首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fundamental, long-term genetic trade-offs constrain life-history evolution in wild crucifer populations. I studied patterns of genetic constraint in Brassica rapa by estimating genetic correlations among life-history components by quantitative genetic analyses among ten wild populations, and within four populations. Genetic correlations between age and size at first reproduction were always greater than +0.8 within and among all populations studied. Although quantitative genetics might provide insight about genetic constraints if genetic parameters remain approximately constant, little evidence has been available to determine the constancy of genetic correlations. I found strong and consistent estimates of genetic correlations between life-history components, which were very similar within four natural populations. Population differentiation also showed these same trade-offs, resulting from long-term genetic constraint. For some traits, evolutionary changes among populations were incompatible with a model of genetic drift. Historical patterns of natural selection were inferred from population differentiation, suggesting that correlated response to selection has caused some traits to evolve opposite to the direct forces of natural selection. Comparison with Arabidopsis suggests that these life-history trade-offs are caused by genes that regulate patterns of resource allocation to different components of fitness. Ecological and energetic models may correctly predict these trade-offs because there is little additive genetic variation for rates of resource acquisition, but resource allocation is genetically variable.  相似文献   

2.
Life-history theory is based on the assumption that evolution is constrained by trade-offs among different traits that contribute to fitness. Such trade-offs should be evident from negative genetic correlations among major life-history traits. However, this expectation is not always met. Here I report the results of a life-table experiment designed to measure the broad-sense heritabilities of life-history traits and their genetic correlations in 19 different clones of the aphid Myzus persicae from Victoria, Australia. Most individual traits, as well as fitness calculated as the finite rate of increase from the life table, exhibited highly significant heritabilities. The pattern of genetic correlations revealed absolutely no evidence for life-history trade-offs. Rather, life histories were arranged along an axis from better to worse. Clones with shorter development times tended to have larger body sizes, higher fecundities, and larger offspring. The fitness of clones estimated from the life table in the laboratory tended to be positively associated with their abundance in the field. Fitness also increased significantly with heterozygosity at the seven microsatellite loci that were used to distinguish clones and estimate their frequencies in the field. I discuss these findings in light of a recent proposition that positive genetic correlations among life-history traits for which trade-offs are expected can be explained by genetic variation for resource acquisition ability that is maintained in populations by a cost of acquisition, and I propose ways to test for such a cost in M. persicae.  相似文献   

3.
When variation in life-history characters is caused by many genes of small effect, then quantitative-genetic parameters may quantify constraints on rate and direction of microevolutionary change. I estimated heritabilities and genetic correlations for 16 life-history and morphological characters in two populations of Impatiens capensis, a partially self-pollinating herbaceous annual. The Madison population had little or no additive genetic variance for any of these characters, while the Milwaukee population had significant narrowsense heritabilities and genetic correlations for several traits, including adult size, which is highly correlated with fitness. All genetic correlations among fitness components were positive, hence there is no evidence for antagonistic pleiotropy among these traits. Dissimilarity of heritabilities in the two populations supports theoretical predictions that long-term changes in genetic variance-covariance patterns may occur when population sizes are small and selection is strong, as may occur in many plant species.  相似文献   

4.
On the evolution of clonal plant life histories   总被引:2,自引:0,他引:2  
Clonal plant life histories are special in at least four respects: (1) Clonal plants can also reproduce vegetatively, (2) vegetative reproduction can be realised with short or long spacers, (3) and it may allow to plastically place vegetative offspring in benign patches. (4) Moreover, ramets of clonal plants may remain physically and physiologically integrated. Because of the apparent utility of such traits and because ecological patterns of distribution of clonal and non-clonal plants differ, adaptation is a tempting explanation of observed clonal life-history variation. However, adaptive evolution requires (1) heritable genetic variation and (2) a trait effect on fitness, and (3) it may be constrained if other evolutionary forces are overriding selection or by constraints, costs and trade-offs. (1) The few studies undertaken so far reported broad-sense heritability for clonal traits. Variation in selectively neutral genetic markers appears as pronounced in populations of clonal as non-clonal plants. However, neutral markers may not reflect heritable variation of life-history traits. Moreover, clonal plants may have been sampled at larger spatial scales. Empirical information on the contribution of somatic mutations to heritable variation is lacking. (2) Clonal life-history traits were found to affect fitness. However, much of this evidence stems from artificial rather than natural environments. (3) The relative importance of gene flow, inbreeding, and genetic drift, compared with selection, in the evolution of clonal life histories is hardly explored. Benefits of clonal life-history traits were frequently studied and found. However, there is also evidence for constraints, trade-offs, and costs. In conclusion, though it is very likely, that clonal life-history traits are adaptive, it is neither clear to which degree this is the case, nor which clonal life-history traits constitute adaptations to which environmental factors. Moreover, evolutionary interactions among clonal life-history traits and between clonal and non-clonal ones, such as the mating system, are not well explored. There remains much interesting work to be done in this field – which will be particularly interesting if it is done in the field.  相似文献   

