首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequence encoding the CYP5164A3 of the brown alga Ectocarpus siliculosus (Stramenopiles, SAR) was heterologously expressed in E. coli cells. The resulting recombinant CYP74 clan-related protein CYP5164A3 possessed a selective activity towards the α-linolenic acid 13(S)-hydroperoxide (13-HPOTE) and eicosapentaenoic acid 15(S)-hydroperoxide (15-HPEPE). The major products were the heterobicyclic oxylipins. For instance, the 13-HPOTE was converted into plasmodiophorols A, B, and C formed at about 14:3:2 ratio. Plasmodiophorols A-C have been recently described as the products of enzyme hydroperoxide bicyclase CYP50918A1 of cercozoan Plasmodiophora brassicae (Rhizaria, SAR). Furthermore, an unknown compound 1 was detected. Purified product 1 (Me) was identified as a novel substituted 3-propenyl-6-oxabicyclo[3.1.0]hexane based on its MS and NMR spectral data. Conversion of 15-HPEPE by CYP5164A3 resulted in products 7 and 8, analogous to plasmodiophorols A and B. This work uncovered the CYP5164A3 as the first hydroperoxide bicyclase in brown algae. Apparently, this enzyme plays a crucial role in the biosynthesis of heterobicyclic oxylipins like hybridalactone, ecklonilactones, and related natural products, widespread in brown algae.  相似文献   

2.
To elucidate the reaction mechanism of hydroperoxide lyase (HPL), the enzyme from guava (Psidium guajava) fruits, was incubated for 10–60 s at 0 °C with 13-HPOT. The products were rapidly extracted and derivatized by trimethylsilylation. Two trapping products, namely the trimethylsilyl ether/ester derivatives of the hemiacetal 12-(1′-hydroxy-3′-hexenyloxy)-9,11-dodecadienoic acid and the enol (9Z,11E)-12-hydroxy-9,11-dodecadienoic acid, were detected by gas chromatography-mass spectrometry (GC-MS) analyses. The structural assignments were supported by mass spectra recorded for (a) hydrogenated products; (b) products biosynthesized from [9,10,12,13,15,16] 13-HPOT or [18O2]13-HPOT; (c) chemically prepared reference compounds. Kinetic experiments showed that the hemiacetal and enol were both unstable and transiently appearing compounds (half-lives, ca. 20 s and 2 min, respectively). Hemiacetal and enol biosynthesized from [18O2]13-HPOT retained two and one 18O atoms, respectively, whereas no 18O was incorporated from [18O]water. The data demonstrated that: (1) the true enzymatic product formed from 13-HPOT in the presence of HPL is a short-lived hemiacetal; (2) the hemiacetal spontaneously dissociates into (3Z)-hexenal and the unstable enol form of (9Z)-12-oxo-9-dodecenoic acid; (3) the enzymatic isomerization of 13-HPOT into the hemiacetal occurs homolytically.  相似文献   

3.
Nonclassical P450s of CYP74 family control the secondary conversions of fatty acid hydroperoxides to bioactive oxylipins in plants. At least ten genes attributed to four novel CYP74 subfamilies have been revealed by the recent sequencing of the spikemoss Selaginella moellendorffii Hieron genome. Two of these genes CYP74M1 and CYP74M3 have been cloned in the present study. Both recombinant proteins CYP74M1 and CYP74M3 were active towards the 13(S)-hydroperoxides of α-linolenic and linoleic acids (13-HPOT and 13-HPOD, respectively) and exhibited the activity of divinyl ether synthase (DES). Products were analyzed by gas chromatography–mass spectrometry. Individual oxylipins were purified by HPLC and finally identified by their NMR data, including the 1H NMR, 2D-COSY, HSQC and HMBC. CYP74M1 (SmDES1) specifically converted 13-HPOT to (11Z)-etherolenic acid and 13-HPOD to (11Z)-etheroleic acid. CYP74M3 (SmDES2) turned 13-HPOT and 13-HPOD mainly to etherolenic and etheroleic acids, respectively. CYP74M1 and CYP74M3 are the first DESs detected in non-flowering plants. The obtained results demonstrate the existence of the sophisticated oxylipin biosynthetic machinery in the oldest taxa of vascular plants.  相似文献   

4.
To elucidate the reaction mechanism of hydroperoxide lyase (HPL), the enzyme from guava (Psidium guajava) fruits, was incubated for 10-60 s at 0 degrees C with 13-HPOT. The products were rapidly extracted and derivatized by trimethylsilylation. Two trapping products, namely the trimethylsilyl ether/ester derivatives of the hemiacetal 12-(1'-hydroxy-3'-hexenyloxy)-9,11-dodecadienoic acid and the enol (9Z,11E)-12-hydroxy-9,11-dodecadienoic acid, were detected by gas chromatography-mass spectrometry (GC-MS) analyses. The structural assignments were supported by mass spectra recorded for (a) hydrogenated products; (b) products biosynthesized from [9,10,12,13,15,16] 13-HPOT or [(18)O(2)]13-HPOT; (c) chemically prepared reference compounds. Kinetic experiments showed that the hemiacetal and enol were both unstable and transiently appearing compounds (half-lives, ca. 20 s and 2 min, respectively). Hemiacetal and enol biosynthesized from [(18)O(2)]13-HPOT retained two and one (18)O atoms, respectively, whereas no (18)O was incorporated from [(18)O]water. The data demonstrated that: (1) the true enzymatic product formed from 13-HPOT in the presence of HPL is a short-lived hemiacetal; (2) the hemiacetal spontaneously dissociates into (3Z)-hexenal and the unstable enol form of (9Z)-12-oxo-9-dodecenoic acid; (3) the enzymatic isomerization of 13-HPOT into the hemiacetal occurs homolytically.  相似文献   

