首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lepidopteran insects/insect cells display 50-100 times higher radioresistance than humans, and are evolutionarily closest to mammals amongst all radioresistant organisms known. Compared to mammalian cells, Lepidopteran cells (TN-368, Sf9) display more efficient antioxidant system and DNA repair and suffer considerably less radiation-induced DNA/cytogenetic damage and apoptosis. Recent studies indicate that a considerably lower radiation-induced oxidative stress may significantly reduce macromolecular damage in Lepidopteran cells. Since nitrosative stress contributes in radiation-induced cellular damage, we investigated its nature in the γ-irradiated Sf9 cells (derived from Spodoptera frugiperda; order Lepidoptera; family Noctuidae) and compared with BMG-1 human cell line having significant NOS expression. Radiation induced considerably less ROS/RNS in Sf9 cells, which remained unchanged on treatment with NOS inhibitor l-NMMA. Surprisingly, growth of Sf9 cultures or irradiation could not induce NO or its metabolites, indicating negligible basal/radiation-induced NOS activity that remained unchanged even after supplementation with arginine. Cytosolic calcium release following high-dose (1000-2000Gy at 61.1cGys(-1)) γ-irradiation or H(2)O(2) (250μM) treatment also failed to generate NO in Sf9 cells having high constitutive levels of calmodulin, whereas BMG-1 cells displayed considerable calcium-dependent NO generation even following 10Gy dose. These results strongly imply the lack of calcium-mediated NOS activity in Sf9 cells. Addition of exogenous NO from GSH-NO caused considerable increase in radiation-induced apoptosis, indicating significant contribution of constitutively attenuated nitrosative stress response into the radioresistance of Lepidopteran cells. Our study demonstrates for the first time that a calcium-insensitive, attenuated nitrosative stress response may contribute significantly in the unusual radioresistance displayed by Lepidopteran insect cells.  相似文献   

2.
Lepidopteran insect cells display 50–100 times higher radioresistance compared to human cells, and reportedly have more efficient antioxidant system that can significantly reduce radiation-induced oxidative stress and cell death. However, the antioxidant mechanisms that contribute substantially to this excessive resistance still need to be understood thoroughly. In this study, we investigated the role of thioredoxin peroxidase (TPx) in high-dose γ-radiation response of Sf9 cell line derived from Spodoptera frugiperda, the Fall armyworm. We identified a TPx orthologue (Sf-TPx) in Spodoptera system, with primarily cytosolic localization. Gamma-irradiation at 500 Gy dose significantly up-regulated Sf-TPx, while higher doses (1000 Gy–2000 Gy) had no such effect. G2/M checkpoint induced following 500 Gy was associated with transition of Sf-TPx decamer into enzymatically active dimer. Same effect was observed during G2/M block induced by 5 nM okadaic acid or 10 µM CDK1 (cycline dependent kinase-1) inhibitor roscovitine, thus indicating that radiation-induced Sf-TPx activity is mediated by CDKs. Accumulation of TPx dimer form during G2/M checkpoint might favour higher peroxidase activity facilitating efficient survival at this dose. Confirming this, higher lethal doses (1000 Gy–2000 Gy) caused significantly less accumulation of dimer form and induced dose-dependent apoptosis. A ∼50% knock-down of Sf-TPx by siRNA caused remarkable increase in radiation-induced ROS as well as caspase-3 dependent radiation-induced apoptosis, clearly implying TPx role in the radioresistance of Sf9 cells. Quite importantly, our study demonstrates for the first time that thioredoxin peroxidase contributes significantly in the radioresistance of Lepidopteran Sf9 insect cells, especially in their exemplary resistance against radiation-induced apoptosis. This is an important insight into the antioxidant mechanisms existing in this highly stress-resistant model cell system.  相似文献   

