首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Speciation is typically accompanied by the formation of isolation barriers between lineages. Commonly, reproductive barriers are separated into pre‐ and post‐zygotic mechanisms that can evolve with different speed. In this study, we measured the strength of different reproductive barriers in two closely related, sympatric orchids of the Ophrys insectifera group, namely Ophrys insectifera and Ophrys aymoninii to infer possible mechanisms of speciation. We quantified pre‐ and post‐pollination barriers through observation of pollen flow, by performing artificial inter‐ and intraspecific crosses and analyzing scent bouquets. Additionally, we investigated differences in mycorrhizal fungi as a potential extrinsic factor of post‐zygotic isolation. Our results show that floral isolation mediated by the attraction of different pollinators acts apparently as the sole reproductive barrier between the two orchid species, with later‐acting intrinsic barriers seemingly absent. Also, the two orchids share most of their fungal mycorrhizal partners in sympatry, suggesting little or no importance of mycorrhizal symbiosis in reproductive isolation. Key traits underlying floral isolation were two alkenes and wax ester, present predominantly in the floral scent of O. aymoninii. These compounds, when applied to flowers of O. insectifera, triggered attraction and a copulation attempt of the bee pollinator of O. aymoninii and thus led to the (partial) breakdown of floral isolation. Based on our results, we suggest that adaptation to different pollinators, mediated by floral scent, underlies species isolation in this plant group. Pollinator switches may be promoted by low pollination success of individuals in dense patches of plants, an assumption that we also confirmed in our study.  相似文献   

2.
Species integrity relies on the maintenance of reproductive isolation, particularly between closely related species. Further, it has been hypothesized that the presence of heterospecific pollen on flower stigmas adversely affects plant reproduction with increasing effect in closely related species. Using two pairs of co‐occurring buzz‐pollinated Thysanotus spp. in the Mediterranean climate region of Perth, Western Australia, we quantified the effect of heterospecific pollen on fruit and seed set. We first determined the mating systems of the two focal species using self‐ and outcross pollen, followed by separate treatments with heterospecific pollen within each species pair. Of the two species receiving pollen, Thysanotus triandrus had a mixed mating system, but with significantly lower fruit and seed set from self‐pollen relative to outcross pollen. Thysanotus tenellus was autogamous with no difference in fruit or seed set between autogamous, self‐ or outcross pollinations. Heterospecific pollen had no effect on fruit or seed set of either focal species. These outcomes point to post‐pollination reproductive isolation, consistent with a floral morphology that causes low specificity of pollen placement and thus a poor capacity for pre‐pollination discrimination. Negative effects of heterospecific pollen, therefore, do not appear to play a role in the reproduction in this group of buzz‐pollinated flowers.  相似文献   

3.
In plants, pollinator adaptation is considered to be a major driving force for floral diversification and speciation. However, the genetic basis of pollinator adaptation is poorly understood. The orchid genus Ophrys mimics its pollinators' mating signals and is pollinated by male insects during mating attempts. In many species of this genus, chemical mimicry of the pollinators' pheromones, especially of alkenes with different double-bond positions, plays a key role for specific pollinator attraction. Thus, different alkenes produced in different species are probably a consequence of pollinator adaptation. In this study, we identify genes that are likely involved in alkene biosynthesis, encoding stearoyl-acyl carrier protein (ACP) desaturases (SAD), in three closely related Ophrys species, O. garganica, O. sphegodes, and O. exaltata. Combining floral odor and gene expression analyses, two SAD homologs (SAD1/2) showed significant association with the production of (Z)-9- and (Z)-12-alkenes that were abundant in O. garganica and O. sphegodes, supporting previous biochemical data. In contrast, two other newly identified homologs (SAD5/6) were significantly associated with (Z)-7-alkenes that were highly abundant only in O. exaltata. Both molecular evolutionary analyses and pollinator preference tests suggest that the alkenes associated with SAD1/2 and SAD5/6 are under pollinator-mediated divergent selection among species. The expression patterns of these genes in F(1) hybrids indicate that species-specific expression differences in SAD1/2 are likely due to cis-regulation, while changes in SAD5/6 are likely due to trans-regulation. Taken together, we report a genetic mechanism for pollinator-mediated divergent selection that drives adaptive changes in floral alkene biosynthesis involved in reproductive isolation among Ophrys species.  相似文献   

