首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Colony development of the dimorphic yeasts Yarrowia lipolytica and Candida boidinii on solid agar substrates under glucose limitation served as a model system for mycelial development of higher filamentous fungi. Strong differences were observed in the behaviour of both yeasts: C. boidinii colonies reached a final colony extension which was small compared to the size of the growth field. They formed cell-density profiles which steeply declined along the colony radius and no biomass decay processes could be detected. The stop of colony extension coincided with the depletion of glucose from the growth substrate. These findings supported the hypothesis that glucose-limited C. boidinii colonies can be regarded as populations of single cells which grow according to a diffusion-limited growth mechanism. Y. lipolytica colonies continued to extend after the depletion of the primary nutrient resource, glucose, until the populations covered the entire growth field which was accomplished by utilization of mycelial biomass.  相似文献   

3.
This work examines nutritional influence on fungal colony growth and biomass distribution in response to toxic metals. In low-substrate solid medium, 0.1 mM Cd, Cu and Zn caused a decrease in radial expansion of both Trichoderma viride and Rhizopus arrhizus. However, as the amount of available carbon source (glucose) increased, the apparent toxicity of the metals decreased. These metals also affected the overall length of the fungal mycelium and branching patterns. In low-nutrient conditions, T. viride showed a decrease in overall mycelial length and number of branches in response to Cu, resulting in an extremely sparsely branched colony. Conversely, although Cd also reduced overall mycelial length to about one-third of the control length, the number of branches decreased only slightly which resulted in a highly branched colony with many aberrant features. Cu and Cd induced similar morphological changes in R. arrhizus. A large-scale mycelial-mapping technique showed that disruption of normal growth by Cu and Cd resulted in altered biomass distribution within the colony. When grown on metal-free low-substrate medium, T. viride showed an even distribution of biomass within the colony with some allocation to the periphery. However, Cu caused most of the biomass to be allocated to the colony periphery, while in the presence of Cd, most biomass was located at the interior of the colony. These results imply that such alterations of growth and resource allocation by Cu and Cd may influence success in locating nutrients as well as survival, and that these metals have individual and specific effects on the growing fungus.  相似文献   

4.
The physiology of a colony of Pleurotus pulmonarius grown on potato dextrose agar overlaid with a Cellophane membrane (PDA-WC) was studied. On PDA-WC, the colony presented higher biomass density and productivity of fruit body formation (4.84±0.23 mg mycelial biomass/cm2 and 23.7±3.12 g ml–1 h–1, respectively) than that which developed on potato dextrose agar without Cellophane (PDA-OC; 0.26±0.01 mg mycelial biomass/cm2 and 10.8±1.57 g ml–1 h–1, respectively). In cultures developed on PDA-WC, intracellular laccases and -1,3-glucanases activities were lower [12±0.9 arbitrary units (AU)/g mycelial biomass and 1.33±0.1 international units (IU)/g mycelial biomass, respectively] than those observed on PDA-OC (20.65±1.0 AU/g mycelial biomass and 3.67±0.2 IU/g mycelial biomass, respectively). In cultures developed on PDA-WC, intracellular protein and glycogen concentrations were lower (1.9±0.9 and 117±3.5 mg/g mycelial biomass, respectively) than those observed on PDA-OC (14.3±1.1 and 347±2.9 mg/g mycelial biomass, respectively). The radial growth rate and the content of glucans in the cell wall were not significantly different between cultures developed on PDA-WC and PDA-OC. These results show that the use of the Cellophane as a tool to study in vitro fungal physiology might affect the interpretation of experimental results, since the physiology under otherwise similar conditions was different on medium with and without Cellophane.  相似文献   

5.
High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within-generation phenotypic plasticity, which are likely to vary in populations from contrasting environments.  相似文献   

6.
为了探究恒温和变温培养对羊肚菌菌丝生长和菌核形成的影响,设置-9℃-30℃的7个恒温处理,3个变温处理,通过观察和记录在两种不同培养方式下菌丝的长势、生长速度、菌落干重、产核时间、菌核数量等内容,从而比较出恒温和变温培养对羊肚菌菌丝生长和菌核形成的影响效果。结果表明,在恒温条件下羊肚菌菌丝生长和菌核发育比变温好,20℃最适宜菌丝生长,菌丝生长速度较快,菌落干重最大;25℃最适宜菌核生长发育,产核最早。菌核数量最多。  相似文献   