3.
BackgroundLepidopteran insect cells withstand multifold higher radiation doses and suffer far less DNA damage despite carrying numerous structural/functional homologies with mammalian cells. Since DNA–histone interactions significantly influence radiation-induced DNA damage, we investigated the role of histones in insect cell radioresistance.MethodsModified comet assay was used to assess the γ-radiation-induced DNA damage following serial histone depletion by varied salt concentrations. Acid–Urea–Triton (AUT) gel analysis combined with in silico predictions was used to compare mammalian and insect histones and acetylation status while HDAC activity was assessed/modified for studying the latter's role in radioresistance. Cell death was measured by morphological analysis and flow cytometry.ResultsHigh-salt extraction pattern from Sf9 nuclei suggested stronger DNA–histone affinity as the two core histones H2A/H2B could be extracted at much higher (2 M) concentration as compared to 1.2 M NaCl in mammalian (AA8) cells. Electrophoretic mobility of unirradiated Sf9 cells remained unaltered at all salt concentrations (0.14 M–2 M NaCl), and radiation-induced DNA damage increased only by 2 M-NaCl pre-treatment. In silico analysis confirmed excellent conservation of Lepidopteran H2A/H2B sequence with human histones including comparable N-terminal lysine residues, yet these had ~ 60% lower acetylation. Importantly, insect cells showed ~ 70% higher histone deacetylase activity whose inhibition by Trichostatin-A reversed hypo-acetylation state and caused significant radiosensitization, thereby confirming the protective contribution of reduced acetylation.ConclusionOur study reveals that the hypo-acetylated state of well-conserved core histones, maintained by considerable HDAC activity, contributes significantly in Lepidopteran radioresistance.General SignificanceThis investigation shows constitutively high activity of HDACs as a potential radioprotective mechanism existing in insect cells.  相似文献   

4.
《Free radical research》2013,47(8):936-949
Abstract

Mitochondrial DNA plays an important role in cellular sensitivity to cancer therapeutic agents. Hoechst 33342, a DNA minor groove binding ligand, has shown radiosensitizing effects in different cancer cell lines. In the present study, the possible binding of Hoechst 33342 with mitochondrial DNA, isolated from human cerebral glioma (BMG-1) cells, was investigated and consequences of this binding on excessive reactive oxygen species (ROS) generation in irradiated BMG-1 cells were studied. Alteration in the fluorescence spectroscopic characteristics of Hoechst 33342 suggested binding of Hoechst 33342 with isolated mitochondria and mitochondrial DNA. Persistent increase in level of ROS in the presence of Hoechst 33342 has been observed, which was further enhanced in irradiated cells. Investigations using inhibitors of ETC complex I suggested that mitochondrial bound Hoechst 33342 contributed to increased ROS, which was associated with alteration in ΔΨm and antioxidant machinery. These factors appeared to contribute in potentiating radiation-induced cell death in BMG-1 cells. The finding from these studies will be useful in designing better anti-cancer strategies.  相似文献   

5.
Physiological cell death (PCD) in Sf9 insect cell batch cultures was comprehensively characterized using simultaneous determinations of qualitative and quantitative assays, including agarose gel electrophoresis, confocal, epifluorescence, and transmission electron microscopy, and DNA content by flow cytometry. Results were compared to hybridoma cultures where abundant information of apoptosis exists. Both cultures shared some typical apoptosis features, including cell shrinkage, loss of sphericity, swollen endoplasmic reticulum and Golgi apparatus, chromatin condensation, and specific DNA degradation. However, distinctive morphological and kinetic differences between both cultures revealed that Sf9 cells died by an atypical PCD process characterized by absence of nuclear fragmentation, scarce association of condensed chromatin to the nuclear envelope, swollen mitochondria, and high nonspecific DNA degradation. These features, distinctive of necrosis, were not observed in the normal apoptotic process of hybridomas. Glucose depletion marked the appearance of apoptotic Sf9 cells, which there up on increased gradually, whereas apoptotic hybridomas rapidly increased upon glutamine depletion. Furthermore, active phagocytosis was found in Sf9 viable cells, a characteristic phenomenon during in vivo apoptosis but uncommon for in vitro cultures. Sf9 cells contained unusually high numbers of phagosomes, particularly after glucose depletion. Additionally, few apoptotic bodies accumulated in culture, suggesting their elimination by phagocytosis. Other distinctive characteristics of Sf9 cells were the presence of a polynucleated hypertrophic population fraction, polyploidy, cell cycle arrest in G2/M phase, and more necrosis compared to hybridomas. Such phenomena prevented a reliable quantification of apoptosis from determination of the sub-G1 peak. Nonetheless, emergence of a bimodal Sf9 cell size distribution coincided with the increase in the sub-G1 population and onset of death. The fraction of particles in the smaller peak (6-11 microm diameter) closely correlated with the fractions of apoptotic bodies, late apoptotic, and secondary necrotic cells. Accordingly, Sf9 cell size was shown to be an effective, rapid, and simple parameter for quantifying death. Altogether, the results of this study provide new insights into PCD and other phenomena in insect cell culture important for biotechnological applications of Sf9 cells.  相似文献   