4.
Few studies have quantified the full range of pre‐ and postzygotic barriers that limit introgression between closely related plant species. Here, we assess the strength of four isolating mechanisms operating between two morphologically similar and very closely related sympatric orchid taxa, Chiloglottis valida and C. aff. jeanesii. Each taxon sexually attracts its specific wasp pollinator via distinct floral volatile chemistry. Behavioral experiments with flowers and synthetic versions of their floral volatiles confirmed that very strong pollinator isolation is mediated by floral odor chemistry. However, artificially placing flowers of the two taxa in contact proximity revealed the potential for rare interspecific pollination. Although we found hybrid vigor in F1 hybrids produced by hand‐crossing, genetic analysis at both nuclear and chloroplast loci showed significant and moderate‐to‐strong genetic differentiation between taxa. A Bayesian clustering method for the detection of introgression at nuclear loci failed to find any evidence for hybridization across 571 unique genotypes at one site of sympatry. Rather than inhibiting gene flow, postpollination barriers surveyed here show no contribution to overall reproductive isolation. This demonstrates the primacy of pollinators in maintaining species boundaries in these orchids, which display one of the strongest known examples of prepollination floral isolation.  相似文献   

5.
Mechanisms preventing interspecific pollination are important in closely related plant species, in particular when post-zygotic barriers are weak or absent. We investigated the role of floral odour in reproductive isolation between the two closely related species Silene latifolia and S. dioica. First, we tested whether floral odour composition and emission differed between the species. We found significant odour differences, but contrary to expectations, both species showed a rhythmic emission of the same compounds between day and night. Second, in a field experiment, odour of the two species was made more similar by applying phenylacetaldehyde to flowers. This manipulation led to higher pollen-analogue transfer between species, revealing that floral odour differences are important for maintaining reproductive isolation. We conclude that differences in single key compounds can reduce pollen transfer across species boundaries by pollinators and demonstrate that odour differences are an important component of premating floral isolation between closely related plant species.  相似文献   

6.
Abstract Orchids of the genus Ophrys (Orchidaceae) are pollinated by male bees and wasps through sexual deception. The Ophrys sphegodes group encompasses several closely related species that differ slightly in floral morphology and are pollinated by different solitary bee species. Populations representing different species of the O. sphegodes group often flower simultaneously in sympatry. To test whether gene flow across the species boundaries occurs in these sympatric populations, or whether they are reproductively isolated, we examined the distribution of genetic variation within and among populations and species of this group. We collected at each of five different localities in southern France and Italy two sympatric, co-flowering Ophrys populations, representing six Ophrys species in total. The six microsatellite loci surveyed were highly variable. Genetic differentiation among geographically distant populations of the same species was lower than differentiation among sympatric populations of different species. However, the strength of genetic differentiation among species was among the lowest reported for orchids. Genotype assignment tests and marker-based estimates of gene flow revealed that gene flow across species boundaries occurred and may account for the low observed differentiation among species. These results suggest that sexual deceit pollination in Ophrys may be less specific than thought, or that rare mistakes occur.  相似文献   

7.
Taxonomically related species can differ in a number of reproductive traits, which may translate into a differential mating system and pollination success. Here we compare two hermaphroditic insect-pollinated Daphne species (D. rodriguezii and D. gnidium) which differ in distribution (island endemic vs. mediterranean) and floral traits (long- vs. short-tube corolla). We investigated their mating system and pollen limitation by means of hand-pollination experiments and quantified the diversity and abundance of flower visitors by direct observations. Plant size and five reproductive traits (flower production, proportion of viable anthers, pollen production, flower tube length and tepal area) were studied to assess how they contribute to reproductive success, measured as proportion of pollen grains germinated per stigma and fruit set. Selfing was very low and pollen limitation existed in both species, though was higher in D. rodriguezii probably due to the scarcity of flower visitors. The low fruit set in both species suggests that most of the pollen grains found on stigmas are self-pollen. Pollinators appeared to favour some floral traits (specifically, flower tube length or tepal area) in both species, although flower crop in D. rodriguezii was the only reproductive trait influencing fruit set. In both species, the highest variability in reproductive traits and pollination success was within individuals. Our findings suggest that despite both species showed similar mating system, dependency on outcrossing pollen and selection of floral traits, pollen limitation was higher in D. rodriguezii, probably as a higher proportion of self-pollen arrives to its stigmas.  相似文献   

