首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spermatogonial stem cells (SSCs) are adult stem cells that are slowly cycling and self‐renewing. The pool of SSCs generates very large numbers of male gametes throughout the life of the individual. SSCs can be cultured in vitro for long periods of time, and established SSC lines can be manipulated genetically. Upon transplantation into the testes of infertile mice, long‐term cultured mouse SSCs can differentiate into fertile spermatozoa, which can give rise to live offspring. Here, we show that the testicular soma of mice with a conditional knockout (conKO) in the X‐linked gene Tsc22d3 supports spermatogenesis and germline transmission from cultured mouse SSCs upon transplantation. Infertile males were produced by crossing homozygous Tsc22d3 floxed females with homozygous ROSA26‐Cre males. We obtained 96 live offspring from six long‐term cultured SSC lines with the aid of intracytoplasmic sperm injection. We advocate the further optimization of Tsc22d3‐conKO males as recipients for testis transplantation of SSC lines.  相似文献   

2.
Liver fibrosis (LF) is a dangerous clinical condition with no available treatment. Inflammation plays a critical role in LF progression. Glucocorticoid-induced leucine zipper (GILZ, encoded in mice by the Tsc22d3 gene) mimics many of the anti-inflammatory effects of glucocorticoids, but its role in LF has not been directly addressed. Here, we found that GILZ deficiency in mice was associated with elevated CCL2 production and pro-inflammatory leukocyte infiltration at the early LF stage, resulting in enhanced LF development. RNA interference-mediated in vivo silencing of the CCL2 receptor CCR2 abolished the increased leukocyte recruitment and the associated hepatic stellate cell activation in the livers of GILZ knockout mice. To highlight the clinical relevance of these findings, we found that TSC22D3 mRNA expression was significantly downregulated and was inversely correlated with that of CCL2 in the liver samples of patients with LF. Altogether, these data demonstrate a protective role of GILZ in LF and uncover the mechanism, which can be targeted therapeutically. Therefore, modulating GILZ expression and its downstream targets represents a novel avenue for pharmacological intervention for treating LF and possibly other liver inflammatory disorders.Subject terms: Chronic inflammation, Experimental models of disease  相似文献   

3.
Activation of renal mechanosensory nerves is enhanced by high and suppressed by low sodium dietary intake. Afferent renal denervation results in salt-sensitive hypertension, suggesting that activation of the afferent renal nerves contributes to water and sodium balance. Another model of salt-sensitive hypertension is the endothelin B receptor (ETBR)-deficient rat. ET and its receptors are present in sensory nerves. Therefore, we examined whether ET receptor blockade altered the responsiveness of the renal sensory nerves. In anesthetized rats fed high-sodium diet, renal pelvic administration of the ETBR antagonist BQ-788 reduced the afferent renal nerve activity (ARNA) response to increasing renal pelvic pressure 7.5 mmHg from 26+/-3 to 9+/-3% and the PGE2-mediated renal pelvic release of substance P from 9+/-1 to 3+/-1 pg/min. Conversely, in rats fed low-sodium diet, renal pelvic administration of the ETAR antagonist BQ-123 enhanced the ARNA response to increased renal pelvic pressure from 9+/-2 to 23+/-6% and the PGE2-mediated renal pelvic release of substance P from 0+/-0 to 6+/-1 pg/min. Adding the ETAR antagonist to ETBR-blocked renal pelvises restored the responsiveness of renal sensory nerves in rats fed a high-sodium diet. Adding the ETBR antagonist to ETAR-blocked pelvises suppressed the responsiveness of the renal sensory nerves in rats fed a low-sodium diet. In conclusion, activation of ETBR and ETAR contributes to the enhanced and suppressed responsiveness of renal sensory nerves in conditions of high- and low-sodium dietary intake, respectively. Impaired renorenal reflexes may contribute to the salt-sensitive hypertension in the ETBR-deficient rat.  相似文献   

