首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major function of phytochromes in light-grown plants involves the perception of changes in the relative amounts of red and far-red light (R:FR ratio) and the initiation of the shade-avoidance response. In Arabidopsis thaliana, this response is typified by increased elongation growth of petioles and accelerated flowering and can be fully induced by end-of-day far-red light (EOD FR) treatments. Phytochrome B-deficient (phyB) mutants, which have a constitutive elongated-petiole and early-flowering phenotype, do not display a petiole elongation growth response to EOD FR, but they do respond to EOD FR by earlier flowering. Seedlings deficient in both phytochrome A and phytochrome B (phyA phyB), have a greatly reduced stature compared with wild-type or either monogenic mutant. The phyA phyB double null mutants also respond to EOD FR treatments by flowering early, suggesting the operation of novel phytochromes. Contrary to the behaviour of wild-type or monogenic phyA or phyB seedlings, petiole elongation in phyA phyB seedlings is reduced in response to EOD FR treatments. This reduction in petiole elongation is accompanied by the appearance of elongated internodes such that under these conditions the plants no longer display a rosette habit.  相似文献   

2.
P F Devlin  S R Patel    G C Whitelam 《The Plant cell》1998,10(9):1479-1487
From a screen of M2 seedlings derived from gamma-mutagenesis of seeds doubly null for phytochromes phyA and phyB, we isolated a mutant lacking phyE. The PHYE gene of the selected mutant, phyE-1, was found to contain a 1-bp deletion at a position equivalent to codon 726, which is predicted to result in a premature stop at codon 739. Immunoblot analysis showed that the phyE protein was undetectable in the phyE-1 mutant. In the phyA- and phyB-deficient background, phyE deficiency led to early flowering, elongation of internodes between adjacent rosette leaves, and reduced petiole elongation. This is a phenocopy of the response of phyA phyB seedlings to end-of-day far-red light treatments. Furthermore, a phyE deficiency attenuated the responses of phyA phyB seedlings to end-of-day far-red light treatments. Monogenic phyE mutants were indistinguishable from wild-type seedlings. However, phyB phyE double mutants flowered earlier and had longer petioles than did phyB mutants. The elongation and flowering responses conferred by phyE deficiency are typical of shade avoidance responses to the low red/far-red ratio. We conclude that in conjunction with phyB and to a lesser extent with phyD, phyE functions in the regulation of the shade avoidance syndrome.  相似文献   

3.
Shade avoidance in higher plants is regulated by the action of multiple phytochrome (phy) species that detect changes in the red/far-red ratio (R/FR) of incident light and initiate a redirection of growth and an acceleration of flowering. The phyB mutant of Arabidopsis is constitutively elongated and early flowering and displays attenuated responses to both reduced R/FR and end-of-day far-red light, conditions that induce strong shade-avoidance reactions in wild-type plants. This indicates that phyB plays an important role in the control of shade avoidance. In Arabidopsis phyB and phyD are the products of a recently duplicated gene and share approximately 80% identity. We investigated the role played by phyD in shade avoidance by analyzing the responses of phyD-deficient mutants. Compared with the monogenic phyB mutant, the phyB-phyD double mutant flowers early and has a smaller leaf area, phenotypes that are characteristic of shade avoidance. Furthermore, compared with the monogenic phyB mutant, the phyB-phyD double mutant shows a more attenuated response to a reduced R/FR for these responses. Compared with the phyA-phyB double mutant, the phyA-phyB-phyD triple mutant has elongated petioles and displays an enhanced elongation of internodes in response to end-of-day far-red light. These characteristics indicate that phyD acts in the shade-avoidance syndrome by controlling flowering time and leaf area and that phyC and/or phyE also play a role.  相似文献   

