首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fatty acid compositions of the compound eyes of insects (soldier-bug, Hemiptera, and silk moth, Lepidoptera), crustaceans (crayfish and grapsid crab, Decapoda) and inner and outer segments of visual cells of a squid (Cephalopoda, Mollusca) were analyzed by gaschromatography for interspecific comparison. Fatty acid compositions showed great variation among species. In insect compound eyes, 16:0 and 18:0 were the main saturated fatty acids, and 18:1 was the dominant unsaturated fatty acid. Silk moth eyes contained, in addition, considerable amounts of 18:2 and 20:5. In crustacean compound eyes, the main saturated fatty acids were 16:0 and 18:0, and 14:0 (5.0%) was only detected in grapsid crabs; the main unsaturated fatty acids were 20:4, 20:5 and 22:6. Both whole eyes and rhabdom fraction of crayfish showed similar profiles of fatty acid compositions. Both inner and outer segments of squid retinae were characterized by high amounts of unsaturated fatty acids, especially 22:6. Compound eyes of grapsid crabs were used for the experiments on seasonal changes of fatty acid compositions. UFA/SFA ratios (weight in % of unsaturated fatty acids saturated fatty acids) were lowest (1.0) in July and highest (2.5) in March, and unsaturation indexes (average number of double bonds per molecule) were lowest (1.5) in July and highest (2.3) in March. Fatty acids 18:0 and 20:1 showed a significant correlation with the changes of seasonal temperature. Fatty acid analysis of the developing compound eyes of silk moths during the pupal stage revealed that eicosapentanoic acid (20:5) increased remarkably in parallel with the development of photoreceptive membranes, the rhabdoms. This suggests that eicosapentaenoic acid may play an important role in formation and function of rhabdoms.  相似文献   

2.
This study evaluated the effects of season and spatial distribution on the fatty acid composition of Patella depressa gonads and Patella spp. soft body tissue. The results show that the quantitatively most important fatty acids were the saturated fatty acids (SFA) 16:0, 14:0 and 18:0; the monounsaturated fatty acids (MUFA) 18:1(n-7), 18:1(n-9), 16:1(n-7) and 20:1(n-9) and the polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA 20:5(n-3)), and arachidonic acid (ARA 20:4(n-6)). P. depressa and P. ulyssiponensis soft body fatty acid profiles revealed significant differences between sexes; males showed significantly higher percentages of PUFA, highly unsaturated fatty acids (HUFA), (n-3) fatty acids and ARA, while in females significantly higher proportions of MUFA were found. Analysis of variance on the fatty acid composition of P. depressa gonads revealed significant differences between sexes, which were more marked than when the whole body was analysed. Males showed a significantly higher percentage of PUFA, HUFA, fatty acids from the (n-3) and (n-6) series, ARA and EPA, while females were seen to have higher proportions of SFA, MUFA and total fatty acid methyl esters (FAME). Some variability was seen to occur due to shore location and seasons, but these effects were not so obvious.  相似文献   

3.
The wild-type Aspergillus niger (V35) does not require fatty acids for growth. Four unsaturated fatty acid auxotrophs designated as UFA1, UFA2, UFA3, and UFA4 have been produced from this organism by treating the conidia of the wild-type strain with a mutagen, N-methyl-N'-nitro-N-nitrosoguanidine, followed by isolation on media containing monounsaturated fatty acids and the nonionic detergent, Brij 58. Optimal growth of the mutants comparable with that of the wild type was achieved with medium supplemented with C16 or C18 unsaturated fatty acids containing at least one cis double bond at the delta 9 position. Some other fatty acids (18:1 delta 11 cis and 16:1 delta 9 trans) support growth to some extent. The mutants do not grow at all in the presence of saturated fatty acids. Fatty acid analyses of the mutant, UFA2, grown in the presence of different fatty acid supplements reveal that it may be defective in a desaturase system. Experiments with unlabeled and [1-14C]palmitoyl-CoA have shown that the microsomes of the mutant (UFA2) contain a partially defective delta 9-desaturase system.  相似文献   