4.
Tuberous sclerosis complex (TSC) is a multiorgan hamartomatous disease caused by loss of function mutations of either the TSC1 or TSC2 genes. Neurological symptoms of TSC predominate in younger patients, but renal pathologies are a serious aspect of the disease in older children and adults. To study TSC pathogenesis in the kidney, we inactivated the mouse Tsc1 gene in the distal convoluted tubules (DCT). At young ages, Tsc1 conditional knockout (CKO) mice have enlarged kidneys and mild cystogenesis with increased mammalian target of rapamycin complex (mTORC)1 but decreased mTORC2 signaling. Treatment with the mTORC1 inhibitor rapamycin reduces kidney size and cystogenesis. Rapamycin withdrawal led to massive cystogenesis involving both distal as well as proximal tubules. To assess the contribution of decreased mTORC2 signaling in kidney pathogenesis, we also generated Rictor CKO mice. These animals did not have any detectable kidney pathology. Finally, we examined primary cilia in the DCT. Cilia were longer in Tsc1 CKO mice, and rapamycin treatment returned cilia length to normal. Rictor CKO mice had normal cilia in the DCT. Overall, our findings suggest that loss of the Tsc1 gene in the DCT is sufficient for renal cystogenesis. This cytogenesis appears to be mTORC1 but not mTORC2 dependent. Intriguingly, the mechanism may be cell autonomous as well as non-cell autonomous and possibly involves the length and function of primary cilia.  相似文献   

5.
6.
Outer dense fiber 2 (Odf2) is highly expressed in the testis where it encodes a major component of the outer dense fibers of the sperm flagellum. Furthermore, ODF2 protein has recently been identified as a widespread centrosomal protein. While the expression of Odf2 highlighted a potential role for this gene in male germ cell development and centrosome function, the in vivo function of Odf2 was not known. We have generated Odf2 knockout mice using an Odf2 gene trapped embryonic stem cell (ESC) line. Insertion of a gene trap vector into exon 9 resulted in a gene that encodes a severely truncated protein lacking a large portion of its predicted coil forming domains as well as both leucine zipper motifs that are required for protein-protein interactions with ODF1, another major component of the outer dense fibers. Although wild-type and heterozygous mice were recovered, no mice homozygous for the Odf2 gene trap insertion were recovered in an extended breeding program. Furthermore, no homozygous embryos were found at the blastocyst stage of embryonic development, implying a critical pre-implantation role for Odf2. We show that Odf2 is expressed widely in adults and is also expressed in the blastocyst stage of preimplantation development. These findings are in contrast with early studies reporting Odf2 expression as testis specific and suggest that embryonic Odf2 expression plays a critical role during preimplantation development in mice.  相似文献   

7.
8.
9.
10.
Reduced early alcohol-induced liver injury in CD14-deficient mice   总被引:11,自引:0,他引:11  
Activation of Kupffer cells by gut-derived endotoxin is associated with alcohol-induced liver injury. Recently, it was shown that CD14-deficient mice are more resistant to endotoxin-induced shock than wild-type controls. Therefore, this study was designed to investigate the role of CD14 receptors in early alcohol-induced liver injury using CD14 knockout and wild-type BALB/c mice in a model of enteral ethanol delivery. Animals were given a high-fat liquid diet continuously with ethanol or isocaloric maltose-dextrin as control for 4 wk. The liver to body weight ratio in wild-type mice (5.8 +/- 0.3%) was increased significantly by ethanol (7.3 +/- 0.2%) but was not altered by ethanol in CD14-deficient mice. Ethanol elevated serum alanine aminotransferase levels nearly 3-fold in wild-type mice, but not in CD14-deficient mice. Wild-type and knockout mice given the control high-fat diet had normal liver histology, whereas ethanol caused severe liver injury (steatosis, inflammation, and necrosis; pathology score = 3.8 +/- 0.4). In contrast, CD14-deficient mice given ethanol showed minimal hepatic changes (score = 1.6 +/- 0.3, p < 0.05). Additionally, NF-kappa B, TGF-beta, and TNF-alpha were increased significantly in wild-type mice fed ethanol but not in the CD14 knockout. Thus, chronic ethanol feeding caused more severe liver injury in wild-type than CD14 knockouts, supporting the hypothesis that endotoxin acting via CD14 plays a major role in the development of early alcohol-induced liver injury.  相似文献   