4.
The phytochromes are one of the means via which plants obtain information about their immediate environment and the changing seasons. Phytochromes have important roles in developmental events such as the switch to flowering, the timing of which can be crucial for the reproductive success of the plant. Analysis of phyB mutants has revealed that phyB plays a major role in this process. We have recently shown, however, that the flowering phenotype of the phyB monogenic mutant is temperature dependent. A modest reduction in temperature to 16 degrees C was sufficient to abolish the phyB mutant early-flowering phenotype present at 22 degrees C. Using mutants null for one or more phytochrome species, we have now shown that phyA, phyD, and phyE, play greater roles with respect to phyB in the control of flowering under cooler conditions. This change in the relative contributions of individual phytochromes appears to be important for maintaining control of flowering in response to modest alterations in ambient temperature. We demonstrate that changes in ambient temperature or photoperiod can alter the hierarchy and/or the functional relationships between phytochrome species. These experiments reveal new roles for phyD and phyE and provide valuable insights into how the phytochromes help to maintain development in the natural environment.  相似文献   

5.
The roles of phytochromes in elongation and gravitropism of roots   总被引:1,自引:0,他引:1  
Gravitropic orientation and the elongation of etiolated hypocotyls are both regulated by red light through the phytochrome family of photoreceptors. The importance of phytochromes A and B (phyA and phyB) in these red light responses has been established through studies using phy mutants. To identify the roles that phytochromes play in gravitropism and elongation of roots, we studied the effects of red light on root elongation and then compared the gravitropic curvature from roots of phytochrome mutants of Arabidopsis (phyA, phyB, phyD and phyAB) with wild type. We found that red light inhibits root elongation approximately 35% in etiolated seedlings and that this response is controlled by phytochromes. Roots from dark- and light-grown double mutants (phyAB) and light-grown phyB seedlings have reduced elongation rates compared with wild type. In addition, roots from these seedlings (dark/light-grown phyAB and light-grown phyB) have reduced rates of gravitropic curvature compared with wild type. These results demonstrate roles for phytochromes in regulating both the elongation and gravitropic curvature of roots.  相似文献   

6.
The objective of this work was to study the role of the phytochromes (phy) B, D and E in the thermoperiodic control of elongation and flowering time in Arabidopsis thaliana. WT, and phyB, phyD and phyE single mutants, and phyB phyD and phyB phyE double mutants, were grown under day/night temperatures (DT/NT) of 12/22°C, 17/17°C or 22/12°C (negative, zero and positive DIF, respectively) for inflorescence stem length measurements, and under DT/NT 17/25°C or 25/17°C (negative and positive DIF, respectively) for leaf morphology and flowering time measurements. In WT final length of the stem, petiole and leaf blade were longer under positive DIF compared to negative DIF. The temperature effect was stronger in the leaf petiole than the stem, whereas only a slight change was seen in the leaf blade length direction and none in the width direction. The temperature effect on stem and petiole elongation was reduced or nearly eliminated in the genotypes lacking phyB, while a phyD or a phyE mutation had no influence or a slightly positive influence on the temperature effect, respectively. These results suggest that phyB, and not phyD or phyE, is needed for a complete thermoperiodic control of elongation growth in A. thaliana. For all genotypes tested, plants flowered earlier at negative DIF than positive DIF, suggesting that none of the three phytochromes B, D, or E is needed for a thermoperiodic control of flowering time in A. thaliana.  相似文献   

7.
We have selected four recessive mutants in tomato (Lycopersicon esculentum Mill.) that, under continuous red light (R), have long hypocotyls and small cotyledons compared to wild type (WT), a phenotype typical of phytochrome B (phyB) mutants of other species. These mutants, which are allelic, are only insensitive to R during the first 2 days upon transition from darkness to R, and therefore we propose the gene symbol tri (temporarily red light insensitive). White light-grown mutant plants have a more elongated growth habit than that of the WT. An immunochemically and spectrophotometrically detectable phyB-like polypeptide detectable in the WT is absent or below detection limits in the tri1 mutant. In contrast to the absence of an elongation growth response to far-red light (FR) given at the end of the daily photoperiod (EODFR) in all phyB-deficient mutants so far characterized, the tri1 mutant responds to EODFR treatment. The tri1 mutant also shows a strong response to supplementary daytime far-red light. We propose that the phyB-like phytochrome deficient in the tri mutants plays a major role during de-etiolation and that other light-stable phytochromes can regulate the EODFR and shade-avoidance responses in tomato.  相似文献   

