首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The chondroitin ABC lyase digestion products of normal human femoral condyle articular cartilage and of purified aggrecan were analyzed for their mono- and nonsulfated disaccharide composition. Changes in the total tissue chemistry were most pronounced during the period from birth to 20 years of age, when the -[GlcAbeta,3GalNAc6]- disaccharide content increased from approximately 50% to 85% of the total disaccharide content and there was a concomitant decrease in the content of the 4-sulfated disaccharide. In general, the disaccharide content of the deeper layers of immature cartilage were richer in the 4-sulfated residue than the upper regions of the tissue. As the tissue aged and decreased in thickness, the disaccharide composition became more evenly 6-sulfated. The newly synthesized chondroitin sulfate chains had a similar composition to the endogenous chains and also underwent the same age and zonal changes. The monoclonal antisera 3B3(+) and 2B6(+) were used to immunolocalize the unsaturated 6- and 4-sulfated residues generated at the reducing termini of the chondroitin sulfate chains by digestion with chondroitin ABC lyase, and these analyses indicated that the sulfation pattern at this position did not necessarily reflect the internal disaccharide composition of the chains. In summary, the sulfation pattern of chondroitin sulfate disaccharides from human normal articular cartilage varies with the age of the specimen, the position (topography) on the joint surface, and the zone of cartilage analyzed. Furthermore, these changes in composition are a consequence of both extracellular, post-translational processing of the core protein of aggrecan and changes in the sulfotransferase activity of the chondrocyte.  相似文献   

2.
Mutations in the sulfate transporter gene, SCL26A2, lead to cartilage proteoglycan undersulfation resulting in chondrodysplasia in humans; the phenotype is mirrored in the diastrophic dysplasia (dtd) mouse. It remains unclear whether bone shortening and deformities are caused solely by changes in the cartilage matrix, or whether chondroitin sulfate proteoglycan undersulfation affects also signalling pathways involved in cell proliferation and differentiation. Therefore we studied macromolecular sulfation in the different zones of the dtd mouse growth plate and these data were related to growth plate histomorphometry and proliferation analysis.A 2-fold increase of non-sulfated disaccharide in dtd animals compared to wild-type littermates in the resting, proliferative and hypertrophic zones was detected indicating proteoglycan undersulfation; among the three zones the highest level of undersulfation was in the resting zone. The relative height of the hypertrophic zone and the average number of cells per column in the proliferative and hypertrophic zones were significantly reduced compared to wild-types; however the total height of the growth plate was within normal values. The chondrocyte proliferation rate, measured by bromodeoxyuridine labelling, was also significantly reduced in mutant mice. Immunohistochemistry combined with expression data of the dtd growth plate demonstrated that the sulfation defect alters the distribution pattern, but not expression, of Indian hedgehog, a long range morphogen required for chondrocyte proliferation and differentiation.These data suggest that in dtd mice proteoglycan undersulfation causes reduced chondrocyte proliferation in the proliferative zone via the Indian hedgehog pathway, therefore contributing to reduced long bone growth.  相似文献   

3.
Cytoplasmic sulfate for sulfation reactions may be derived either from extracellular fluids or from catabolism of sulfur-containing amino acids and other thiols. In vitro studies have pointed out the potential relevance of sulfur-containing amino acids as sources for sulfation when extracellular sulfate concentration is low or when its transport is impaired such as in DTDST [DTD (diastrophic dysplasia) sulfate transporter] chondrodysplasias. In the present study, we have considered the contribution of cysteine and cysteine derivatives to in vivo macromolecular sulfation of cartilage by using the mouse model of DTD we have recently generated [Forlino, Piazza, Tiveron, Della Torre, Tatangelo, Bonafe, Gualeni, Romano, Pecora, Superti-Furga et al. (2005) Hum. Mol. Genet. 14, 859-871]. By intraperitoneal injection of [35S]cysteine in wild-type and mutant mice and determination of the specific activity of the chondroitin 4-sulfated disaccharide in cartilage, we demonstrated that the pathway by which sulfate is recruited from the intracellular oxidation of thiols is active in vivo. To check whether cysteine derivatives play a role, sulfation of cartilage proteoglycans was measured after treatment for 1 week of newborn mutant and wild-type mice with hypodermic NAC (N-acetyl-L-cysteine). The relative amount of sulfated disaccharides increased in mutant mice treated with NAC compared with the placebo group, indicating an increase in proteoglycan sulfation due to NAC catabolism, although pharmacokinetic studies demonstrated that the drug was rapidly removed from the bloodstream. In conclusion, cysteine contribution to cartilage proteoglycan sulfation in vivo is minimal under physiological conditions even if extracellular sulfate availability is low; however, the contribution of thiols to sulfation becomes significant by increasing their plasma concentration.  相似文献   