6.
Role of cytochrome-c in insect cell apoptosis is highly controversial, with many earlier reports suggesting lack of involvement of mitochondrial factors in Drosophila while more recent studies have indicated otherwise, thus warranting more in-depth studies of insect cell apoptosis. In the present study, we investigated mitochondrial involvement during actinomycin-D induced apoptosis in Sf9 Lepidopteran cells. Cytochrome-c was released from mitochondria very early during apoptosis, and was preceded quickly by ROS generation and cardiolipin peroxidation. Albeit cytochrome-c release and apoptosis induction were inhibited by bongkrkicacid (BKA) it appears that the release is independent of permeability transition pore (PTP) as it preceded mitochondrial Ca2+ buildup and mitochondrial membrane potential (MMP) loss. Further, the release was found to be unaffected by PTP inhibitor cyclosporin-A. Bax inhibitory peptide BiP-P5 could effectively block both cytochrome-c release and apoptosis induction indicating dependence on Bax-channel formation. Inhibition of apoptosis by FSBA, a nucleotide analog that inhibits apoptosome formation through Apaf1 binding, suggested activity of apoptosome similar to mammalian cells. Mitochondria isolated from treated cells activated caspases in the cytosolic fraction of untreated cells while mitochondrial lysates of treated or untreated cells had similar effect. Sequestering cytochrome-c in mitochondrial lysates inhibited DEVDase activity, and addition of purified cytochrome-c and dATP to Sf9 cytosolic fraction induced DEVDase activity, suggesting that cytochrome-c may be exclusively required for Lepidopteran apoptosis. This is the first detailed study demonstrating mitochondrial regulation of Lepidopteran insect cell apoptosis, and reiterates its homology with mammalian cell apoptosis while showing distinctive differences from earlier reports in Drosophila.  相似文献   

7.
P-glycoprotein (Pgp) transporters play an important role in multidrug resistance in eukaryotic cells and in protozoan parasites such as Leishmania. To search for new reversal agents of the Leishmania tropica Pgp, we developed a screening assay using the Baculovirus-insect cell expression system. We demonstrated a MgATP-dependent, vanadate-sensitive transport of Hoechst 33342 in membrane preparations of Sf9 insect cells expressing Pgp. We have found that dihydro-beta-agarofuran sesquiterpenes from Maytenus cuzcoina inhibited Hoechst 33342 transport that correlates with their reversal effect in a multidrug-resistant L. tropica line overexpressing Pgp. The results suggest that Sf9 cell membrane Hoechst 33342 transport system represents an efficient tool for examining the interactions of Leishmania Pgp with pharmacological agents.  相似文献   

8.
In this study we compare intracellular transport and processing of a recombinant glycoprotein in mammalian and insect cells. Detailed analysis of the N-glycosylation of recombinant human IFN-gamma by matrix-assisted laser-desorption mass spectrometry showed that the protein secreted by Chinese hamster ovary and baculovirus-infected insect Sf9 cells was associated with complex sialylated or truncated tri-mannosyl core glycans, respectively. However, the intracellular proteins were predominantly associated with high-mannose type oligosaccharides (Man-6 to Man-9) in both cases, indicating that endoplasmic reticulum to cis-Golgi transport is a predominant rate-limiting step in both expression systems. In CHO cells, although there was a minor intracellular subpopulation of sialylated IFN-gamma glycoforms identical to the secreted product (therefore associated with late-Golgi compartments or secretory vesicles), no other intermediates were evident. Therefore, anterograde transport processes in the Golgi stack do not limit secretion. In Sf9 insect cells, there was no direct evidence of post-ER glycan-processing events other than core fucosylation and de-mannosylation, both of which were glycosylation site-specific. To investigate the influence of nucleotide-sugar availability on cell-specific glycosylation, the cellular content of nucleotide-sugar substrates in both mammalian and insect cells was quantitatively determined by anion-exchange HPLC. In both host cell types, UDP-hexose and UDP-N-acetylhexosamine were in greater abundance relative to other substrates. However, unlike CHO cells, sialyltransferase activity and CMP-NeuAc substrate were not present in uninfected or baculovirus-infected Sf9 cells. Similar data were obtained for other insect cell hosts, Sf21 and Ea4. We conclude that although the limitations on intracellular transport and secretion of recombinant proteins in mammalian and insect cells are similar, N-glycan processing in Sf insect cells is limited, and that genetic modification of N-glycan processing in these insect cell lines will be constrained by substrate availability to terminal galactosylation.  相似文献   