4.
Changes in the fatty acid composition of the membrane lipids of the marine ciliate. Parauronema acutum were studied in ciliates harvested from early logarithmic, decelerating logarithmic and stationary phase culture. The relative amounts of 18:1 (9) and 18:2 (9, 12) decreases in both the phospholipid and the neutral sphingolipid fractions with increasing culture age. The content of 18:4 (6, 9, 12, 15), 20:5 (5, 8, 11, 14, 17) and 22:6 (4, 7, 10, 13, 16, 19) in these same lipids increases with culture age. While P. acutum was isolated as a marine ciliate and is usually grown in a medium containing 2.8% NaCl concentration, it actually grows well over NaCl concentration of 1% to 3% and will grow suboptimally without added NaCl. NaCl concentrations above 3% are inhibitory, although suboptimal growth occurs at 5% NaCl concentration. Lipids obtained from ciliates grown at either 1.5% or 2.8% NaCl have essentially identical FAME profiles. Lipids obtained from ciliates grown at either higher or lower concentrations of NaCl show marked changes in FAME profile. In both cases 18:2 (9, 12) content greatly increases while the content of 18 and 20 carbon highly unsaturated fatly acids, particularly 22:6 (4, 7, 10, 13, 16, 19), decreases.  相似文献   

5.
Fatty acid methyl ester (FAME) extracts of four halophytic plants, viz. Arthrocnemum indicum, Salicornia brachiata, Suaeda maritima and Suaeda monoica belonging to the family Chenopodiaceae, were prepared and their composition was analyzed by GC-MS. The FAME extracts were also screened for antibacterial and antifungal activities. The GC-MS analysis revealed the presence of more saturated fatty acids than unsaturated fatty acids. Among the fatty acids analyzed, the relative percentage of lauric acid was high in S. brachiata (61.85%). The FAME extract of S. brachiata showed the highest antibacterial and antifungal activities among the extracts tested. The other three extracts showed potent antibacterial and moderate anticandidal activities.  相似文献   

6.
The fatty acid composition of lipids was compared among yeast cultures belonging to the genera Rhodotorula, Lipomyces, and Cryptococcus. These lipids contain C10--C26 fatty acids, mainly with the even number of carbon atoms. Palmitic acid (C16 : 0) and oleic acid (C18 : 0) predominate. In the majority of the strains, the sum of unsaturated acids exceeds the sum of saturated acids. The content of unsaturated acids in the lipids of the epiphytic yeast Rhodotorula is higher than in the soil yeast Lipomyces. Besides C12--C18 acids, C22--C26 acids were identified by GLC at preset temperatures. Lignoceric acid (C24 : 0) was found for the first time in the cultures of Rhodotorula, Lipomyces, and Cryptococcus, and cerotinic acid (C16 : 0) was also detected in the Rhodotorula yeast. Fatty acids with a long chain are registered in the strains of Rhodotorula more often than in the strains of Lipomyces and Cryptococcus.  相似文献   

7.
This study was designed to examine the effect of thermal acclimation on the lipid composition of fat depot organs the liver and kidneys of larval sea lamprey, Petromyzon marinus. We found that 21 °C-acclimated larvae possessed lower total lipid amounts in the liver (39% lower) and kidneys (30% lower) than 13 °C-acclimated larvae. Relatively lower lipid contents in the liver and kidneys of 21 °C-acclimated lamprey primarily resulted from a reduction in stored lipid reserve, triacylglycerol, but not the structural lipid, phospholipid. Compared to 21 °C-acclimated larvae, 13 °C-acclimated larvae were found to possess fewer saturated fatty acids (SFAs) and more unsaturated fatty acids (USFAs) in renal triacylglycerol and phospholipid classes, while there were no significant differences in the SFAs and USFAs of hepatic triacylglycerol, phospholipid, cholesteryl ester, fatty acid, and monoacylglycerol classes. Fewer SFAs, found in the kidney triacylglycerol of 13 °C-acclimated lamprey, were due to lower 12:0 and 14:0 fatty acids, but those in the renal phospholipid class were characterized by fewer 14:0, 15:0, and 16:0 fatty acids. More USFAs in renal triacylglycerol, as indicated by a higher unsaturation index, primarily resulted from higher polyunsaturated fatty acids (18:2ω6, 18:3ω3, and 18:4ω3); whereas, in the renal phospholipid class, this was a result of higher monoenes (18:1, 20:1, and 22:1ω9) and ω3 polyunsaturated fatty acids (18:4ω3). These data suggest that the influence of thermal acclimation on the lipid composition of lamprey fat depot organs depends on tissue and lipid class.  相似文献   