8.
Local adaptation to different pollinators is considered one of the possible initial stages of ecological speciation as reproductive isolation is a by‐product of the divergence in pollination systems. However, pollinator‐mediated divergent selection will not necessarily result in complete reproductive isolation, because incipient speciation is often overcome by gene flow. We investigated the potential of pollinator shift in the sexually deceptive orchids Ophrys sphegodes and Ophrys exaltata and compared the levels of floral isolation vs. genetic distance among populations with contrasting predominant pollinators. We analysed floral hydrocarbons as a proxy for floral divergence between populations. Floral adoption of pollinators and their fidelity was tested using pollinator choice experiments. Interpopulation gene flow and population differentiation levels were estimated using AFLP markers. The Tyrrhenian O. sphegodes population preferentially attracted the pollinator bee Andrena bimaculata, whereas the Adriatic O. sphegodes population exclusively attracted A. nigroaenea. Significant differences in scent component proportions were identified in O. sphegodes populations that attracted different preferred pollinators. High interpopulation gene flow was detected, but populations were genetically structured at species level. The high interpopulation gene flow levels independent of preferred pollinators suggest that local adaptation to different pollinators has not (yet) generated detectable genome‐wide separation. Alternatively, despite extensive gene flow, few genes underlying floral isolation remain differentiated as a consequence of divergent selection. Different pollination ecotypes in O. sphegodes might represent a local selective response imposed by temporal variation in a geographical mosaic of pollinators as a consequence of the frequent disturbance regimes typical of Ophrys habitats.  相似文献   

9.
BACKGROUND AND AIMS: Pollen characters have been widely used in defining evolutionary trends in orchids. In recent years, information on pollination biology and phylogenetic patterns within Orchidinae has become available. Hence, the aim of the presented work is to re-evaluate exine micromorphology of Orchidinae in light of recent phylogenetic studies and to test whether pollen micromorphology strictly depends on phylogenetic relationships among species or whether it is influenced by the marked differences in pollination ecology also reported among closely related species. METHODS: Pollen sculpturing of 45 species of Orchidinae and related taxa was investigated using scanning electron microscopy. To cover potential intraspecific variation, several accessions of the same species were examined. KEY RESULTS: Orchidinae show remarkable variation in exine sculpturing, with a different level of variation within species groups. In some genera, such as Serapias (rugulate) and Ophrys (psilate to verrucate), intrageneric uniformity corresponds well to a common pollination strategy and close relationships among species. However, little exine variability (psilate-scabrate and scabrate-rugulate) was also found in the genus Anacamptis in spite of striking differences in floral architecture and pollination strategies. A larger variety of exine conditions was found in genera Dactylorhiza (psilate, psilate-scabrate and reticulate) and Orchis s.s. (psilate, reticulate, perforate-rugulate and baculate) where no unequivocal correspondence can be found to either phylogenetic patterns or pollination strategies. CONCLUSIONS: Changes in pollen characteristics do not consistently reflect shifts in pollination strategy. A unique trend of exine evolution within Orchidinae is difficult to trace. However, the clades comprising Anacamptis, Neotinea, Ophrys and Serapias show psilate to rugulate or scabrate pollen, while that of the clade comprising Chamorchis, Dactylorhiza, Gymnadenia, Orchis s.s., Platanthera, Pseudorchis and Traunsteinera ranges from psilate to reticulate. Comparison of the data with exine micromorphology from members of the tribe Orchidieae and related tribes suggests a possible general trend from reticulate to psilate.  相似文献   

10.
In the sexually deceptive orchid genus Ophrys , reproductive isolation is based on the specific attraction of males of a single pollinator species by mimicking the female species-specific sex pheromone. Changes in the odor composition can lead to hybridization and speciation by the attraction of a new pollinator that acts as an isolation barrier toward other sympatrically occurring Ophrys species. On Sardinia, we investigated the evolutionary origin of two sympatrically occurring endemic species, Ophrys chestermanii and O. normanii , which are both pollinated by males of the cuckoo bumblebee Bombus vestalis . Chemical and electrophysiological analyses of floral scent and genetic analyses with amplified fragment length polymorphisms and plastid-markers clearly showed that O. normanii is neither a hybrid nor a hybrid species. The two species evolved from different ancestors, viz. O. normanii from O. tenthredinifera and O. chestermanii from O. annae , and converged to the same pollinator attracted by the same bouquet of polar compounds. In spite of sympatry, pollinator sharing and overlapping blooming periods, no evidence has been obtained for gene flow between O. chestermanii and O. normanii indicating an unusual case among sexually deceptive orchids in which postmating rather than premating reproductive isolation mechanisms strongly prevent interspecific gene flow.  相似文献   