8.
Plant responses to red and far-red light are mediated by a family of photoreceptors called phytochromes. In Arabidopsis thaliana, there are genes encoding at least five phytochromes, and it is of interest to learn if the different phytochromes have overlapping or distinct functions. To address this question for two of the phytochromes in Arabidopsis, we have compared light responses of the wild type with those of a phyA null mutant, a phyB null mutant, and a phyA phyB double mutant. We have found that both phyA and phyB mutants have a deficiency in germination, the phyA mutant in far-red light and the phyB mutant in the dark. Furthermore, the germination defect caused by the phyA mutation in far- red light could be suppressed by a phyB mutation, suggesting that phytochrome B (PHYB) can have an inhibitory as well as a stimulatory effect on germination. In red light, the phyA phyB double mutant, but neither single mutant, had poorly developed cotyledons, as well as reduced red-light induction of CAB gene expression and potentiation of chlorophyll induction. The phyA mutant was deficient in sensing a flowering response inductive photoperiod, suggesting that PHYA participates in sensing daylength. In contrast, the phyB mutant flowered earlier than the wild type (and the phyA mutant) under all photoperiods tested, but responded to an inductive photoperiod. Thus, PHYA and PHYB appear to have complementary functions in controlling germination, seedling development, and flowering. We discuss the implications of these results for possible mechanisms of PHYA and PHYB signal transduction.  相似文献   

9.
We have investigated the involvement of phytochrome B in the early-flowering response of Arabidopsis thaliana L. seedlings to low red:far-red (R/FR) ratio light conditions. The phytochrome B-deficient hy3 (phyB) mutant is early flowering, and in this regard it resembles the shade-avoidance phenotype of its isogenic wild type. Seedlings carrying the hy2 mutation, resulting in a deficiency of phytochrome chromophore and hence of active phytochromes, also flower earlier than wild-type plants. Whereas hy3 or hy2 seedlings show only a slight acceleration of flowering in response to low R/FR ratio, seedlings that are doubly homozygous for both mutations flower earlier than seedlings carrying either phytochrome-related mutation alone. This additive effect clearly indicates the involvement of one or more phytochrome species in addition to phytochrome B in the flowering response as well as indicating the presence of some functional phytochrome B in hy2 seedlings. Seedlings that are homozygous for the hy3 mutation and one of the fca, fwa, or co late-flowering mutations display a pronounced early-flowering response to low R/FR ratio. A similar response to low R/FR ratio is displayed by seedlings doubly homozygous for the hy2 mutation and any one of the late-flowering mutations. Thus, placing the hy3 or hy2 mutations into a late-flowering background has the effect of uncovering a flowering response to low R/FR ratio. Seedlings that are triply homozygous for the hy3, hy2 mutations and a late-flowering mutation flower earlier than the double mutants and do not respond to low R/FR ratio. Thus, the observed flowering responses to low R/FR ratio in phytochrome B-deficient mutants can be attributed to the action of at least one other phytochrome species.  相似文献   

10.
D Wagner  U Hoecker    P H Quail 《The Plant cell》1997,9(5):731-743
Seedlings of a transgenic Arabidopsis line (ABO) that overexpresses phytochrome B (phyB) display enhanced deetiolation specifically in red light. To identify genetic loci necessary for phytochrome signal transduction in red light, we chemically mutagenized ABO seeds and screened M2 seedlings for revertants of the enhanced deetiolation response. One recessive, red light-specific extragenic revertant, designated red1, was isolated. The mutant phenotype was expressed in the original ABO background as well as in the nontransgenic Nossen (No-0) progenitor background. red1 is also deficient in several other aspects of red light-induced responses known to be mediated by phyB, such as inhibition of petiole elongation and the shade avoidance response. red1 was mapped to the bottom of chromosome 4 at a position distinct from all known photoreceptor loci. Together with complementation analysis, the data show that red1 is a novel photomorphogenic mutant. The evidence suggests that red1 represents a putative phytochrome signal transduction mutant potentially specific to the phyB pathway.  相似文献   