8.
The fatty acid composition of the prymnesiophyte strain B, a cold stenothermic microalga, was examined. The major fatty acids derived from the total lipids in this strain were myristic (14:0), palmitic (16:0), oleic (18:1ω9), linoleic (18:2ω6), octadecatetraenoic (18:4ω3), octadecapentaenoic (18:5ω3), and docosahexaenoic (22:6ω3) acids. Octadecapentaenoic acid (18:5ω3) was an unusual component and was characterized by mass spectrometry, infrared absorption spectrometry, and proton nuclear magnetic resonance spectrometry. Saturated fatty acids (14:0 and 16:0) and 18:5ω3 were distributed at significant levels in the major classes of galactolipids (monogalacto-syldiacylglycerol, digalactosyldiacylglycerol, and sulfoqui-novosyldiacylglycerol), phospholipids (phosphatidylcholine, phosphatidylglycerol, and phosphatidylethanolamine), and neutral lipids with the exception that phosphatidylethanolamine contained only trace amounts of 14:0. By contrast, 22:6ω3 was distributed in phospholipids and neutral lipids. A decrease in growth temperature from 5°C to 2°C was accompanied by a significant increase in levels of 18: 5ω3 and 18:4ω3 with a concomitant decrease in the level of saturated fatty acids, whereas the level of 22:6ω3 was scarcely changed. These results suggest that, in prymnesiophyte strain B, eighteen-carbon polyunsaturated fatty acids with more than three double bonds, 18:5ω3 in particular, serve as modulators of membrane fluidity. The potential role of 18:5ω3 as a specific marker for prym-nesiophytes is also discussed.  相似文献   

9.
Abstract

Fifty-one isolates of Phytophthora cinnamomi isolated from ornamental plants in South Carolina, USA, between 1995 and 2000 were characterized by sporangium morphology, mating type, sensitivity to the fungicide mefenoxam, fatty acid methyl ester (FAME) profile analysis, and amplified fragment length polymorphism (AFLP) analysis. Sporangium shapes were predominantly ovoid to ellipsoid, and size averaged 65.5×40.3 μm (length×breadth) with average length/breadth ratio of 1.6. Forty-nine isolates were the A2 mating type with only two A1 isolates found. This is the first report of the A1 mating type of P. cinnamomi in South Carolina. All isolates were sensitive to mefenoxam and EC50 values for all isolates were less than 0.2 μg ml?1. FAMEs of each isolate were analysed by gas chromatography and revealed five major fatty acids: myristic (14:0), palmitic (16:0), linoleic (18:2ω6c), oleic (18:1ω9c), and eicosapentaenoic (20:5ω3c) acids. These five fatty acids accounted for more than 80% of FAME profiles. Cluster analysis of FAME profiles showed that individual isolates had unique pattern that could be divided into four major clusters. AFLP analysis based on 200 informative loci also separated isolates into four major clusters. A1 isolates were different from all A2 isolates. The percentage of polymorphic loci (10.5%) and Nei's gene diversity (0.0435) were much higher for the two A1 isolates than for any cluster of A2 isolates even though A2 isolates had more isolates within a cluster. A2 isolates exhibited relatively little genetic variation overall, which suggests that these isolates may have come from a common source.  相似文献   

10.
In situ incorporation of two saturated (palmitic, 16:0; stearic, 18:0) and three unsaturated fatty acids (oleic, 18:1; linoleic, 18:2; arachidonic, 20:4) into the four major phospholipids, sphingomyelin, PC, PI and PE, was followed. Transformed cells incorporated unsaturated fatty acids more rapidly, whereas no significant differences were found concerning saturated fatty acids. In vitro determination of phospholipid acylation showed that incorporation of coenzyme A-activated forms of two saturated fatty acids (16:0 and 18:0) and one unsaturated fatty acid (18:1) into phospholipids was increased in transformed cells. Comparison of results obtained in situ and in vitro strongly suggests that incorporation of fatty acids into phospholipids in cultured cells is not limited by acyltransferase activities.  相似文献   

11.
The lipid composition of the common mussel (Mytilus platensis d'Orbigny), which lives on littoral beds along the coast of Buenos Aires province, Argentina, was studied. The main non-polar lipids were triacylglycerols, while phosphatidyl choline and phosphatidyl ethanlamine were the main phospholipids. The predominant fatty acids were 16:0,16:1ω7, 18:0, 18:1ω9, 20:5ω3 and 22:6ω3. The content of polyenoic acids of 20 and 22 carbons increased and 16:0 + 16:1ω7 acids decreased in spring-summer together with an increase in non-polar lipids. Sexual maturation modified the lipid composition of gametes. By the end of the gonad development, a considerable increase of gonadal lipids and polyenoic fatty acids of 20 and 22 carbons was observed.  相似文献   