4.
Homozygous brachymorphic (bm/bm) mice have a disproportionately short stature. Previous studies have shown that the cartilage proteoglycan is undersulfated as a result of decreased 3′-phosphoadenosine 5′-phosphosulfate (PAPS) levels. In the studies reported here, PAPS synthesizing activity was found to be decreased in both skin fibroblasts and prechondrogenic mesenchyme, but sulfation of glycosaminoglycan was normal in those tissues unless glycosaminoglycan synthesis was enhanced by β-d-xyloside. Furthermore, undersulfation was correlated with increased proteoglycan synthesis as the limb mesenchyme cultures underwent chondrogenesis, and sulfation proceeded in an “all or none” manner. These observations demonstrate that the molecular defect in bm/bm mice is not restricted to cartilage, but is manifested there because of the large amount of chondroitin sulfate synthesized.  相似文献   

5.
Osteoarthritis is a chronic, debilitating joint disease characterized by progressive destruction of articular cartilage. Recently, a number of studies have identified a chondroprogenitor cell population within articular cartilage with significant potential for repair/regeneration. As yet, there are few robust biomarkers of these cells. In this study, we show that monoclonal antibodies recognizing novel chondroitin sulfate sulfation motif epitopes in glycosaminoglycans on proteoglycans can be used to identify metabolically distinct subpopulations of cells specifically within the superficial zone of the tissue and that flow cytometric analysis can recognize these cell subpopulations. Fluorochrome co-localization analysis suggests that the chondroitin sulfate sulphation motifs are associated with a range of cell and extracellular matrix proteoglycans within the stem cell niche that include perlecan and aggrecan but not versican. The unique distributions of these sulphation motifs within the microenvironment of superficial zone chondrocytes, seems to designate early stages of stem/progenitor cell differentiation and is consistent with these molecules playing a functional role in regulating aspects of chondrogenesis. The isolation and further characterization of these cells will lead to an improved understanding of the role novel chondroitin sulfate sulfation plays in articular cartilage development and may contribute significantly to the field of articular cartilage repair.  相似文献   

6.
The absolute concentrations of chondroitin 4- and 6-sulfate are compared in articular and endochondral ossification cartilage from normal dogs. In newborn dogs, the absolute concentration of chondroitin 4-sulfate decreases nearly 3-fold from the deeper endochondral ossification cartilage to the articular surface, whereas that of chondroitin 6-sulfate does not change. In cartilage from the articular surface of the epiphysis in adults, where the ossification process is complete, the concentration of chondroitin 4-sulfate is also low. These observations suggest that chondroitin 4-sulfate may be important in the ossification process. The pathogenesis of heritable disorders involving the sulfation of chondroitin sulfate is discussed in view of these findings.  相似文献   