11.
12.
In the distal colon, the epithelial sodium channel (ENaC) is rate limiting for sodium absorption. Progress in the molecular characterization of ENaC expression and trafficking in response to the mineralocorticoid aldosterone has been hampered, since no epithelial colonic cell line existed expressing functional ENaC stimulated by nanomolar aldosterone via mineralocorticoid receptor (MR). Here, we present a human colonic epithelial cell line inducibly expressing the MR (HT-29/B6-Tet-On-MR) which exhibits aldosterone-dependent ENaC-mediated sodium transport in the presence of the short-chain fatty acid butyrate. Butyrate was necessary for high-level expression of MR which allowed for aldosterone-dependent upregulation of β- and γ-ENaC expression. As butyrate alone was not capable of promoting ENaC-mediated sodium transport, aldosterone-induced GILZ (glucocorticoid-induced leucine zipper protein) was identified as a candidate factor increasing apical ENaC levels.  相似文献   

13.
The E2A-HLF fusion gene, formed by the t(17;19)(q22;p13) translocation in childhood acute pro-B-cell leukemia, encodes a hybrid protein that contains the paired trans-activation domains of E2A (E12/E47) linked to the basic region/leucine zipper DNA-binding and dimerization domain of hepatic leukemia factor (HLF). To assess the transforming potential of this novel gene, we introduced it into NIH 3T3 murine fibroblasts by using an expression vector that also contained the neomycin resistance gene. Cells selected for resistance to the neomycin analog G418 formed aberrant colonies in monolayer cultures, marked by increased cell density and altered morphology. Transfected cells also grew readily in soft agar, producing colonies whose sizes correlated with E2A-HLF expression levels. Subclones expanded from colonies with high levels of the protein reproducibly formed tumors in nude mice and grew to higher plateau-phase cell densities in reduced-serum conditions than did parental NIH 3T3 cells. By contrast, NIH 3T3 cells expressing mutant E2A-HLF proteins that lacked either of the bipartite E2A trans-activation domains or the HLF leucine zipper domain failed to show oncogenic properties, including anchorage-independent cell growth. Thus, both of the E2A trans-activation motifs and the HLF leucine zipper dimerization domain are essential for the transforming potential of the chimeric E2A-HLF protein, suggesting a model in which aberrant regulation of the expression pattern of downstream target genes contributes to leukemogenesis.  相似文献   

14.
15.
Mice in which exon 2 of the glucocorticoid receptor (GR) has been disrupted [GR exon 2 knockout (GR2KO)] have been used as a model to study the requirement for this receptor in a number of biological systems. A recent report showed that these mice actually express a truncated ligand-binding GR fragment, prompting us to ask whether this mutation truly results in a glucocorticoid-insensitive phenotype. Based on cDNA microarray analysis of fetal thymocytes, we found that glucocorticoids were able to enhance or repress activation-induced gene expression in GR2KO and wild-type thymocytes to a similar degree. Moreover, although changes in gene expression induced by glucocorticoids alone were blunted, the expression of a substantial number of genes in GR2KO thymocytes was modulated by stimulation with glucocorticoids. Among these genes, as confirmed by quantitative real-time PCR, was the classic glucocorticoid-responsive gene glutamine synthetase as well as genes implicated in T cell development and function such as IL-7 receptor alpha-chain and glucocorticoid-induced leucine zipper (GIL2). Thus, the truncated C-terminal GR2KO product, which lacks the major transactivation domain, retains, to a large extent, the ability to regulate gene expression both positively and negatively in a ligand-responsive manner when expressed in vivo.  相似文献   