12.
Analysis of fatty acid methyl ester (FAME) profiles extracted from soils is a rapid and inexpensive procedure that holds great promise in describing soil microbial community structure without traditional reliance on selective culturing, which seems to severely underestimate community diversity. Interpretation of FAME profiles from environmental samples can be difficult because many fatty acids are common to different microorganisms and many fatty acids are extracted from each soil sample. We used principal components (PCA) and cluster analyses to identify similarities and differences among soil microbial communities described using FAME profiles. We also used PCA to identify particular FAMEs that characterized soil sample clusters. Fatty acids that are found only or primarily in particular microbial taxa-marker fatty acids-were used in conjunction with these analyses. We found that the majority of 162 soil samples taken from a conventionally-tilled corn field had similar FAME profiles but that about 20% of samples seemed to have relatively low, and that about 10% had relatively high, bacterial:fungal ratios. Using semivariance analysis we identified 21:0 iso as a new marker fatty acid. Concurrent use of geostatistical and FAME analyses may be a powerful means of revealing other potential marker FAMEs. When microbial communities from the same samples were cultured on R2A agar and their FAME profiles analyzed, there were many differences between FAME profiles of soil and plated communities, indicating that profiles of FAMEs extracted from soil reveal portions of the microbial community not culturable on R2A. When subjected to PCA, however, a small number of plated communities were found to be distinct due to some of the same profile characteristics (high in 12:0 iso, 15:0 and 17:1 ante A) that identified soil community FAME profiles as distinct. Semivariance analysis indicated that spatial distributions of soil microbial populations are maintained in a portion of the microbial community that is selected on laboratory media. These similarities between whole soil and plated community FAME profiles suggest that plated communities are not solely the result of selection by the growth medium, but reflect the distribution, in situ, of the dominant, culturable soil microbial populations.  相似文献   

13.
Limited information is available regarding the composition of cellular fatty acids in Armillaria and the extent to which fatty acid profiles can be used to characterize species in this genus. Fatty acid methyl ester (FAME) profiles generated from cultures of A. tabescens, A. mellea, and A. gallica consisted of 16–18 fatty acids ranging from 12–24 carbons in length, although some of these were present only in trace amounts. Across the three species, 9-cis,12-cis-octadecadienoic acid (9,12-C18:2), hexadecanoic acid (16:0), heneicosanoic acid (21:0), 9-cis-octadecenoic acid (9-C18:1), and 2-hydroxy-docosanoic acid (OH-22:0) were the most abundant fatty acids. FAME profiles from different thallus morphologies (mycelium, sclerotial crust, or rhizomorphs) displayed by cultures of A. gallica showed that thallus type had no significant effect on cellular fatty acid composition (P > 0.05), suggesting that FAME profiling is sufficiently robust for species differentiation despite potential differences in thallus morphology within and among species. The three Armillaria species included in this study could be distinguished from other lignicolous basidiomycete species commonly occurring on peach (Schizophyllum commune, Ganoderma lucidum, Stereum hirsutum, and Trametes versicolor) on the basis of FAME profiles using stepwise discriminant analysis (average squared canonical correlation = 0.953), whereby 9-C18:1, 9,12-C18:2, and 10-cis-hexadecenoic acid (10-C16:1) were the three strongest contributors. In a separate stepwise discriminant analysis, A. tabescens, A. mellea, and A. gallica were separated from one another based on their fatty acid profiles (average squared canonical correlation = 0.924), with 11-cis-octadecenoic acid (11-C18:1), 9-C18:1, and 2-hydroxy-hexadecanoic acid (OH-16:0) being most important for species separation. When fatty acids were extracted directly from mycelium dissected from naturally infected host tissue, the FAME-based discriminant functions developed in the preceding experiments classified all samples (n = 16) as A. tabescens; when applied to cultures derived from the same naturally infected samples, all unknowns were similarly classified as A. tabescens. Thus, FAME species classification of Armillaria unknowns directly from infected tissues may be feasible. Species designation of unknown Armillaria cultures by FAME analysis was identical to that indicated by IGS-RFLP classification with AluI.  相似文献   