5.
The amount of quantitative genetic variation within an invasive species influences its ability to adapt to conditions in the new range and its long-term persistence. Consequently, this aspect of genetic diversity (or evolutionary potential) can be a key factor in the success of species invasions. Previous studies have compared the evolutionary potential of populations in introduced versus native ranges of invasive species, but to date no study has examined differences among introduced-range populations of such species in levels of quantitative genetic variation expressed in ecologically relevant environments. We assessed quantitative variation of fitness, life-history, and functional traits in six geographically separate introduced-range populations of the invasive annual Polygonum cespitosum, by comparing norms of reaction for a large sample of genotypes (16–19 per population) expressed in response to two glasshouse environments simulating contrasting habitats in this new range. Patterns of reaction norm diversity varied considerably among the 6 populations studied. Two populations showed very little quantitative genetic variation in both environments. In contrast, two other populations contained significant genetic variation for fitness and life-history traits in the form of genotypes with low performance in both habitats. Finally, two populations showed significant norm of reaction diversity in the form of cross-over interaction: genotypes that performed relatively well in one environment did poorly in the other. Differences among populations in potential selective response are likely to affect the dynamics and future spread of P. cespitosum, since specific populations will likely contribute differently to the invasion process. More generally, our results suggest that the evolutionary component of long-term invasion success may depend on population rather than on species-level processes.  相似文献   

6.
Sexual selection can target many different types of traits. However, the relative influence of different sexually selected traits during evolutionary divergence is poorly understood. We used the field cricket Teleogryllus oceanicus to quantify and compare how five traits from each of three sexual signal modalities and components diverge among allopatric populations: male advertisement song, cuticular hydrocarbon (CHC) profiles and forewing morphology. Population divergence was unexpectedly consistent: we estimated the among‐population (genetic) variance‐covariance matrix, D , for all 15 traits, and Dmax explained nearly two‐thirds of its variation. CHC and wing traits were most tightly integrated, whereas song varied more independently. We modeled the dependence of among‐population trait divergence on genetic distance estimated from neutral markers to test for signatures of selection versus neutral divergence. For all three sexual trait types, phenotypic variation among populations was largely explained by a neutral model of divergence. Our findings illustrate how phenotypic integration across different types of sexual traits might impose constraints on the evolution of mating isolation and divergence via sexual selection.  相似文献   

7.
Knowledge on the relative contribution of direct genetic, maternal and environmental effects to adaptive divergence is important for understanding the drivers of biological diversification. The moor frog (Rana arvalis) shows adaptive divergence in embryonic and larval fitness traits along an acidification gradient in south-western Sweden. To understand the quantitative genetic basis of this divergence, we performed reciprocal crosses between three divergent population pairs and reared embryos and larvae at acid and neutral pH in the laboratory. Divergence in embryonic acid tolerance (survival) was mainly determined by maternal effects, whereas the relative contributions of maternal, additive and nonadditive genetic effects in larval life-history traits differed between traits, population pairs and rearing environments. These results emphasize the need to investigate the quantitative genetic basis of adaptive divergence in multiple populations and traits, as well as different environments. We discuss the implications of our findings for maintenance of local adaptation in the context of migrant and hybrid fitness.  相似文献   