11.
Knowledge about mixed mating systems can improve our understanding of the evolutionary dynamics of reproductive systems. Here we report a study of the pollination system (floral and reproductive biology, pollen limitation and stigmatic pollen load, floral visitors and inbreeding depression) of Fumana hispidula, a Mediterranean subshrub belonging to a species group with a strong selfing tendency. Autonomous self-pollination, hand self- and hand cross-pollination, open pollination and controls yielded fruits (0.28, 0.65, 0.68, 0.38, and 0.67, respectively); however, autonomous self-pollination resulted in the lowest fruit set. All individuals were fully self-compatible but we found great inter-individual variation in autonomous self-pollination ability, which was probably related to a variable expression of herkogamy degree. Inbreeding depression was low (0.040 for fruit set, 0.015 for seed set and ?0.026 for seed mass). The pollen supplementation experiment did not reveal pollen limitation and pollinators were seen visiting the flowers during the observation periods. These results support the idea that F. hispidula has a mixed mating strategy, which represents a successful reproduction mode in their patchy habitats.  相似文献   

12.
In animal‐pollinated plants, both the spatial distribution of flowering individuals and the number of flowers that an individual displays affect pollen deposition rates and female reproductive success. Heterostylous species are likely to be particularly sensitive to the contingencies of spatial distribution, as they are reproductively subdivided into distinct mating groups, which usually exhibit self‐ and intra‐morph incompatibility and differ in floral morphology. In this paper, we explore the joint effects of both spatial distribution of potential mates and floral display size on morph‐specific pollen deposition rates and seed set patterns in two natural populations of Pulmonaria officinalis, a distylous species with a weak self‐incompatibility system. Both total stigmatic pollen load and the proportion of legitimate pollen decreased with increasing spatial isolation. Legitimate (intermorph) pollen transfer was, however, asymmetric and decreased more rapidly with decreasing proximity to a compatible legitimate mating partner in the S‐morph than in the L‐morph. Total stigmatic pollen loads per flower increased with increasing floral display size, indicating that large plants are disproportionately more visited than smaller individuals. However, because legitimate pollen deposition decreased with increasing floral display size, these results also suggest that larger numbers of flowers increase the degree of geitonogamous pollination. In both the L‐ and S‐morph, seed set significantly decreased with increasing isolation from a legitimate mating partner, but in the L‐morph seed set was less dependent on the spatial distribution of the S‐morph. In addition, seed set significantly increased with floral display size in the L‐morph, but not in the S‐morph. These findings indicate that the spatial distribution of potential mates and variation in floral display size may cause morph‐specific differences in pollen deposition rates and female reproductive success.  相似文献   

13.
The reproductive‐assurance hypothesis predicts that mating‐system traits will evolve towards increased autonomous self‐pollination in plant populations experiencing unreliable pollinator service. We tested this long‐standing hypothesis by assessing geographic covariation among pollinator reliability, outcrossing rates, heterozygosity and relevant floral traits across populations of Dalechampia scandens in Costa Rica. Mean outcrossing rates ranged from 0.16 to 0.49 across four populations, and covaried with the average rates of pollen arrival on stigmas, a measure of pollinator reliability. Across populations, genetically based differences in herkogamy (anther–stigma distance) were associated with variation in stigmatic pollen loads, outcrossing rates and heterozygosity. These observations are consistent with the hypothesis that, when pollinators are unreliable, floral traits promoting autonomous selfing evolve as a mechanism of reproductive assurance. Extensive covariation between floral traits and mating system among closely related populations further suggests that floral traits influencing mating systems track variation in adaptive optima generated by variation in pollinator reliability.  相似文献   