9.
Drug-resistant tumor cells actively extrude a variety of chemotherapeutic agents by the action of the multi-drug resistance (MDR1) gene product, the plasma membrane P-glycoprotein. In this report we show that the expression of the human MDR1 gene in cultured Sf9 insect cells via a baculovirus vector generates a high activity vanadate-sensitive membrane ATPase. This ATPase is markedly stimulated by drugs known to interact with the P-glycoprotein, such as vinblastine and verapamil, and the ability of the various drugs to stimulate the ATPase corresponds to their previously observed affinity for this transporter. The drug-stimulated ATPase is not present in uninfected or mock-infected Sf9 cells, and its appearance correlates with the appearance of the MDR1 gene product detected with a monoclonal anti-MDR protein antibody and by labeling with 8-azido-ATP. The drug-induced ATPase requires magnesium ions, does not utilize ADP or AMP as substrates, exhibits a half-maximal activation at about 0.5 mM MgATP, and its maximal activity (about 3-5 mumol/mg MDR protein/min) approaches that of the well characterized ion transport ATPases. These results provide the first direct demonstration of a high capacity drug-stimulated ATPase activity of the human multidrug resistance protein and offer a new and simple assay for the investigation of functional interactions of various drugs with this clinically important enzyme.  相似文献   

10.
Rotavirus infection of monkey kidney cells has been reported to result in a significant increase in the concentration of intracellular calcium. This increase in intracellular calcium was associated with viral protein synthesis and cytopathic effects in infected cells. We tested the effect of individual rotavirus proteins on intracellular calcium concentrations in insect Spodoptera frugiperda (Sf9) cells. Insect cells were infected with wild-type baculovirus or baculovirus recombinants that contained an individual rotavirus gene. The cells were harvested at different times postinfection, and the intracellular calcium concentration was measured by using fura-2 as a fluorescent calcium indicator. We found that the concentration of intracellular calcium was increased nearly fivefold in infected Sf9 cells that expressed the nonstructural glycoprotein (NSP4) of group A rotavirus, and this increase in intracellular calcium concentration coincided with NSP4 expression. A similar result was observed in insect cells expressing NSP4 from a group B rotavirus, suggesting the conservation of this function among rotavirus groups. Expression of the other 10 rotavirus proteins or of wild-type baculovirus proteins in Sf9 cells did not significantly increase intracellular calcium levels. These results suggest that the nonstructural glycoprotein NSP4 is responsible for the increase in cytosolic calcium observed in rotavirus-infected cells.  相似文献   

11.
The induction of apoptosis by azadirachtin, a well‐known botanical tetranortriterpenoid isolated from the neem tree (Azadirachta indica A. Juss) and other members of the Meliaceae, was investigated in Spodoptera frugiperda cultured cell line (Sf9). Morphological changes in Sf9 cells treated by various concentrations of azadirachtin were observed at different times under light microscopy. Morphological and biochemical analysis indicated that Sf9 cells treated by 1.5 μg/mL azadirachtin showed typical morphological changes, which were indicative of apoptosis and a clear DNA ladder. The flow cytometry analysis showed the apoptosis rate reached a maximum value of 32.66% at 24 h with 1.5 μg/mL azadirachtin in Sf9 cells. The inhibition of Sf9 cell proliferation suggested that the effect of azadirachtin was dose dependent and the EC50 at 48 and 72 h was 2.727 × 10−6 and 6.348 × 10−9 μg/mL, respectively. The treatment of azadirachtin in Sf9 cells could significantly increase the activity of Sf caspase‐1, but showed no effect on the activity of Topo I, suggesting that the apoptosis induced by azadirachtinin Sf9 cells is through caspase‐dependent pathway. These results provided not only a series of morphological, biochemical, and toxicological comprehensive evidences for induction of apoptosis by azadirachtin, but also a reference model for screening insect cell apoptosis inducers from natural compounds.  相似文献   