8.
The process of selection on a multivariate set of characters subject to functional constraints is considered from the points of view of both evolutionary optimization theory and quantitative genetics. Special attention is given to life-history characteristics. It is shown that, under suitable conditions (including weak selection), useful approximate formulas for the relations between the functional constraints and the additive genetic variance-covariance matrix can be derived. These can be used to show that the conditions for equilibrium under selection according to the two different approaches are approximately equivalent. Although large negative genetic correlations are to be expected between some pairs of life-history traits in populations at equilibrium under selection, in general some small negative genetic correlations and some positive genetic correlations will also be present. Thus, the observation of a positive genetic correlation between a pair of life-history traits does not necessarily refute the possibility of trade-offs among a multivariate set of traits that contains the pair in question. The relation between the pattern of functional constraints and the genetic correlations is often complex, and little insight into the former can be derived from the latter. The effects of mutations that lower the overall efficiency of resource utilization, thereby creating a positive component to the genetic covariances among life-history traits, are also considered for a specific model. Although such mutations can have a substantial effect on the form of the life history, extreme conditions seem to be needed for them to produce a large effect on the pattern of genetic correlations in a random-mating population. They can, however, cause the appearance of positive correlations following inbreeding, due to the exposure of deleterious recessive or partially recessive mutations. The analysis also suggests that the population means of individual components of a constrained multivariate system may often equilibrate at values that are far from the optima that would be attained if they were selected in isolation from the other members of the system.  相似文献   

9.
Studies of genetic correlations between traits that ostensibly channel the path of evolution away from the direction of natural selection require information on key aspects such as ancestral phenotypes, the duration of adaptive evolution, the direction of natural selection, and genetic covariances. In this study we provide such information in a frog population system. We studied adaptation in life history traits to pool drying in frog populations on islands of known age, which have been colonized from a mainland population. The island populations show strong local adaptation in development time and size. We found that the first eigenvector of the variance–covariance matrix (g max) had changed between ancestral mainland populations and newly established island populations. Interestingly, there was no divergence in g max among island populations that differed in their local adaptation in development time and size. Thus, a major change in the genetic covariance of life-history traits occurred in the colonization of the island system, but subsequent local adaptation in development time took place despite the constraints imposed by the genetic covariance structure.  相似文献   

10.
The dipteran Drosophila melanogaster can express a form of reproductive quiescence or diapause when exposed to low temperature and shortened photoperiod. Among natural populations in the eastern United States, the frequency of lines that express reproductive diapause in the laboratory varies substantially and predictably with latitudinal origin. The goals of the present study were twofold: (1) to examine the impact of genetic variance for diapause expression on multiple traits associated with organismal fitness; and (2) to evaluate the potential for fitness trade-offs between diapause and nondiapause phenotypes that may result in the observed cline. Even prior to diapause entry or expression, inbred lines that express and do not express reproductive diapause in laboratory assays were constitutively distinct for life span, age-specific mortality rates, fecundity profiles, resistance to cold and starvation stress, lipid content, development time, and egg-to-adult viability. Furthermore, estimates of genetic correlations based on line means revealed significant differentiation for genetic variance/covariance matrices between diapause and nondiapause lines. The data indicate the potential for life-history trade-offs associated with variation for the diapause phenotype. The observed cline in diapause incidence in the eastern United States may be generated by these tradeoffs and the associated spatial and/or temporal variation in relative fitness of these two phenotypes in natural populations.  相似文献   

11.
Many characteristics of organisms in free-living populations appear to be under directional selection, possess additive genetic variance, and yet show no evolutionary response to selection. Avian breeding time and clutch size are often-cited examples of such characters. We report analyses of inheritance of, and selection on, these traits in a long-term study of a wild population of the collared flycatcher Ficedula albicollis. We used mixed model analysis with REML estimation ("animal models") to make full use of the information in complex multigenerational pedigrees. Heritability of laying date, but not clutch size, was lower than that estimated previously using parent-offspring regressions, although for both traits there was evidence of substantial additive genetic variance (h2 = 0.19 and 0.29, respectively). Laying date and clutch size were negatively genetically correlated (rA = -0.41 +/- 0.09), implying that selection on one of the traits would cause a correlated response in the other, but there was little evidence to suggest that evolution of either trait would be constrained by correlations with other phenotypic characters. Analysis of selection on these traits in females revealed consistent strong directional fecundity selection for earlier breeding at the level of the phenotype (beta = -0.28 +/- 0.03), but little evidence for stabilising selection on breeding time. We found no evidence that clutch size was independently under selection. Analysis of fecundity selection on breeding values for laying date, estimated from an animal model, indicated that selection acts directly on additive genetic variance underlying breeding time (beta = -0.20 +/- 0.04), but not on clutch size (beta = 0.03 +/- 0.05). In contrast, selection on laying date via adult female survival fluctuated in sign between years, and was opposite in sign for selection on phenotypes (negative) and breeding values (positive). Our data thus suggest that any evolutionary response to selection on laying date is partially constrained by underlying life-history trade-offs, and illustrate the difficulties in using purely phenotypic measures and incomplete fitness estimates to assess evolution of life-history trade-offs. We discuss some of the difficulties associated with understanding the evolution of laying date and clutch size in natural populations.  相似文献   