7.
The ten year cycle of the willow grouse of Lower Kolyma   总被引:1,自引:0,他引:1  
A. Andreev 《Oecologia》1988,77(2):261-267
Summary The effects of defoliation on growth and nitrogen (N) nutrition were examined in populations of Agropyron smithii (western wheatgrass) collected from a heavily grazed black-tailed prairie dog (Cynomys ludovicianus) colony (ON-colony) and a nearby lightly grazed, uncolonized area (OFF-colony). Defoliated and nondefoliated plants were grown at low soil N availability with similar sized defoliated individuals of A. smithii from a grazing-exclosure population as a common competitor. Sequential harvests were made over 24 days following defoliation. Growth analysis plus biomass and N yield and distribution data were used to identify features which may contribute to plant defoliation tolerance. Defoliation reduced total production 34% across populations. Defoliated plants produced as much new blade tissue, but only 67% as much new root biomass as did nondefoliated controls. Plants from prairie dog colonies accumulated biomass at a faster relative rate than did plants from uncolonized sites, in part, because of a 250% greater mean relative growth rate of blades and more than 200% greater rate of biomass production per unit blade biomass. Total N accumulation was significantly greater in defoliated ON- than OFF-colony individuals. The mean relative accumulation rate of N was increased by defoliation in ON-colony plants, but reduced by defoliation in OFF-colony plants. The mean rate of N accumulation per unit root biomass was more than 300% greater in the ON- than OFF-colony population. Colony plants initially had a greater proportion of biomass and N remaining after defoliation in roots. Initial differences between populations in the distribution of biomass and N were eliminated as colony plants concentrated 24-day accumulation of biomass and N in aboveground structures. The data suggest that the combination of growth, N nutrition, and biomass and N distribution characteristics of the colony population likely confer a high rate of resource capture on heavily grazed prairie dog colonies.  相似文献   

8.
Plants have evolved several strategies to cope with disturbance, and one strategy is tolerance. In tolerance, plants store resources (meristems, carbohydrates) so that they can resprout after disturbance and thereby compensate to some degree for losses. Because tolerance is costly (it occurs at the expense of current growth), we can expect adaptation to the local disturbance regime. In this study, we determined whether populations of a common European annual weed, Euphorbia peplus, are adapted to the local disturbance regime. We hypothesized that the tolerance and hence compensation for losses in seed and biomass production after experimental damage are greater in plants from more severely disturbed than from less severely disturbed populations. We also hypothesized that transgenerational effects can alter adaptation. We found that compensation for biomass loss to damage was greater for plants from more severely disturbed habitats than for plants from less severely disturbed habitats. This, however, was not at the expense of growth before damage because plants from both disturbance regimes did not show differences when not damaged. Transgenerational effects played a positive role in adaptation to disturbance during germination and maturity. We conclude that local adaptation together with transgenerational effects have evolved in more severely disturbed populations but not in less severely disturbed populations of E. peplus.  相似文献   

9.
Growth of filamentous fungi on the surface of cereal grains is a critical aspect of solid substrate fermentation (SSF). Numerous mathematical models have been developed to describe various aspects of fungal growth in SSF. These models consider hyphal geometry and nutrient availability as determinants of colony morphology and fungal physiological state. This work describes the use of cellular automata (CA) as an alternative method of modeling fungal growth. CA models reliant on a very limited set of rules or "knowledge base" display a rich array of behaviors that mimic fungal growth. By incorporating probablistic growth rules into CA models, colony characteristics such as biomass accumulation rate, colony radial growth rate, mycelial density and fungal differentiation are readily generated.  相似文献   