12.
Spectrofluorimetric measurements were conducted to quantify, in real-time, membrane permeability changes resulting from the treatment of Sf9 insect cells (Spodoptera frugiperda, Lepidoptera) with different Bacillus thuringiensis Cry insecticidal proteins. Coumarin-derived CD222 and Merocyanin-540 probes were respectively used to monitor extracellular K+ and membrane potential variations upon Sf9 cells incubation with Cry toxins. Our results establish that Cry1C induces, after a delay, the depolarization of the cell membrane and the full depletion of intracellular K+. These changes were not observed upon Sf9 cells treated with Cry1A family toxins. Both the rate of the K+ efflux and the delay before its onset were dependent on toxin concentration. Both parameters were sensitive to temperature but only the delay was affected by pH. Cry1C-induced K+ efflux was inhibited by lanthanum ions in a dose-dependent manner. This study provides the first kinetic and quantitative characterization of the ion fluxes through the channels formed by a Cry toxin in the plasma membrane of a susceptible insect cell line. Received: 4 October 1999/Revised: 21 December 1999  相似文献   

13.
Human progesterone receptors (PR) were overexpressed in Spodoptera frugiperda (Sf9) insect cells using a recombinant baculovirus system. Recombinant viruses were constructed that produced either full-length A (94K) or B (120K) forms of human PR, and each was expressed as a functional protein. Steroid and DNA binding activities were found to be indistinguishable from that of endogenous human PR in T47D breast cancer cells. Moreover, as analyzed by gel-mobility shift, recombinant PR-A and PR-B each bound to specific progesterone response elements in a strictly hormone-dependent manner. Native receptors expressed in Sf9 cells also exhibited structural properties similar to that of endogenous PR. Cytosolic PR (PR-A or PR-B), prepared in low salt buffer, sedimented on density gradients as an 8S oligomeric complex that was converted largely to 4S by treatment with 0.4 M NaCl. Immune isolation of the 8S cytosol PR complex and analysis of protein composition revealed the presence of two specific copurifying proteins of approximately 90K and 70K. The 90-K component was identified immunologically as heat shock protein 90. The 70-K component was not identified but is likely to be the insect equivalent of heat shock protein 70. Immune isolation of PR from Sf9 cells metabolically labeled with [32Pi], revealed that expressed PR was capable of being phosphorylated in insect cells. Hormone addition to Sf9 cells, however, did not stimulate the same increase in PR phosphorylation or upshift in mobility on sodium dodecyl sulfate gels that occurs with endogenous receptors in T47D cells. Thus some, but not all, phosphorylations occur with human PR expressed in Sf9 cells. These phosphorylation data, together with the fact that expressed PR required hormone for DNA binding, indicate that the hormone-dependent phosphorylation step responsible for PR upshifts on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is not required for receptor binding to DNA. The baculovirus expression system, therefore, may prove valuable in dissecting the functional role(s) for both hormone-dependent and hormone-independent PR phosphorylation.  相似文献   

14.
ABCG2 is a human membrane ATP-binding cassette half-transporter that hydrolyzes ATP to efflux a large number of chemotherapeutic agents. Several oligomeric states of ABCG2 from homodimers to dodecamers have been reported depending on the overexpression systems and/or the protocols used for purification. Here, we compared the oligomeric state of His6-ABCG2 expressed in Sf9 insect cells and in human Flp-In-293/ABCG2 cells after solubilization in mild detergents. His6-ABCG2 was purified through a new approach involving its specific recognition onto a functionalized lipid layer containing a Ni-NTA lipid. This approach allowed the purification of His-ABCG2 in presence of all solubilized membrane components that might be involved in the stabilisation of native oligomers and without requiring any additional washing or concentration passages. ABCG2 purified onto the NiNTA lipid surfaces were directly analyzed by electron microscopy and by biochemical assays. Altogether, our data are consistent with a tetrameric organization of ABCG2 when expressed in either heterologous Sf9 insect cells or in human homologous cells.  相似文献   