11.
The photoperiodic sensitivity 5 (se5) mutant of rice, a short-day plant, has a very early flowering phenotype and is completely deficient in photoperiodic response. We have cloned the SE5 gene by candidate cloning and demonstrated that it encodes a putative heme oxygenase. Lack of responses of coleoptile elongation by light pulses and photoreversible phytochromes in crude extracts of se5 indicate that SE5 may function in phytochrome chromophore biosynthesis. Ectopic expression of SE5 cDNA by the CaMV 35S promoter restored the photoperiodic response in the se5 mutant. Our results indicate that phytochromes confer the photoperiodic control of flowering in rice. Comparison of se5 with hy1, a counterpart mutant of Arabidopsis, suggests distinct roles of phytochromes in the photoperiodic control of flowering in these two species.  相似文献   

12.
13.
During the shade-avoidance response, leaf blade expansion is inhibited and petiole elongation is enhanced. In this study, we examined the roles of photoreceptors and sugar on the differential growth of the leaf blade and petiole in shade conditions. Under the conditions examined, cell expansion, not cell division, played a major role in the differential leaf growth. The enhanced cell expansion in the leaf blade is associated with an increase in the ploidy level, whereas cell elongation was stimulated in the petiole in dark conditions without an increase in the ploidy level. Analysis of phytochrome, cryptochrome and phototropin mutants revealed that phytochromes and cryptochromes specifically regulate the contrasting growth patterns of the leaf blade and petiole in shade. Examination of the effects of photo-assimilated sucrose on the growth of the leaf blade and petiole revealed growth-promotional effects of sucrose that are highly dependent on the light conditions. The leaf blades of abscisic acid-deficient and sugar-insensitive mutants did not expand in blue light, but expanded normally in red light. These results suggest that both the regulation of light signals and the modulation of responses to sugar are important in the control of the differential photomorphogenesis of the leaf blade and petiole.  相似文献   

14.
The interactions of phytochrome A (phyA) and phytochrome B (phyB) in the photocontrol of vegetative and reproductive development in pea have been investigated using null mutants for each phytochrome. White-light-grown phyA phyB double mutant plants show severely impaired de-etiolation both at the seedling stage and later in development, with a reduced rate of leaf production and swollen, twisted internodes, and enlarged cells in all stem tissues. PhyA and phyB act in a highly redundant manner to control de-etiolation under continuous, high-irradiance red light. The phyA phyB double mutant shows no significant residual phytochrome responses for either de-etiolation or shade-avoidance, but undergoes partial de-etiolation in blue light. PhyB is shown to inhibit flowering under both long and short photoperiods and this inhibition is required for expression of the promotive effect of phyA. PhyA is solely responsible for the promotion of flowering by night-breaks with white light, whereas phyB appears to play a major role in detection of light quality in end-of-day light treatments, night breaks and day extensions. Finally, the inhibitory effect of phyB is not graft-transmissible, suggesting that phyB acts in a different manner and after phyA in the control of flower induction.  相似文献   

15.
J W Reed  P Nagpal  D S Poole  M Furuya    J Chory 《The Plant cell》1993,5(2):147-157
Phytochromes are a family of plant photoreceptors that mediate physiological and developmental responses to changes in red and far-red light conditions. In Arabidopsis, there are genes for at least five phytochrome proteins. These photoreceptors control such responses as germination, stem elongation, flowering, gene expression, and chloroplast and leaf development. However, it is not known which red light responses are controlled by which phytochrome species, or whether the different phytochromes have overlapping functions. We report here that previously described hy3 mutants have mutations in the gene coding for phytochrome B (PhyB). These are the first mutations shown to lie in a plant photoreceptor gene. A number of tissues are abnormally elongated in the hy3(phyB) mutants, including hypocotyls, stems, petioles, and root hairs. In addition, the mutants flower earlier than the wild type, and they accumulate less chlorophyll. PhyB thus controls Arabidopsis development at numerous stages and in multiple tissues.  相似文献   