12.
I used comparative and experimental analysis of egg size in a Sceloporus lizard to examine a fundamental tenet of life-history theory: the presumed trade-offs among offspring number, offspring size, and performance traits related to offspring size that are likely to influence fitness. I analyzed latitudinal and elevational patterns of egg life-history characteristics among populations and experimentally manipulated egg size and hatchling size by removing yolk from the eggs to examine the causal bases of population differences in offspring traits. Mean clutch size among populations increased to the north (seven vs. 12 eggs/clutch, California vs. Washington), whereas egg size decreased (0.65 g vs. 0.40 g). The elevational patterns in southern California paralleled the latitudinal trends. Several offspring life-history traits that are correlated with egg size also varied geographically; these traits included incubation time, hatchling size, growth rate, and hatchling sprint performance. Hatchling viability of experimentally reduced eggs was remarkably high (~70%), even when up to 50% of the yolk was removed. The experimentally reduced eggs and hatchlings demonstrated the degree to which size influences each of the offspring life-history traits considered. Northern eggs hatched sooner, in part because of their small size. Though growth rate is allometrically related to size within each population (i.e., smaller hatchlings grow faster on a mass-specific basis), population differences in growth rate, as measured in the laboratory, are likely to reflect genetic differentiation in the underlying physiology of growth. Moreover, smaller juveniles, because of experimental reduction, had slower sprint speeds than larger juveniles. The slower sprint speed of hatchlings from Washington compared to hatchlings from California is thus largely due to the fact that eggs are smaller in the Washington population. These results provide a basis for interpreting the evolutionary divergence of the suite of traits involved in the evolution of maternal investment per offspring in lizards. For example, evolutionary divergence in some offspring traits functionally related to size (e.g., sprint speed) may be constrained, relative to traits that are determined by other aspects of development or physiology (e.g., growth). I also discuss issues relating to the evolution of maternal investment that could be tested in laboratory and natural populations using experimentally reduced offspring.  相似文献   

13.
A central paradigm of life-history theory is the existence of resource mediated trade-offs among different traits that contribute to fitness, yet observations inconsistent with this tenet are not uncommon. We previously found a clonal population of the aphid Myzus persicae to exhibit positive genetic correlations among major components of fitness, resulting in strong heritable fitness differences on a common host. This raises the question of how this genetic variation is maintained. One hypothesis states that variation for resource acquisition on different hosts may override variation for allocation, predicting strong fitness differences within hosts as a rule, but changes in fitness hierarchies across hosts due to trade-offs. Therefore, we carried out a life-table experiment with 17 clones of M. persicae, reared on three unrelated host plants: radish, common lambsquarters and black nightshade. We estimated the broad-sense heritabilities of six life-history traits on each host, the genetic correlations among traits within hosts, and the genetic correlations among traits on different hosts (cross-environment genetic correlations). The three plants represented radically different environments with strong effects on performance of M. persicae, yet we detected little evidence for trade-offs. Fitness components were positively correlated within hosts but also between the two more benign hosts (radish and lambsquarters), as well as between those and another host tested earlier. The comparison with the most stressful host, nightshade, was hampered by low survival. Survival on nightshade also exhibited genetic variation but was unrelated to fitness on other hosts. Acknowledging that the number of environments was necessarily limited in a quantitative genetic experiment, we suggest that the rather consistent fitness hierarchies across very different plants provided little evidence to support the idea that the clonal variation for life-history traits and their covariance structure are maintained by strong genotypexenvironment interactions with respect to hosts. Alternative explanations are discussed.  相似文献   