14.
Fatty acid compositions in the tissues of the clam Geloina coaxans collected from Oura mangal, Okinawa, Japan, during the cold and warm seasons (January and July 2001, respectively) were compared with those in suspended materials (SM) in order to assess the clams' diet. In both seasons, the suspended mangrove detritus at the sediment-water interface was high as indicated by the mean percentage of even-numbered long-chain fatty acids in SM (12.8-18.4%). The contribution of this marker in the clam tissues, especially during the cold season (3.9%), indicates the consumption of mangrove detritus in considerable amounts by the clams. The occurrence of the fatty acids 16:1ω7, 18:1ω9, 18:2ω6 and 18:3ω3 in SM was most likely due to the mangrove detritus sources, whereas in the SM they together constituted 12.9% and 23.9% of total fatty acid contents during the cold and warm seasons, respectively. As a result, their contribution in the clam tissues was high in the cold (15.4%) and warm seasons (19.0%). These results indicate that mangrove detritus play a significant role in the clams' diet. The mean percentages of bacterial markers (odd-numbered branched fatty acids and vaccenic acid, 18:1ω7) in the SM and tissues during both seasons ranged from 8.1% to 9.5%. This indicates that the clam diet is also dependent on the attached bacteria on the partially decomposed leaf detritus suspended at the sediment-water interface. The relative contribution by microalgae markers (18:4ω3, 20:5ω3 and 22:6ω3) in clam tissues ranged from 4.3% to 7.6%, suggesting considerable microalgae sources in the diets.  相似文献   

15.
由于腐霉菌的干扰,土壤中大豆疫霉菌的分离十分困难。利用大豆疫霉菌的致病性和大豆对病原菌的选择作用排除腐霉菌,我们建立了一种简单、有效的土壤中大豆疫霉菌的分离方法。该方法用不含抗大豆疫霉根腐病基因的大豆叶碟诱钓大豆疫霉菌的游动孢子,将诱钓叶碟直接接种不含抗大豆疫霉菌基因的大豆植株,再对病株进行选择性或非选择性分离获得大豆疫霉菌。此方法能十分有效地排除腐霉菌干扰和细菌的污染,直接获得纯化菌株。应用该方法我们在以前未报道有大豆疫霉根腐病发生的山东、河南、安徽、江苏和浙江分离到大豆疫霉菌。  相似文献   

16.
Double bond position in natural fatty acids is critical to biochemical properties, however, common instrument-based methods cannot locate double bonds in fatty acid methyl esters (FAME), the predominant analysis form of fatty acids. A recently described mass spectrometry (MS) method for locating double bonds in FAME is reported here for the analysis of minor (<1%) components of real FAME mixtures derived from three natural sources; golden algae (Schizochytrium sp.), primate brain white matter, and transgenic mouse liver. Acetonitrile chemical ionization tandem MS was used to determine double bond positions in 39 FAME, most at concentrations well below 1% of all fatty acid methyl esters. FAME identified in golden algae are 14:1n-6, 14:3n-3, 16:1n-7, 16:2n-6, 16:3n-6, 16:3n-3, 16:4n-3, 18:2n-7, 18:3n-7, 18:3n-8, 18:4n-3, 18:4n-5, 20:3n-7, 20:4n-3, 20:4n-5, 20:4n-7, 20:5n-3, and 22:4n-9. Additional FAME identified in primate brain white matter are 20:1n-7, 20:1n-9, 20:2n-7, 20:2n-9, 22:1n-7, 22:1n-9, 22:1n-13, 22:2n-6, 22:2n-7, 22:2n-9, 22:3n-6, 22:3n-7, 22:3n-9, 22:4n-6, 24:1n-7, 24:1n-9, and 24:4n-6. Additional FAME identified in mouse liver are 26:5n-6, 26:6n-3, 28:5n-6, and 28:6n-3. The primate brain 22:3n-7 and algae 18:4n-5 are novel fatty acids. These results demonstrate the usefulness of the technique for analysis of real samples. Tables are presented to aid in interpretation of acetonitrile CIMS/MS spectra.  相似文献   