7.
The chondroitin sulfate-rich region was cleaved from cartilage proteoglycans of experimental osteoarthritic canine joints to establish whether changes in this region of the molecule contribute to the well-documented increase in the chondroitin sulfate to keratan sulfate ratio in osteoarthritis. Experimental osteoarthritis was induced in eight dogs by severance of the right anterior cruciate ligament, the left joint serving as a control. Proteoglycans were extracted from the femoral cartilage of both joints, isolated as A1 fractions by associative density gradient centrifugation and cleaved with hydroxylamine. The chondroitin sulfate-rich region was isolated by either gel chromatography or dissociative density gradient centrifugation. The chondroitin sulfate-rich region from the proteoglycans of the experimental osteoarthritic joints was slightly larger in hydrodynamic size and had both a higher uronate/protein weight ratio and galactosamine/glucosamine molar ratio than the corresponding control. We conclude that the chondroitin sulfate-rich region of proteoglycans in articular cartilage of experimental osteoarthritic joints is larger and has more chondroitin sulfate than that of proteoglycans of normal cartilage.  相似文献   

8.
Although it is well known that many mutations influence phenotypic variability as well as the mean, the underlying mechanisms for variability effects are very poorly understood. The brachymorph (bm) phenotype results from an autosomal recessive mutation in the phosphoadenosine-phosphosulfate synthetase 2 gene (Papps2). A major cranial manifestation is a dramatic reduction in the growth of the chondrocranium which results from undersulfation of glycosaminoglycans (GAGs) in the cartilage matrix. We found that this reduction in the growth of the chondrocranium is associated with an altered pattern of craniofacial shape variation, a significant increase in phenotypic variance and a dramatic increase in morphological integration for craniofacial shape. Both effects are largest in the basicranium. The altered variation pattern indicates that the mutation produces developmental influences on shape that are not present in the wildtype. As the mutation dramatically reduces sulfation of GAGs, we infer that this influence is variation among individuals in the degree of sulfation, or variable expressivity of the mutation. This variation may be because of genetic variation at other loci that influence sulfation, environmental effects, or intrinsic effects. We infer that chondrocranial development exhibits greater sensitivity to variation in the sulfation of chondroitin sulfate when the degree of sulfation is low. At normal levels, sulfation probably contributes minimally to phenotypic variation. This case illustrates canalization in a particular developmental-genetic context.  相似文献   

9.
Glycosaminoglycans (GAGs) such as heparan sulfate and chondroitin sulfate are polysaccharide chains that are attached to core proteins to form proteoglycans. The biosynthesis of GAGs is a multistep process that includes the attachment of sulfate groups to specific positions of the polysaccharide chains by sulfotransferases. Heparan-sulfate and heparan sulfate-sulfotransferases play important roles in growth factor signaling and animal development. However, the biological importance of chondroitin sulfation during mammalian development and growth factor signaling is poorly understood. We show that a gene trap mutation in the BMP-induced chondroitin-4-sulfotransferase 1 (C4st1) gene (also called carbohydrate sulfotransferase 11 - Chst11), which encodes an enzyme specific for the transfer of sulfate groups to the 4-O-position in chondroitin, causes severe chondrodysplasia characterized by a disorganized cartilage growth plate as well as specific alterations in the orientation of chondrocyte columns. This phenotype is associated with a chondroitin sulfation imbalance, mislocalization of chondroitin sulfate in the growth plate and an imbalance of apoptotic signals. Analysis of several growth factor signaling pathways that are important in cartilage growth plate development showed that the C4st1(gt/gt) mutation led to strong upregulation of TGFbeta signaling with concomitant downregulation of BMP signaling, while Indian hedgehog (Ihh) signaling was unaffected. These results show that chondroitin 4-O-sulfation by C4st1 is required for proper chondroitin sulfate localization, modulation of distinct signaling pathways and cartilage growth plate morphogenesis. Our study demonstrates an important biological role of differential chondroitin sulfation in mammalian development.  相似文献   

10.

Introduction

Previous studies have indicated that transforming growth factor β (TGF-β) signaling has a critical role in cartilage homeostasis and repair, yet the mechanisms of TGF-β''s chondroprotective effects are not known. Our objective in this study was to identify downstream targets of TGF-β that could act to maintain biochemical and biomechanical properties of cartilage.