10.
Studies of on-line viable yeast biomass with a capacitance biomass monitor   总被引:1,自引:0,他引:1  
A commercially available biomass monitor has been employed in a number of applications. For capacitance monitors, a relationship between capacitance measurement and cell counts or colony forming units has been reported in the literature. However, for use as an online instrument, a more practical correlation with the biomass concentration is needed. In this study, we followed the batch growth of brewer's yeast and a correlation with viable biomass concentration (g DW/L) was demonstrated. This correlation was utilized with the capacitance biomass monitor in a control loop to maintain setpoint biomass levels in a cyclic reactor under perturbations. Not only did the system demonstrate the capability of the biomass monitor to control biomass in such a system, but it also confirmed the correlation reported in our earlier work. (c) 1994 John Wiley & Sons, Inc.  相似文献   

11.
本研究以绒毛栓孔菌为材料,采用液体培养的方法分析其在发酵过程中胞外酶的活性变化,并对其菌丝体生物量和发酵液pH值进行了测定。结果表明:胞外酶活性与菌丝体生长状况密切相关。菌丝体生物量增长呈"S"型,6~8d增长最快,第12天达到最大值,在此过程中漆酶、锰过氧化物酶、淀粉酶、羧甲基纤维素酶、果胶酶和蛋白酶活性均出现高峰。酶活性的变化表明,在液体培养过程中绒毛栓孔菌首先分解木质素,其次利用淀粉和纤维素作为碳源,蛋白质作为氮源。若要获得最大菌丝体生物量,缩短培养时间,就必须在培养过程中保证碳氮源的均衡供给。本试验说明不同的酶其分泌高峰期可以作为判断菌丝体营养利用情况和培养周期的依据,以此获取最大菌丝体生物量,为工业生产利用奠定基础。  相似文献   

12.
Abstract Previously, we discovered the phenomenon of wavelike spatial distributions of bacterial populations and total organic carbon (TOC) along wheat roots. We hypothesized that the principal mechanism underlying this phenomenon is a cycle of growth, death, autolysis, and regrowth of bacteria in response to a moving substrate source (root tip). The aims of this research were (i) to create a simulation model describing wavelike patterns of microbial populations in the rhizosphere, and (ii) to investigate by simulation the conditions leading to these patterns. After transformation of observed spatial data to presumed temporal data based on root growth rates, a simulation model was constructed with the Runge–Kutta integration method to simulate the dynamics of colony-forming bacterial biomass, with growth and death rates depending on substrate content so that the rate curves crossed over at a substrate concentration within the range of substrate availability in the model. This model was named ``BACWAVE,' standing for ``bacterial waves.' Cyclic dynamics of bacteria were generated by the model that were translated into traveling spatial waves along a moving nutrient source. Parameter values were estimated from calculated initial substrate concentrations and observed microbial distributions along wheat roots by an iterative optimization method. The kinetic parameter estimates fell in the range of values reported in the literature. Calculated microbial biomass values produced spatial fluctuations similar to those obtained for experimental biomass data derived from colony forming units. Concentrations of readily utilizable substrate calculated from biomass dynamics did not mimic measured concentrations of TOC, which consist not only of substrate but also various polymers and humic acids. In conclusion, a moving pulse of nutrients resulting in cycles of growth and death of microorganisms can indeed explain the observed phenomenon of moving microbial waves along roots. This is the first report of wavelike dynamics of microorganisms in soil along a root resulting from the interaction of a single organism group with its substrate. Received: 2 October 1999; Accepted: 9 March 2000; Online Publication: 28 August 2000  相似文献   

13.
The combination of ocean warming and acidification brings an uncertain future to kelp forests that occupy the warmest parts of their range. These forests are not only subject to the direct negative effects of ocean climate change, but also to a combination of unknown indirect effects associated with changing ecological landscapes. Here, we used mesocosm experiments to test the direct effects of ocean warming and acidification on kelp biomass and photosynthetic health, as well as climate‐driven disparities in indirect effects involving key consumers (urchins and rock lobsters) and competitors (algal turf). Elevated water temperature directly reduced kelp biomass, while their turf‐forming competitors expanded in response to ocean acidification and declining kelp canopy. Elevated temperatures also increased growth of urchins and, concurrently, the rate at which they thinned kelp canopy. Rock lobsters, which are renowned for keeping urchin populations in check, indirectly intensified negative pressures on kelp by reducing their consumption of urchins in response to elevated temperature. Overall, these results suggest that kelp forests situated towards the low‐latitude margins of their distribution will need to adapt to ocean warming in order to persist in the future. What is less certain is how such adaptation in kelps can occur in the face of intensifying consumptive (via ocean warming) and competitive (via ocean acidification) pressures that affect key ecological interactions associated with their persistence. If such indirect effects counter adaptation to changing climate, they may erode the stability of kelp forests and increase the probability of regime shifts from complex habitat‐forming species to more simple habitats dominated by algal turfs.  相似文献   

