating tissues and is gradually reduced during development, whereas cyclin Dl mRNA fluctuates during development; and (3) compensatory regeneration of liver induces cyclin Dl gene expression 12 hr after partial hepatectomy, and cyclin D3 gene expression from 36 to 42 hr (at the time of G1/S transition). In conclusion, this study indicates that cyclin D1 and D3 genes are differentially expressed in vivo in a tissue-specific, developmental stage-dependent, and cell cycle-dependent manner. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Using immunohistochemistry, the expression of the D-type cyclin proteins was studied in the developing and adult mouse testis. Both during testicular development and in adult testis, cyclin D(1) is expressed only in proliferating gonocytes and spermatogonia, indicating a role for cyclin D(1) in spermatogonial proliferation, in particular during the G(1)/S phase transition. Cyclin D(2) is first expressed at the start of spermatogenesis when gonocytes produce A(1) spermatogonia. In the adult testis, cyclin D(2) is expressed in spermatogonia around stage VIII of the seminiferous epithelium when A(al) spermatogonia differentiate into A(1) spermatogonia and also in spermatocytes and spermatids. To further elucidate the role of cyclin D(2) during spermatogenesis, cyclin D(2) expression was studied in vitamin A-deficient testis. Cyclin D(2) was not expressed in the undifferentiated A spermatogonia in vitamin A-deficient testis but was strongly induced in these cells after the induction of differentiation of most of these cells into A(1) spermatogonia by administration of retinoic acid. Overall, cyclin D(2) seems to play a role at the crucial differentiation step of undifferentiated spermatogonia into A(1) spermatogonia. Cyclin D(3) is expressed in both proliferating and quiescent gonocytes during testis development. Cyclin D(3) expression was found in terminally differentiated Sertoli cells, in Leydig cells, and in spermatogonia in adult testis. Hence, although cyclin D(3) may control G(1)/S transition in spermatogonia, it probably has a different role in Sertoli and Leydig cells. In conclusion, the three D-type cyclins are differentially expressed during spermatogenesis. In spermatogonia, cyclins D(1) and D(3) seem to be involved in cell cycle regulation, whereas cyclin D(2) likely has a role in spermatogonial differentiation.  相似文献   

11.
12.
13.
14.
15.
16.
17.
In the vertebrate embryo, spinal cord elongation requires FGF signaling that promotes the continuous development of the posterior nervous system by maintaining a stem zone of proliferating neural progenitors. Those escaping the caudal neural stem zone, which is expressed to Shh signal, initiate ventral patterning in the neural groove before starting neuronal differentiation in the neural tube. Here we investigated the integration of D-type cyclins, known to govern cell cycle progression under the control of extracellular signals, in the program of spinal cord maturation. In chicken embryo, we find that cyclin D2 is preferentially expressed in the posterior neural plate, whereas cyclin D1 appears in the neural groove. We demonstrated by loss- and gain-of-function experiments that FGF signaling maintains cyclin D2 in the immature caudal neural epithelium, while Shh activates cyclin D1 in the neural groove. Moreover, forced maintenance of cyclin D1 or D2 in the neural tube favors proliferation at the expense of neuronal differentiation. These results contribute to our understanding of how the cell cycle control can be linked to the patterning programs to influence the balance between proliferation and neuronal differentiation in discrete progenitors domains.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号