Methods

Tibial joints from 20-week-old mice that express a dominant-negative mutation of the TGF-β type II receptor (DNIIR) were graded histologically for osteoarthritic changes and tested by indentation to evaluate their mechanical properties. To identify gene targets of TGF-β, microarray analysis was performed using bovine articular chondrocytes grown in micromass culture that were either treated with TGF-β or left untreated. Phosphoadenosine phosphosynthetase 2 (PAPSS2) was identified as a TGF-β-responsive gene. Papss2 expression is crucial for proper sulfation of cartilage matrix, and its deficiency causes skeletal defects in mice and humans that overlap with those seen in mice with mutations in TGF-β-signaling genes. Regulation of Papss2 was verified by real time RT-PCR and Western blot analyses. Alterations in sulfation of glycosaminoglycans were analyzed by critical electrolyte concentration and Alcian blue staining and immunofluorescence for chondroitin-4-sulfate, unsulfated chondroitin and the aggrecan core protein.

Results

DNIIR mutants showed reduced mechanical properties and osteoarthritis-like changes when compared to wild-type control mice. Microarray analysis identified a group of genes encoding matrix-modifying enzymes that were regulated by TGF-β. Papss2 was upregulated in bovine articular chondrocytes after treatment with TGF-β and downregulated in cartilage from DNIIR mice. Articular cartilage in DNIIR mice demonstrated reduced Alcian blue staining at critical electrolyte concentrations and reduced chondroitin-4-sulfate staining. Staining for unsulfated chondroitin sulfate was increased, whereas staining for the aggrecan core protein was comparable in DNIIR and wild-type mice.

Conclusion

TGF-β maintains biomechanical properties and regulates expression of Papss2 and sulfation of glycosaminoglycans in mouse articular cartilage.  相似文献   

11.
The ability of chondrocytes to synthesize chondroitin-4-sulfate (C4S) as opposed to chondroitin-6-sulfate (C6S) is a phylogenetically related phenomenon seen among adult higher vertebrates and developmentally during the embryogenesis of these vertebrates. While the embryonic cartilage may be initially a C6S matrix, C4S synthesis is seen to develop with time. We have histochemically localized these differences in sulfation with the cationic carbocyanine dye, Stains-all, in a spectrum of cartilages that vary in the sulfation position of their chondroitin sulfate. Cartilages from the rat and rabbit that are predominantly C4S stained magenta at pH 4.3, while the C6S-rich cartilage matrices from the regenerating rabbit ear and lamprey cranium stained blue. Embryonic chicken cartilages develop a gradient of magenta matrix with age, with increased concentration toward the articular surface. Both magenta and blue matrices were absent after pretreatment with chondroitinase ABC but were present after Streptomyces hyaluronidase digestion. The magenta staining was a property of the cartilage matrix as a whole, since isolated C4S and C6S stained blue. The differential staining was seen at pH 4.3, but not at pH 8.8, suggesting an interaction between the chondroitin sulfate and the adjacent tissue proteins.  相似文献   

12.
Chlorate: a reversible inhibitor of proteoglycan sulfation   总被引:8,自引:0,他引:8  
Bovine aorta endothelial cells were cultured in medium containing [3H]glucosamine, [35S]sulfate, and various concentrations of chlorate. Cell growth was not affected by 10 mM chlorate, while 30 mM chlorate had a slight inhibitory effect. Chlorate concentrations greater than 10 mM resulted in significant undersulfation of chondroitin. With 30 mM chlorate, sulfation of chondroitin was reduced to 10% and heparan to 35% of controls, but [3H]glucosamine incorporation on a per cell basis did not appear to be inhibited. Removal of chlorate from the culture medium of cells resulted in the rapid resumption of sulfation.  相似文献   