14.
Classical Darwinian adaptation to a change in environment can ensue when selection favours beneficial genetic variation. How plastic trait responses to new conditions affect this process depends on how plasticity reveals to selection the influence of genotype on phenotype. Genetic accommodation theory predicts that evolutionary rate may sharply increase when a new environment induces plastic responses and selects on sufficient genetic variation in those responses to produce an immediate evolutionary response, but natural examples are rare. In Iceland, marine threespine stickleback that have colonized freshwater habitats have evolved more rapid individual growth. Heritable variation in growth is greater for marine full-siblings reared at low versus high salinity, and genetic variation exists in plastic growth responses to low salinity. In fish from recently founded freshwater populations reared at low salinity, the plastic response was strongly correlated with growth. Plasticity and growth were not correlated in full-siblings reared at high salinity nor in marine fish at either salinity. In well-adapted lake populations, rapid growth evolved jointly with stronger plastic responses to low salinity and the persistence of strong plastic responses indicates that growth is not genetically assimilated. Thus, beneficial plastic growth responses to low salinity have both guided and evolved along with rapid growth as stickleback adapted to freshwater.  相似文献   

15.
In holometabolous animals such as Drosophila melanogaster, larval crowding can affect a wide range of larval and adult traits. Adults emerging from high larval density cultures have smaller body size and increased mean life span compared to flies emerging from low larval density cultures. Therefore, adaptation to larval crowding could potentially affect adult longevity as a correlated response. We addressed this issue by studying a set of large, outbred populations of D. melanogaster, experimentally evolved for adaptation to larval crowding for 83 generations. We assayed longevity of adult flies from both selected (MCUs) and control populations (MBs) after growing them at different larval densities. We found that MCUs have evolved increased mean longevity compared to MBs at all larval densities. The interaction between selection regime and larval density was not significant, indicating that the density dependence of mean longevity had not evolved in the MCU populations. The increase in longevity in MCUs can be partially attributed to their lower rates of ageing. It is also noteworthy that reaction norm of dry body weight, a trait probably under direct selection in our populations, has indeed evolved in MCU populations. To the best of our knowledge, this is the first report of the evolution of adult longevity as a correlated response of adaptation to larval crowding.  相似文献   

16.
Soil aggregates between 2 and 5 mm from 35- and 45-year-old unreclaimed post-mining sites near Sokolov (Czech Republic) were divided into two groups: spherical and prismatic. X-ray tomography indicated that prismatic aggregates consisted of fragments of claystone bonded together by amorphous clay and roots while spherical aggregates consisted of a clay matrix and organic fragments of various sizes. Prismatic aggregates were presumed to be formed by plant roots and physical processes during weathering of Tertiary mudstone, while earthworms were presumed to contribute to the formation of spherical aggregates. The effects of drying and rewetting and glucose addition on microbial respiration, microbial biomass, and counts of bacteria in these aggregates were determined. Spherical aggregates contained a greater percentage of C and N and a higher C-to-N ratio than prismatic ones. The C content of the particulate organic matter was also higher in the spherical than in the prismatic aggregates. Although spherical aggregates had a higher microbial respiration and biomass, the growth of microbial biomass in spherical aggregates was negatively correlated with initial microbial biomass, indicating competition between bacteria. Specific respiration was negatively correlated with microbial biomass. Direct counts of bacteria were higher in spherical than in prismatic aggregates. Bacterial numbers were more stable in the center than in the surface layers of the aggregates. Transmission electron microscopy indicated that bacteria often occurred as individual cells in prismatic aggregates but as small clusters of cells in spherical aggregates. Ratios of colony forming units (cultivatable bacteria) to direct counts were higher in spherical than in prismatic aggregates. Spherical aggregates also contained faster growing bacteria.  相似文献   