14.
Hall MC  Basten CJ  Willis JH 《Genetics》2006,172(3):1829-1844
Evolutionary biologists seek to understand the genetic basis for multivariate phenotypic divergence. We constructed an F2 mapping population (N = 539) between two distinct populations of Mimulus guttatus. We measured 20 floral, vegetative, and life-history characters on parents and F1 and F2 hybrids in a common garden experiment. We employed multitrait composite interval mapping to determine the number, effect, and degree of pleiotropy in quantitative trait loci (QTL) affecting divergence in floral, vegetative, and life-history characters. We detected 16 QTL affecting floral traits; 7 affecting vegetative traits; and 5 affecting selected floral, vegetative, and life-history traits. Floral and vegetative traits are clearly polygenic. We detected a few major QTL, with all remaining QTL of small effect. Most detected QTL are pleiotropic, implying that the evolutionary shift between these annual and perennial populations is constrained. We also compared the genetic architecture controlling floral trait divergence both within (our intraspecific study) and between species, on the basis of a previously published analysis of M. guttatus and M. nasutus. Eleven of our 16 floral QTL map to approximately the same location in the interspecific map based on shared, collinear markers, implying that there may be a shared genetic basis for floral divergence within and among species of Mimulus.  相似文献   

15.
Whether contemporary human populations are still evolving as a result of natural selection has been hotly debated. For natural selection to cause evolutionary change in a trait, variation in the trait must be correlated with fitness and be genetically heritable and there must be no genetic constraints to evolution. These conditions have rarely been tested in human populations. In this study, data from a large twin cohort were used to assess whether selection will cause a change among women in a contemporary Western population for three life-history traits: age at menarche, age at first reproduction, and age at menopause. We control for temporal variation in fecundity (the "baby boom" phenomenon) and differences between women in educational background and religious affiliation. University-educated women have 35% lower fitness than those with less than seven years education, and Roman Catholic women have about 20% higher fitness than those of other religions. Although these differences were significant, education and religion only accounted for 2% and 1% of variance in fitness, respectively. Using structural equation modeling, we reveal significant genetic influences for all three life-history traits, with heritability estimates of 0.50, 0.23, and 0.45, respectively. However, strong genetic covariation with reproductive fitness could only be demonstrated for age at first reproduction, with much weaker covariation for age at menopause and no significant covariation for age at menarche. Selection may, therefore, lead to the evolution of earlier age at first reproduction in this population. We also estimate substantial heritable variation in fitness itself, with approximately 39% of the variance attributable to additive genetic effects, the remainder consisting of unique environmental effects and small effects from education and religion. We discuss mechanisms that could be maintaining such a high heritability for fitness. Most likely is that selection is now acting on different traits from which it did in pre-industrial human populations.  相似文献   

16.
Life-history traits such as longevity and fecundity often show low heritability. This is usually interpreted in terms of Fisher's fundamental theorem to mean that populations are near evolutionary equilibrium and genetic variance in total fitness is low. We develop the causal relationship between metric traits and life-history traits to show that a life-history trait is expected to have a low heritability whether or not the population is at equilibrium. This is because it is subject to all the environmental variation in the metric traits that affect it plus additional environmental variation. There is no simple prediction regarding levels of additive genetic variance in life-history traits, which may be high at equilibrium. Several other patterns in the inheritance of life-history traits are readily predicted from the causal model. These include the strength of genetic correlations between life-history traits, levels of nonadditive genetic variance, and the inevitability of genotype-environment interaction.  相似文献   

17.
Species introductions often bring together genetically divergent source populations, resulting in genetic admixture. This geographic reshuffling of diversity has the potential to generate favourable new genetic combinations, facilitating the establishment and invasive spread of introduced populations. Observational support for the superior performance of admixed introductions has been mixed, however, and the broad importance of admixture to invasion questioned. Under most underlying mechanisms, admixture's benefits should be expected to increase with greater divergence among and lower genetic diversity within source populations, though these effects have not been quantified in invaders. We experimentally crossed source populations differing in divergence in the invasive plant Centaurea solstitialis. Crosses resulted in many positive (heterotic) interactions, but fitness benefits declined and were ultimately negative at high source divergence, with patterns suggesting cytonuclear epistasis. We explored the literature to assess whether such negative epistatic interactions might be impeding admixture at high source population divergence. Admixed introductions reported for plants came from sources with a wide range of genetic variation, but were disproportionately absent where there was high genetic divergence among native populations. We conclude that while admixture is common in species introductions and often happens under conditions expected to be beneficial to invaders, these conditions may be constrained by predictable negative genetic interactions, potentially explaining conflicting evidence for admixture's benefits to invasion.  相似文献   