16.
Plants have developed sophisticated systems to monitor and rapidly acclimate to environmental fluctuations. Light is an essential source of environmental information throughout the plant’s life cycle. The model plant Arabidopsis thaliana possesses five phytochromes (phyA-phyE) with important roles in germination, seedling establishment, shade avoidance, and flowering. However, our understanding of the phytochrome signaling network is incomplete, and little is known about the individual roles of phytochromes and how they function cooperatively to mediate light responses. Here, we used a bottom-up approach to study the phytochrome network. We added each of the five phytochromes to a phytochrome-less background to study their individual roles and then added the phytochromes by pairs to study their interactions. By analyzing the 16 resulting genotypes, we revealed unique roles for each phytochrome and identified novel phytochrome interactions that regulate germination and the onset of flowering. Furthermore, we found that ambient temperature has both phytochrome-dependent and -independent effects, suggesting that multiple pathways integrate temperature and light signaling. Surprisingly, none of the phytochromes alone conferred a photoperiodic response. Although phyE and phyB were the strongest repressors of flowering, both phyB and phyC were needed to confer a flowering response to photoperiod. Thus, a specific combination of phytochromes is required to detect changes in photoperiod, whereas single phytochromes are sufficient to respond to light quality, indicating how phytochromes signal different light cues.  相似文献   

17.
Phytochrome B affects responsiveness to gibberellins in Arabidopsis.   总被引:21,自引:5,他引:16       下载免费PDF全文
J W Reed  K R Foster  P W Morgan    J Chory 《Plant physiology》1996,112(1):337-342
Plant responses to red and far-red light are mediated by a family of photoreceptors called phytochromes. Arabidopsis thaliana seedlings lacking one of the phytochromes, phyB, have elongated hypocotyls and other tissues, suggesting that they may have an alteration in hormone physiology. We have studied the possibility that phyB mutations affect seedling gibberellin (GA) perception and metabolism by testing the responsiveness of wild-type and phyB seedlings to exogenous GAs. The phyB mutant elongates more than the wild type in response to the same exogenous concentrations of GA3 or GA4, showing that the mutation causes an increase in responsiveness to GAs. Among GAs that we were able to detect, we found no significant difference in endogenous levels between wild-type and phyB mutant seedlings. However, GA4 levels were below our limit of detectability, and the concentration of that active GA could have varied between wild-type and phyB mutant seedlings. These results suggest that, although GAs are required for hypocotyl cell elongation, phyB does not act primarily by changing total seedling GA levels but rather by decreasing seedling responsiveness to GAs.  相似文献   

18.
19.
20.
The red and far-red light-absorbing phytochromes and UV-A/blue light-absorbing cryptochromes regulate seedling de-etiolation and flowering responses. The signaling steps that mediate the photoreceptor regulation on key flowering genes remain largely unknown. We report that a previously identified photomorphogenic mutant, hypersensitive to red and blue 1 (hrb1), flowered late and showed attenuated expression of FLOWERING LOCUS T (FT) over both long days and short days. Transgenic plants that overexpress the full-length HRB1, or its C-terminal half, flowered early and accumulated more FT messages under short-day conditions. The transgenic plants also displayed hyposensitive de-etiolation phenotypes, and the expression of these phenotypes requires the action of PIF4. The double mutant of hrb1/cry2 showed a flowering phenotype and an FT expression pattern similar to hrb1 under long-day conditions, suggesting that HRB1 may function downstream of cry2 under long-day conditions. In contrast, hrb1/phyB-9 showed a flowering phenotype and an FT expression pattern similar to phyB-9 over both long days and short days, indicating a modulatory role of HRB1 in the flowering pathway mediated by phyB. Overexpression of HRB1 did not affect the expression of the central clock oscillators, TOC1 and CCA1. HRB1 therefore represents a signaling step that regulates FT expression downstream of red and blue light perception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号