17.
Can a population evolved in two resources reach the same fitness in both as specialist populations evolved in each of the individual resources? This question is central to theories of ecological specialization, the maintenance of genetic variation, and sympatric speciation, yet relatively few experiments have examined costs of generalism over long‐term adaptation. We tested whether selection in environments containing two resources limits a population's ability to adapt to the individual resources by comparing the fitness of replicate Escherichia coli populations evolved for 6000 generations in the presence of glucose or lactose alone (specialists), or in varying presentations of glucose and lactose together (generalists). We found that all populations had significant fitness increases in both resources, though the magnitude and rate of these increases differed. For the first 4000 generations, most generalist populations increased in fitness as quickly in the individual resources as the corresponding specialist populations. From 5000 generations, however, a widespread cost of adaptation affected all generalists, indicating a growing constraint on their abilities to adapt to two resources simultaneously. Our results indicate that costs of generalism are prevalent, but may influence evolutionary trajectories only after a period of cost‐free adaptation.  相似文献   

18.
Cordyceps militaris is a model species of Cordyceps fungi, and has been traditionally used as an edible and medicinal fungus due to its richness of bioactive and pharmacological metabolites. The fruiting bodies of this fungus are widely used as healthy food and nutrition supply. In industrial production, fruiting bodies are cultivated on artificial media, but their yield and quality are usually affected by the quality of fungal strains. In this study, the effect of colony growth rate of the fungal strains, fungal age and repeated subculturing on the fungal biomass accumulation was investigated. The results indicated that the fungal biomass was positively correlated with the colony growth rate and not affected by fungal age and the repeated subculturing. The preservation conditions for stock cultures, including choice of cultures, lyophilization, temperature and protective agents were optimized based on the mycelial formation and conidia production in artificial inoculum. The development of fruiting bodies from the fungal strains stored under the optimized preservation conditions were further analyzed to determine the ideal time period of preservation. Results indicated that storing the fungus at 4 °C could maintain the fungal vitality and fruiting body producing capacity for at least 12 months. This study established practical criteria of fungal inoculum for artificial cultivation of fruiting body and provided a simple and efficient preservation method for C. militaris. The results may shed light on preservation for other Cordyceps species and other edible fungi.  相似文献   

19.
Serratia marcescens strain B2 inhibited mycelial growth of the rice sheath blight pathogen Rhizoctonia solani AG-1 IA. Rice plants were treated with bacterial suspension and then challenge inoculated with the pathogen. Application of S. marcescens effectively reduced the incidence of sheath blight. S. marcescens survived in soil under glasshouse conditions at ca. 108 colony forming units g-1 of soil for 4 weeks after application. These results suggest that S. marcescens has potential as an effective and persistent biological control agent for rice sheath blight.  相似文献   

20.
The evolution of life is characterized by major evolutionary transitions during which independent units cooperated and formed a new level of selection. Relatedness is a common mechanism that reduces conflict in such cooperative associations. One of the latest transitions is the evolution of social insect colonies. As expected, they are composed of kin and mechanisms have evolved that prevent the intrusion of nonrelatives. Yet, there are exceptions an extreme case is the fusion of unrelated colonies. What are the advantages of fusions that have colonies with a high potential for conflict as a consequence? Here, we investigated fitness costs and benefits of colony fusions in a lower termite species, Cryptotermes secundus, in which more than 25% of all colonies in the field are fused. We found two benefits of colony fusion depending on colony size: very small colonies had an increased probability of survival when they fused, yet for most colony sizes mainly a few workers profit from colony fusions as their chance to become reproductives increased. This individual benefit was often costly for other colony members: colony growth was reduced and the current reproductives had an increased chance of dying when fusions were aggressive. Our study suggests that fusion of colonies often is the result of ‘selfish’ worker interests to become reproductives, and this might have been important for the termites' social evolution. Our results uniquely shows that selfish interests among related colony members can lead to the formation of groups with increased potential for conflict among less related members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号