13.
13C NMR relaxation studies on cartilage and cartilage components   总被引:1,自引:0,他引:1  
We have investigated the molecular motions of polysaccharides of bovine nasal and pig articular cartilage by measuring the 13C NMR relaxation times (T1 and T2). Both types of cartilage differ significantly towards their collagen/glycosaminoglycan ratio, leading to different NMR spectra. As chondroitin sulfate is the main constituent of cartilage, aqueous solutions of related poly- and monosaccharides (N-acetylglucosamine and glucuronic acid) were also investigated. Although there are only slight differences in T1 relaxation of the mono- and the polysaccharides, T2 decreases about one order of magnitude, when glucuronic acid or N-acetylglucosamine and chondroitin sulfate are compared. It is concluded that the ring carbons are motion-restricted primarily by the embedment in the rigid pyranose structure and, thus, additional limitations of mobility do not more show a major effect. Significant differences were observed between bovine nasal and pig articular cartilage, resulting in a considerable line-broadening and a lower signal to noise ratio in the spectra of pig articular cartilage. This is most likely caused by the higher collagen content of articular cartilage in comparison to the polysaccharide-rich bovine nasal cartilage.  相似文献   

14.
A panel of four separate monoclonal antibodies, all known to specifically recognize epitopes on keratan sulfate glycosaminoglycans, were employed in an immunocytochemical study of developing chick hind limbs. In addition, two monoclonal antibodies specific for epitopes on chondroitin/dermatan sulfate glycosaminoglycans were employed on equivalent sections to determine the degree of colocalization of keratan and chondroitin/dermatan sulfates. The spatial distributions of keratan sulfate and chondroitin/dermatan sulfate differed to some extent. In younger embryos, high extracellular concentrations of keratan sulfate occurred in joints and articular cartilages, with diminishing amounts being present in epiphyseal and diaphyseal regions. The high concentration of keratan sulfate in joints and articular cartilage corresponded to equally high concentration of chondroitin-6 sulfate. With advancing age, the above mentioned distribution was modified, most notably by increased amounts of keratan sulfate within diaphyseal regions. Finally, the use of four different anti-keratan sulfate monoclonal antibodies made it possible to compare keratan sulfate epitope expression. Differences in keratan sulfate epitopes were noted in some regions of bones, mostly in diaphyseal regions of younger bones and epiphyseal regions of older bones. This pattern of keratan sulfate expression suggests that different types of keratan sulfate may be present and their expression may be developmentally regulated.  相似文献   

15.
Proteoglycans of calf and steer articular cartilage were studied with a view of assessing structure and changes occurring as a result of the aging process. The average reduction in hydrodynamic size noted in steer was associated with a diminution in size of the chondroitin sulfate-rich region of the core protein as well as the chondroitin sulfate chains themselves. By contrast the keratan sulfate-rich region was hydrodynamically larger in steer although the keratan sulfate chains were only slightly longer than in calf. The proteoglycans showed a maturation-related decrease in chondroitin sulfate content (shorter chains, fewer chains, smaller chondroitin sulfate-rich region) and an enrichment in keratan sulfate chains in both the chondroitin sulfate-rich and keratan sulfate-rich regions. Proteoglycans from both age groups contained an oligosaccharide which was recovered mainly from outside of the keratan sulfate-rich region. There were no significant differences in size between keratan sulfate chains recovered from the keratan sulfate-rich region and the chondroitin sulfate-rich region.  相似文献   

16.
Mutations in the SO42−/Cl/OH exchanger Slc26a2 cause the disease diastrophic dysplasia (DTD), resulting in aberrant bone development and, therefore, skeletal deformities. DTD is commonly attributed to a lack of chondrocyte SO42− uptake and proteoglycan sulfation. However, the skeletal phenotype of patients with DTD is typified by reduction in cartilage and osteoporosis of the long bones. Chondrocytes of patients with DTD are irregular in size and have a reduced capacity for proliferation and terminal differentiation. This raises the possibility of additional roles for Slc26a2 in chondrocyte function. Here, we examined the roles of Slc26a2 in chondrocyte biology using two distinct systems: mouse progenitor mesenchymal cells differentiated to chondrocytes and freshly isolated mouse articular chondrocytes differentiated into hypertrophic chondrocytes. Slc26a2 expression was manipulated acutely by delivery of Slc26a2 or shSlc26a2 with lentiviral vectors. We demonstrate that slc26a2 is essential for chondrocyte proliferation and differentiation and for proteoglycan synthesis. Slc26a2 also regulates the terminal stage of chondrocyte cell size expansion. These findings reveal multiple roles for Slc26a2 in chondrocyte biology and emphasize the importance of Slc26a2-mediated protein sulfation in cell signaling, which may account for the complex phenotype of DTD.  相似文献   