14.
  • Reproductive success of a plant species is largely influenced by the outcome of mating pattern in a population. It is believed that a significantly larger proportion of animal‐pollinated plants have evolved a mixed‐mating strategy, the extent of which may vary among species. It is thus pertinent to investigate the key contributors to mating success, especially to identify the reproductive constraints in depauperate populations of threatened plant species.
  • We examined the contribution of floral architecture, pollination mechanism and breeding system on the extent of outcrossing rate in a near‐threatened tree species, Wrightia tomentosa. The breeding system was ascertained from controlled pollination experiments. In order to determine outcrossing rate, 60 open‐pollinated progeny were analysed using an AFLP markers.
  • Although the trees are self‐compatible, herkogamy and compartmentalisation of pollen and nectar in different chambers of the floral tube effectively prevent spontaneous autogamy. Pollination is achieved through specialised interaction with moths. Differential foraging behaviour of settling moths and hawkmoths leads to different proportions of geitonogamous and xenogamous pollen on the stigma. However, most open‐pollinated progeny were the result of xenogamy (outcrossing rate, tm = 0.68).
  • The study shows that floral contrivances and pollination system have a strong influence on mating pattern. The differential foraging behaviour of the pollinators causes deposition of a mixture of self‐ and cross‐pollen to produce a mixed brood. Inbreeding depression and geitonogamy appear to play a significant role in sustaining mixed mating in this species.
  相似文献   

15.
In closely related plant species that display strong similarities in phenology and pollinator communities, differences in breeding system and associated shifts in floral traits may have important effects on the magnitude and direction of heterospecific pollen flow and hybridization. Here, we quantified the strength of several pre‐ and postzygotic barriers acting between the facultatively outcrossing Centaurium erythraea and the predominantly selfing C. littorale via a suite of experiments, and estimated the frequency of hybridization in the field using molecular markers. The reproductive barriers primarily responsible for preventing hybridization were essentially prezygotic and these acted asymmetrically. Due to differences in floral display, pollen production, and pollen transfer rates, heterospecific pollen flow occurred predominantly from C. erythraea to C. littorale. In C. littorale, on the other hand, close anther–stigma positioning and resulting higher capacity for autonomous selfing functioned as an efficient barrier to counterbalance the higher risk for hybrid mating. In both species the action of all reproductive barriers resulted in a small opportunity for hybrid establishment, which was confirmed by the occurrence of only ~1% putative hybrids in the field. Our findings confirm that differences in breeding system affect heterospecific pollen transfer patterns and that autonomous selfing may efficiently prevent hybridization.  相似文献   

16.
Failures in the process of pollen transfer among conspecific plants can severely impact female reproductive success. Thus, pollen limitation can cause selection on plant mating systems and floral traits. The relationships between pollen limitation and floral traits might be partly mediated by the quantity and identity of pollinator visits. However, very little is known about the relationship between pollinator visits and pollen limitation. We examined the relationships between pollen limitation and floral traits at the community level to connect them to community ecology processes. We used 48 plant species from two contrasting communities: one species‐rich lowland community and one species‐poor alpine community. In addition, we calculated visitation rates and ecological pollination generalization for 38 of the species to examine the relationship between pollinator visitation and pollen limitation at the community level. We found low overall levels of pollen limitation that did not differ significantly between the alpine and the lowland community. In both communities, species with evolutionary specialized flowers were more pollen limited than species with unspecialized flowers. Species’ visitation rates and selfing capability were negatively related to pollen limitation in the alpine community, where pollinators are scarcer. However, flower size/number, ecological generalization of plants and flowering onset had greater effects on pollen limitation levels at the lowland community, indicating that the identity of the visitors and plant‐plant competitive interactions are more decisive for plant reproduction in this species‐rich community. There, pollen limitation increased with flower size and flowering onset, and decreased with ecological generalization, but only in species with evolutionary specialized flowers. Our study suggests that selection on plant mating system and floral traits may be idiosyncratic to each particular community and highlights the benefits of conducting community‐level studies for a better understanding of the processes underlying evolutionary responses to pollen limitation.  相似文献   