15.
srhM-CSFR在昆虫细胞中的表达及其配基结合活性分析   总被引:1,自引:0,他引:1  
从人胎盘中提取总 RNA,利用 RT- PCR技术扩增出巨噬细胞集落刺激因子受体 ( M-CSFR)胞外区的、具有全部配基结合活性区域的前三个免疫球样蛋白结构域的 DNA,将其克隆到杆状病毒载体 pbluebac4.5中 ,与杆状病毒 DNA一同转导昆虫细胞 Sf9.经过 2轮筛选 ,获得了纯化的重组病毒 ,再用重组病毒感染昆虫细胞 ,Western印迹检测证明 srh M- CSFR得到了表达 ,它是分泌到上清液中的糖基化蛋白 .Western印迹分析了不同时间点的 srh M- CSFR表达情况 ,结果表明 srh M- CSFR的表达在 96~ 1 2 0 h时达到最大 .srh M- CSFR的产量约为 1 mg/L,EIA法进行配基结合活性分析表明 ,srh M- CSFR与 M- CSF结合的解离常数为 5nmol/L.  相似文献   

16.
The human m1 (hm1) and m2 (hm2) muscarinic cholinergic receptors (mAChR) expressed in Sf9 insect cells using recombinant baculovirus were tested for their ability to undergo agonist-dependent phosphorylation and desensitization. The muscarinic agonist carbachol induced phosphorylation of the hm2 mAChR in the Sf9 cells incubated with 32P(i) to an extent of 4-5 mol of phosphate/mol of receptor. In contrast, no phosphorylation of the hm1 mAChR was observed. The hm2 mAChR stimulated [35S]GTP gamma S binding to, and GTPase activity of, the insect cell G-proteins. These receptor-mediated activities were reduced by 50% in membranes prepared from agonist-treated cells compared to control, suggesting that the agonist-induced phosphorylation of the hm2 mAChR resulted in desensitization of the receptors. No role for protein kinase C or cyclic nucleotide-dependent kinases in receptor phosphorylation and desensitization was suggested from studies using agents known to modulate the activity of these enzymes. However, pertussis toxin was found to completely eliminate the interaction of the hm2 receptors with the insect cell G-proteins, but did not perturb the ability of carbachol to induce agonist-dependent phosphorylation of the receptors. These results suggested that G-proteins and/or G-protein-activated signalling were not necessary for the agonist-induced phosphorylation of the receptors. Overall, the data indicated that the human m2 (but not the human m1) mAChR expressed in Sf9 insect cells undergo phosphorylation and desensitization in an agonist-dependent, G-protein-independent fashion by an endogenous insect cell kinase. The results demonstrated that a human G-protein-linked receptor is regulated in insect cells in a manner that is similar to that involving members of the G-protein receptor-kinase family.  相似文献   

17.
Several scorpion insect toxins are selectively active on the lepidopterous and dipterous insects. The gene encoding insect excitatory neurotoxin (BmK IT) from the scorpion Buthus martensii Karsch was expressed in Escherichia coli BL21(DE3) at a high level of 3 mg/0.5 L using the prokaryotic expression system pTWIN1. Colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), whole-cell patch-clamp technique and immunofluorescence assays were used to evaluate the toxicity of rBmK IT to insect Spodoptera frugiperda 9 (Sf9) cells and to analyze the potential mechanism of this toxicity. rBmK IT accelerated the growth of Sf9 cells in a dose-dependent manner. Voltage-gating sodium channel activity could not be detected in Sf9 cells using a whole-cell patch-clamp technique. However, immunofluorescence analysis clearly showed co-localization of tetrodotoxin (TTX) and rBmK IT on the Sf9 cell membrane, which demonstrated that rBmK IT could bind to and act on the voltage-gated sodium channels on the Sf9 cells by the high affinity action power. The findings presented in this study are essential for further study of this peptide.  相似文献   