16.
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in the TSC1 or TSC2 gene. Patients afflicted with TSC develop tumors in various organ systems, but cerebral pathology is particularly severe. Conventional gene disruption of the Tsc1 or Tsc2 gene in mice cause limited central nervous system pathology. Homozygous deletion of either gene causes midgestation lethality. To circumvent the homozygous lethality of the conventional Tsc2 knockout we have generated a conditional allele of the Tsc2 gene by homologous recombination in mouse ES cells. The homozygous Tsc2(flox/flox) mice are identical to wildtype in many organs typically affected by TSC, especially the brain. Using this Tsc2(flox) allele we have generated a null allele using Cre recombination. This allele will be useful in investigating TSC pathology with appropriate cell and organ specific Cre-transgenic mice.  相似文献   

17.
18.
The present study was conducted to determine the possible role of intracellular Ca2+ in lipid peroxide formation in endotoxin-poisoned mice. Leakages of LDH isozyme and acid phosphatase in serum of mice fed a Ca2+-deficient diet were remarkably increased after administration of 200 micrograms of endotoxin compared to that in endotoxin-nontreated Ca2+-deficient mice. Superoxide anion generation in liver of Ca2+-deficient mice and in mice fed a normal diet greatly increased after endotoxin administration. On the contrary, after endotoxin injection there was scarcely any difference in SOD activity of liver of Ca2+-deficient mice as compared to that in endotoxin-nontreated Ca2+-deficient mice. In spite of an increase of superoxide anion generation there was little or no effect of endotoxin administration on lipid peroxide formation in mice given a Ca2+-deficient diet. In the mice treated with a Ca2+-deficient diet, free radical scavenger levels (alpha-tocopherol and nonprotein sulfhydryl) in liver tissue after endotoxin injection were markedly decreased compared to those in Ca2+-deficient diet alone. Mice fed a normal diet exhibited a significant decrease of lipid peroxide level in liver by injection of endotoxin together with verapamil (10 mg/kg, s.c.). When mice fed a normal diet were injected with endotoxin, the state 3 respiratory activity showed a 49% decrease, and respiratory control ratio (RCR) of endotoxemic mice liver mitochondria was 38% lower than normal liver mitochondria. No difference could be observed in levels of state 3 and RCR between the mice given verapamil plus endotoxin and the normal mice. These findings suggest the possibility that Ca2+ may participate in the free radical formation in the liver during endotoxemia and also that Ca2+ may play an important role in the damage of liver mitochondrial function in endotoxemic mice.  相似文献   

19.
20.
Post‐traumatic stress disorder (PTSD) is an anxiety disorder that develops in predisposed individuals following a terrifying event. Studies on isogenic animal populations might explain susceptibility to PTSD by revealing associations between the molecular and behavioural consequences of traumatic stress. Our study employed four inbred mouse strains to search for differences in post‐stress response to a 1.5‐mA electric foot shock. One day to 6 weeks after the foot shock anxiety, depression and addiction‐like phenotypes were assessed. In addition, expression levels of selected stress‐related genes were analysed in hippocampus and amygdala. C57BL/6J mice exhibited up‐regulation in the expression of Tsc22d3, Nfkbia, Plat and Crhr1 genes in both brain regions. These alterations were associated with an increase of sensitized fear and depressive‐like behaviour over time. Traumatic stress induced expression of Tsc22d3, Nfkbia, Plat and Fkbp5 genes and developed social withdrawal in DBA/2J mice. In 129P3/J strain, exposure to stress produced the up‐regulation of Tsc22d3 and Nfkbia genes and enhanced sensitivity to the rewarding properties of morphine. Whereas, SWR/J mice displayed increase only in Pdyn expression in the amygdala and had the lowest conditioned fear. Our results reveal a complex genetic background of phenotypic variation in response to stress and indicate the SWR/J strain as a valuable model of stress resistance. We found potential links between the alterations in expression of Tsc22d3, Nfkbia and Pdyn, and different aspects of susceptibility to stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号