18.
Two questions were addressed: (1) What is the genetic variance-covariance structure of a suite of four female life history traits in D. melanogaster? and (2) Does the genetic architecture of these traits differ among populations? Three populations of D. melanogaster were studied. Genetic variances and covariances were estimated by sib analysis three times for each population: immediately upon establishment of populations in the laboratory, and subsequently after approximately 6 months and 2 years of laboratory culture. Entire genetic variance-covariance matrices, as well as their individual components, were compared between populations by means of likelihood ratio tests. All traits studied were significantly heritable in at least one-half of estimates. Despite large sample sizes, additive genetic covariances were for the most part not statistically significant, and only two significant negative covariance estimates were obtained throughout the experiments. Therefore, these experiments provide little support for evolutionary life history theories that are based on negative genetic correlations among life history components. Neither do they support the idea that genetic variance for fitness components is maintained by trade-offs. Evidence suggests that the G matrix of one population was initially different from those of the other two populations. Those differences disappeared after 2 years of laboratory culture. At the level of individual (co)variance components, there were relatively few differences among populations, and the overall impression was that the three populations had generally similar genetic architectures for the traits studied.  相似文献   

19.
BACKGROUND AND AIMS: Although Lythrum salicaria (purple loosestrife) was introduced to North America from Europe in the early 1800s, it did not become invasive until the 1930s. Whether hybridization with L. alatum (winged loosestrife) could have played a role in its ultimate spread was tested. METHODS: Six diagnostic morphological traits (flower number per axil, leaf placement, calyx pubescence, style type, plant height and leaf shape) were surveyed in 30 populations of Lythrum across eastern North America. Patterns of AFLP variation were also evaluated using five primer pairs in a 'global screen' of the same North American populations of L. salicaria and L. alatum described above, in L. salicaria from 11 European populations located in Germany, England, Ireland, Austria and Finland, and in six L. salicaria cultivars. KEY RESULTS: All of the North American L. salicaria populations had individuals with alternate leaf placement and 1-2 flowers per leaf axil, which have not been described in Eurasian L. salicaria but predominate in North American L. alatum. In addition, two L. salicaria populations were intermediate in height and leaf ratio between the typical L. salicaria and L. alatum populations in their native fields and when grown in a common greenhouse. In screens of variation patterns using 279 AFLPs, only two fragments were found that clearly supported introgression from L. alatum to L. salicaria. CONCLUSIONS: The evidence indicates that L. salicaria may have hybridized with L. alatum, but if so, only a small fraction of L. alatum genes have been retained in the genome of L. salicaria. This is unlikely to have led to a dramatic adaptive shift unless the introgression of a few key genes into L. salicaria stimulated a genomic reorganization. It is more likely that crossing among genotypes of L. salicaria from multiple introductions provided the necessary variability for new adaptations to arise.  相似文献   

20.
Theory suggests that heterogeneous environments should maintain more genetic variation within populations than homogeneous environments, yet experimental evidence for this effect in quantitative traits has been inconsistent. To examine the effect of heterogeneity on quantitative genetic variation, we maintained replicate populations of Drosophila melanogaster under treatments with constant temperatures, temporally variable temperature, or spatially variable temperature with either panmictic or limited migration. Despite observing differences in fitness and divergence in several wing traits between the environments, we did not find any differences in the additive genetic variance for any wing traits among any of the treatments. Although we found an effect of gene flow constraining adaptive divergence between cages in the limited migration treatment, it did not tend to increase within‐population genetic variance relative to any of the other treatments. The lack of any clear and repeatable patterns of response to heterogeneous versus homogeneous environments across several empirical studies suggests that a single general mechanism for the maintenance of standing genetic variation is unlikely; rather, the relative importance of putative mechanisms likely varies considerably from one trait and ecological context to another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号