17.
Cane JH 《Oecologia》2011,167(1):107-116
Pollinators, even floral generalists (=polyleges), typically specialize during individual foraging bouts, infrequently switching between floral hosts. Such transient floral constancy restricts pollen flow, and thereby gene flow, to conspecific flowers in mixed plant communities. Where incipient flowering species meet, however, weak cross-fertility and often similar floral traits can yield mixed reproductive outcomes among pollinator-dependent species. In these cases, floral constancy by polyleges sometimes serves as an ethological mating barrier. More often, their foraging infidelities instead facilitate host introgression and hybridization. Many other bee species are oligolectic (taxonomic specialists for pollen). Oligoleges could be more discriminating connoisseurs than polyleges when foraging among their limited set of related floral hosts. If true, greater foraging constancy might ensue, contributing to positive assortative mating and disruptive selection, thereby facilitating speciation among their interfertile floral hosts. To test this Connoisseur Hypothesis, nesting females of two species of oligolectic Osmia bees were presented with randomized mixed arrays of flowers of two sympatric species of their pollen host, Balsamorhiza, a genus known for hybridization. In a closely spaced grid, the females of both species preferred the larger flowered B. macrophylla, evidence for discrimination. However, both species’ females showed no floral constancy whatsoever during their individual foraging bouts, switching randomly between species proportional to their floral preference. In a wider spaced array in which the bouquets reflected natural plant spacing, foraging oligolectic bees often transferred pollen surrogates (fluorescent powders) both between conspecific flowers (geitonogamy and xenogamy) and between the two Balsamorhiza species. The Connoisseur Hypothesis was therefore rejected. Foraging infidelity by these oligolectic Osmia bees will contribute to introgression and hybridization where interfertile species of Balsamorhiza meet and flower together. A literature review reveals that other plant genera whose species hybridize also attract numerous oligolectic bees, providing independent opportunities to test the generality of this conclusion.  相似文献   

18.
Reproductive isolation is critical to the diversification of species. Postpollination barriers may be important in limiting gene flow between closely related species, but they are relatively cryptic and their evolution is poorly understood. Here, we review the role of postpollination reproductive isolation in plants, including the various stages at which it operates and the hypotheses for how it may evolve. We then review empirical studies in the plant genus Costus, evaluating documented postpollination barriers in light of these hypotheses. We summarize isolation due to parental style length differences and present evidence supporting the hypothesis that the differences are in part a by-product of selection on floral morphology. Additionally, we show that reduced pollen adhesion, germination, and tube growth contribute to reproductive isolation between two closely related sympatric species of Costus. Geographic variation in the strength of these crossing barriers supports the hypothesis that they evolved under reinforcement, or direct natural selection to strengthen isolation.  相似文献   

19.
Reproductive barriers are important determinants of gene flow between divergent populations or species. We studied pollen competition as a post‐mating reproductive barrier between Silene dioica and S. latifolia. Gene flow between these species is extensive, but early‐generation hybrids are rare. In an experiment with conspecific, heterospecific and 50 : 50 mixed pollinations in the two species, pollination treatments did not significantly affect seed set and seed weight. However, molecular determination of siring success after mixed pollinations showed that fewer than expected hybrids were produced in S. latifolia (18% hybrids) but not in S. dioica (51% hybrids). This constitutes an asymmetric post‐mating reproductive barrier and likely contributes to the rarity of early‐generation hybrids. Our study shows that pollen competition can be an effective barrier to hybridization between closely related species that likely acts in concert with other reproductive barriers.  相似文献   

20.
Knowledge of the reproductive biology of endemic plants improves our understanding of how mating system may be related to patterns of species abundance and provides a basis for the development of rational conservation programmes. In this paper we present natural population data on the floral biology and reproductive ecology of the endemic Mediterranean species Cyclamen balearicum Willk. This is a long-lived, diploid perennial herb which occurs in southern France in five fragmented and isolated regions and on the Balearic Islands of Mallorca, Menorca, Ibiza, Cabrera and Draponera. Our observations indicate a particularly scarce pollinator activity (rare syrphid visits) and dispersal by ants over small distances. A controlled pollination experiment in a natural population showed that in southern France C. balearicum is fully self-compatible and that selfing is autonomous and probably delayed (i.e. following opportunities for outcrossing). The proximity of stigmas and anthers will favour autonomous selfing. The high pollen/ovule ratio indicates nevertheless that C. balearicum has a mixed mating system. Patterns of variation in stigma-anther separation and pollen production per flower suggest that not only has the current mating system of the species evolved from an outcrossing ancestor but that due to the fragmentation and isolation of populations greater levels of selfing have evolved in southern France (and to an intermediate degree on Ibiza and Menorca). On the island of Mallorca where larger continuous belts of C. balearicum habitat still exist the species has floral traits indicating a more outcrossed mating system. To our knowledge this is the first paper to document such trends in floral traits in the endemic component of the Mediterranean flora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号