17.
Trans isomers of dietary fatty acids, generated during the commercial hydrogenation of unsaturated fats, may contribute to coronary heart disease (CHD) in humans by interfering with lipid metabolism. To examine this possibility in a fat-sensitive model, the Mongolian gerbil (Meriones unguiculatus) was used to compare the cholesterolemic and triglyceridemic potential of modest increments of trans fatty acids from partially hydrogenated soybean oil with other saturated fatty acids in the presence and absence of dietary cholesterol. Age-, dose-, and time-dependent effects were examined in weanling, 6-month-old, and 1-year-old gerbils. Although lipoprotein metabolism in weanling gerbils was initially refractory to trans fat, even as perturbations by saturated fatty acids were demonstrable, these gerbils eventually (after 16 weeks) developed a trans-induced hypercholesterolemia that was intermediate between the response to 16:0 and 12:0 + 14:0. The hepatic and plasma 18:1/18:2 cholesteryl ester (CE) ratio was depressed by trans in a manner similar to saturated fatty acids. The 6-month-old gerbils readily developed hypertriglyceridemia but not hypercholesterolemia, again revealing a decrease in the plasma 18:1/18:2 CE ratio. The 1-year-old gerbils revealed a dose-related (0, 5, 10%en as trans) elevation in total cholesterol (TC), and especially triglycerides (TG), that was accentuated by 0.04% dietary cholesterol. Increases in plasma lipids were again accompanied by a significant decrease in the mass of hepatic esterified cholesterol, particularly 18:1-cholesteryl esters. Thus, dietary trans-fatty acids induce age-, time-, and dose-dependent modulations in gerbil plasma lipids associated with decreased 18:1 cholesteryl esters. Further investigation with gerbils may reveal mechanisms by which trans fat consumption disturbs lipoprotein metabolism.  相似文献   

18.
Hua C  Wang Y  Zheng X  Dou D  Zhang Z  Govers F  Wang Y 《Eukaryotic cell》2008,7(12):2133-2140
For the soybean pathogen Phytophthora sojae, chemotaxis of zoospores to isoflavones is believed to be critical for recognition of the host and for initiating infection. However, the molecular mechanisms underlying this chemotaxis are largely unknown. To investigate the role of G-protein and calcium signaling in chemotaxis, we analyzed the expression of several genes known to be involved in these pathways and selected one that was specifically expressed in sporangia and zoospores but not in mycelium. This gene, named PsGPA1, is a single-copy gene in P. sojae and encodes a G-protein alpha subunit that shares 96% identity in amino acid sequence with that of Phytophthora infestans. To elucidate the function, expression of PsGPA1 was silenced by introducing antisense constructs into P. sojae. PsGPA1 silencing did not disturb hyphal growth or sporulation but severely affected zoospore behavior, including chemotaxis to the soybean isoflavone daidzein. Zoospore encystment and cyst germination were also altered, resulting in the inability of the PsGPA1-silenced mutants to infect soybean. In addition, the expressions of a calmodulin gene, PsCAM1, and two calcium- and calmodulin-dependent protein kinase genes, PsCMK3 and PsCMK4, were increased in the mutant zoospores, suggesting that PsGPA1 negatively regulates the calcium signaling pathways that are likely involved in zoospore chemotaxis.  相似文献   

19.
The skin represents an important barrier for pathogens and is known to produce fatty acids that are toxic toward Gram-positive bacteria. A screen of fatty acids as growth inhibitors of Staphylococcus aureus revealed structure-specific antibacterial activity. Fatty acids like oleate (18:1Δ9) were nontoxic, whereas palmitoleate (16:1Δ9) was a potent growth inhibitor. Cells treated with 16:1Δ9 exhibited rapid membrane depolarization, the disruption of all major branches of macromolecular synthesis, and the release of solutes and low-molecular-weight proteins into the medium. Other cytotoxic lipids, such as glycerol ethers, sphingosine, and acyl-amines blocked growth by the same mechanisms. Nontoxic 18:1Δ9 was used for phospholipid synthesis, whereas toxic 16:1Δ9 was not and required elongation to 18:1Δ11 prior to incorporation. However, blocking fatty acid metabolism using inhibitors to prevent acyl-acyl carrier protein formation or glycerol-phosphate acyltransferase activity did not increase the toxicity of 18:1Δ9, indicating that inefficient metabolism did not play a determinant role in fatty acid toxicity. Nontoxic 18:1Δ9 was as toxic as 16:1Δ9 in a strain lacking wall teichoic acids and led to growth arrest and enhanced release of intracellular contents. Thus, wall teichoic acids contribute to the structure-specific antimicrobial effects of unsaturated fatty acids. The ability of poorly metabolized 16:1 isomers to penetrate the cell wall defenses is a weakness that has been exploited by the innate immune system to combat S. aureus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号