18.
ABCG2 (also called MXR (3), BCRP (4), or ABCP (5) is a recently-identified ABC half-transporter, which causes multidrug resistance in cancer. Here we report that the expression of the ABCG2 protein in Sf9 insect cells resulted in a high-capacity, vanadate-sensitive ATPase activity in isolated membrane preparations. ABCG2 was expressed underglycosylated, and its ATPase activity was stimulated by daunorubicin, doxorubicin, mitoxantrone, prazosin and rhodamine 123, compounds known to be transported by this protein. ABCG2-ATPase was inhibited by low concentrations of Na-orthovanadate, N-ethylmaleimide and cyclosporin A. Verapamil had no effect, while Fumitremorgin C, reversing ABCG2-dependent cancer drug resistance, strongly inhibited this ATPase activity. The functional expression of ABCG2 in this heterologous system indicates that no additional partner protein is required for the activity of this multidrug transporter, probably working as a homodimer. We suggest that the Sf9 cell membrane ATPase system is an efficient tool for examining the interactions of ABCG2 with pharmacological agents.  相似文献   

19.
As the largest proportion of male infertility population, asthenozoospermia patients often resort to sperm cryopreservation to preserve fertility as well as to enrich motile sperm for assisted reproductive techniques (ART), although it may cause some cryodamage during the freezing–thawing process. The objective of this study was to investigate whether mitochondrial antioxidant Mito-Tempo was effective in preventing cryodamage of asthenozoospermic spermatozoa. Asthenozoospermic semen samples were collected and cryopreserved in media supplemented with different concentrations (0.0, 1.0, 10 and 100 μM) of Mito-Tempo. We measured sperm motility, viability, membrane integrity, DNA fragmentation, mitochondrial membrane potential, oxidation product, and antioxidant enzymes activities. Supplementation of the cryopreservation media with Mito-Tempo (10 and 100 μM) induced a significant improvement in sperm viability, motility, membrane integrity, mitochondrial membrane potential and chromatin integrity (P < 0.05). Significant enhancement of antioxidant enzymes activities accompanied by the decreased formation of oxidation products (ROS and MDA) was also observed in groups supplemented with Mito-Tempo (10 and 100 μM). It is concluded that mitochondria targeted antioxidant Mito-Tempo alleviates cryodamage by regulating intracellular oxidative metabolism in spermatozoa from asthenozoospermic patients after cryopreservation.  相似文献   

20.
Role of apoptosis in photodynamic sensitivity of human tumour cell lines   总被引:2,自引:0,他引:2  
Photodynamic therapy (PDT) using a photosensitizer, such as haematoporphyrin derivative (HpD), in conjunction with visible light is a promising new modality to treat localized cancer. Cell death caused by PDT (through the generation of reactive oxygen species) can occur either by apoptosis (interphase death or as a secondary event following mitosis) and/or necrosis depending on the cell type, concentration and intracellular localization of the sensitizer, and the light dose. Since, apoptosis induced by PDT treatment plays an important role in determining the photodynamic efficacy, in the present work we have investigated the role of apoptotic cell death in relation to the observed differences in sensitivity to HpD-PDT between a human glioma cell line (BMG-1) carrying wild-type tumour suppressor gene p53 and a human squamous carcinoma cell line (4451) with mutated p53. HpD (photosan-3; PS-3) -PDT induced apoptosis was studied by: [A] flow-cytometric analysis of DNA content (sub G0/G1 population); [B] phosphatidylserine externalization (Annexin-V +ve cells); [C] cell size and cytoskeleton reorganization (light-scatter analysis); and [D] fluorescence microscopy (morphological features). PS-3-PDT induced a significantly higher level of apoptosis in BMG-1 cells as compared to 4451 cells. This was dependent on the concentration of PS-3 as well as post-irradiation time in both the cell lines. At 2.5 microg/ml of PS-3 the fraction of BMG-1 cells undergoing apoptosis (60%) was nearly 6 folds higher than 4451 cells (10%). In BMG-1 cells the induction of apoptosis increased with PS-3 concentration up to 5 microg/ml (>80%). However, a decrease was observed at a concentration of 10 microg/ml, possibly due to a shift in the mode of cell death from apoptosis to necrosis. In 4451 cells, on the other hand, the increase in apoptosis could be observed even up to 10 microg/ml of PS-3 (60%). Present results show that the higher sensitivity to PS-3-PDT in glioma cells arise on account of a higher level of apoptosis and suggest that induction of apoptosis is an important determinant of photodynamic sensitivity in certain cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号