17.
A 3' -phosphoadenosine 5' -phosphosulfate (PAPS):chondroitin sulfate sulfotransferase from chicken embryo epiphyseal cartilage, which was partially purified, exhibited a molecular mass of 150 kDa. The enzymatic sulfation of totally desulfated chondroitin was activated up to 12-fold by protamine while the sulfation of partially sulfated chondroitin was activated only 3-fold. Protamine increased the affinity of the enzyme for PAPS about 4-fold when partially desulfated chondroitin was used as sulfate acceptor. The S 0.5 for the totally desulfated chondroitin was not affected by protamine, while high PAPS concentration slightly increased the affinity of the enzyme for the same sulfate acceptor. The possible role of these substances in the regulation of the sulfation of chondroitin sulfate is discussed.  相似文献   

18.
Inactivation of the perlecan gene leads to perinatal lethal chondrodysplasia. The similarity to the phenotypes of the Col2A1 knock-out and the disproportionate micromelia mutation suggests perlecan involvement in cartilage collagen matrix assembly. We now present a mechanism for the defect in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional to the content of the 4,6-disulfated disaccharide in the different cartilage extracts, with growth plate cartilage glycosaminoglycan being the most efficient enhancer. These findings demonstrate a role for perlecan chondroitin sulfate side chains in cartilage extracellular matrix assembly and provide an explanation for the perlecan-null chondrodysplasia.  相似文献   

19.
A 3′-phosphoadenosine 5′-phosphosulfate (PAPS):chondroitin sulfate sulfotransferase from chicken embryo epiphyseal cartilage, which was partially purified, exhibited a molecular mass of 150 kDa. The enzymatic sulfation of totally desulfated chondroitin was activated up to 12-fold by protamine while the sulfation of partially sulfated chondroitin was activated only 3-fold. Protamine increased the affinity of the enzyme for PAPS about 4-fold when partially desulfated chondroitin was used as sulfate acceptor. The S0.5 for the totally desulfated chondroitin was not affected by protamine, while high PAPS concentration slightly increased the affinity of the enzyme for the same sulfate acceptor. The possible role of these substances in the regulation of the sulfation of chondroitin sulfate is discussed.  相似文献   

20.
Proteoglycans are a family of extracellular macromolecules comprised of glycosaminoglycan chains of a repeated disaccharide linked to a central core protein. Proteoglycans have critical roles in chondrogenesis and skeletal development. The glycosaminoglycan chains found in cartilage proteoglycans are primarily composed of chondroitin sulfate. The integrity of chondroitin sulfate chains is important to cartilage proteoglycan function; however, chondroitin sulfate metabolism in mammals remains poorly understood. The solute carrier-35 D1 (SLC35D1) gene (SLC35D1) encodes an endoplasmic reticulum nucleotide-sugar transporter (NST) that might transport substrates needed for chondroitin sulfate biosynthesis. Here we created Slc35d1-deficient mice that develop a lethal form of skeletal dysplasia with severe shortening of limbs and facial structures. Epiphyseal cartilage in homozygous mutant mice showed a decreased proliferating zone with round chondrocytes, scarce matrices and reduced proteoglycan aggregates. These mice had short, sparse chondroitin sulfate chains caused by a defect in chondroitin sulfate biosynthesis. We also identified that loss-of-function mutations in human SLC35D1 cause Schneckenbecken dysplasia, a severe skeletal dysplasia. Our findings highlight the crucial role of NSTs in proteoglycan function and cartilage metabolism, thus revealing a new paradigm for skeletal disease and glycobiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号