5.
Treatment of [Ti(OPri)2Cl2] with K(tpip) (tpip = [N(PPh2O)2]) followed by chlorination with HCl afforded cis-[Ti(tpip)2Cl]2 (1). Reduction of 1 with Na/Hg in THF gave [Ti(tpip)3] (2), which could also be prepared from [TiCl3(THF)3] and K(tpip). Recrystallization of [V(O)(tpip)2] (3) from CH2Cl2-Et2O in air afforded trinuclear [{V(O)}3(μ-tpip)3(μ-O)3] (4). Treatment of [Cr(NBut)2Cl2] and [Cr(NBut)Cl3(dme)] (dme = 1,2-dimethoxyethane) with [Ag(tpip)]4 led to isolation of [Cr(tpip)3] (6) and [Cr(NBut)(tpip)2Cl] (7), respectively. The Ti- and V-tpip complexes are capable of catalyzing oxidation of sulfides with tert-butyl hydroperoxide and H2O2. The crystal structures of 1, 2, and 4 have been determined.  相似文献   

6.
Enzymes of CYP74 family play the central role in the biosynthesis of physiologically important oxylipins in land plants. Although a broad diversity of oxylipins is known in the algae, no CYP74s or related enzymes have been detected in brown algae yet. Cloning of the first CYP74-related gene CYP5164B1 of brown alga Ectocarpus siliculosus is reported in present work. The recombinant protein was incubated with several fatty acid hydroperoxides. Linoleic acid 9-hydroperoxide (9-HPOD) was the preferred substrate, while linoleate 13-hydroperoxide (13-HPOD) was less efficient. α-Linolenic acid 9- and 13-hydroperoxides, as well as eicosapentaenoic acid 15-hydroperoxide were inefficient substrates. Both 9-HPOD and 13-HPOD were converted into epoxyalcohols. For instance, 9-HPOD was turned primarily into (9S,10S,11S,12Z)-9,10-epoxy-11-hydroxy-12-octadecenoic acid. Both epoxide and hydroxyl oxygen atoms of the epoxyalcohol were incorporated mostly from [18O2]9-HPOD. Thus, the enzyme exhibits the activity of epoxyalcohol synthase (EsEAS). The results show that the EsEAS isomerizes the hydroperoxides into epoxyalcohols via epoxyallylic radical, a common intermediate of different CYP74s and related enzymes. EsEAS can be considered as an archaic prototype of CYP74 family enzymes.  相似文献   

7.
In a very acidic solution, potassium 1,3-propanediaminetetraacetate zinc chloride K2n[ZnCl2(1,3-H2pdta)ZnCl2]n (1) and its substituted iodide [ZnI2(H2O)(1,3-H4pdta)]n (2) (H4pdta = 1,3-propanediaminetetraacetatic acid, C11H18N2O8) were isolated. The former was obtained from the reaction of zinc chloride and H4pdta in pH ∼1.5. Further substitution of 1 results in the formation of iodide 2 with the addition of potassium iodide in acidic solution of pH 0.5. Complex 1 consists of a dimeric anionic unit [ZnCl2(1,3-H2pdta)ZnCl2]2− with strong intra-molecular hydrogen bonds [N1?O2 2.648(4); N1?O4 2.710(4) Å]. In neutral complex 2, an 1,3-pdta ligand links each monomeric unit [Zn(H2O)I2] to generate an infinite 1D chain, which extents into a 3D supramolecular structure by very strong inter-molecular hydrogen bonds the [O4?O2b 2.50 (1) Å, bx, y, z + 1]. 1 is soluble in water at room temperature, which is traced by 13C NMR experiment.  相似文献   

8.
Seven new organic-inorganic hybrid compounds containing inorganic polyoxometalates and trigonal organic ligand 2,4,6-tris-(3/4-pyridyl)-1,3,5-triazine (3/4-tpt), namely [Mo8O26M(Htpt)2(H2O)2]n (M = Zn (1), Co (2), Ni (3)), [Mo8O26Cu(Htpt)2(H2O)2]n·2nH2O (4), [Mo8O26(H2tpt)2]·6H2O (5), [Mn(Mo4O13)(4-tpt)2]n (6) and [Fe3(Mo4O15)(3-tpt)]n·nH2O (7), were synthesized hydrothermally and characterized by EA, IR, TG, and PXRD techniques. Single crystal X-ray structural analysis revealed that compounds 1-4 are 1-D coordination polymers constructed from [Mo8O26]4− cluster and [M(Htpt)2(H2O)2]4+ fragments. Compound 5 is an isolated cluster composed of [Mo8O26]4− anion and monodentate H2tpt2+ cation. 3-Tpt ligands in 1-5 are partially protonated and act as monodentate ligands. Octamolybdates adopt β- and γ-[Mo8O26]4− structural mode in compounds 1-4 and 5, respectively. In compound 6, each [Mo4O13]2− tetramer links four Mn(II) ions to form a 2-D wave-like polymeric layer. The 2-D [MnMo4O13] bimetallic layers are pillared by neutral 4-tpt bidentately to generate a 3-D metal-organic framework. Compound 7 is a 3-D coordination polymer constructed from 2-D [Fe3(Mo4O15)] bimetallic polymeric layer and pillared by neutral tridentate 3-tpt. These compounds are thermal stable under 250 °C. The compounds 1 and 5 display luminescence with emission maximum at 481 and 442 nm, respectively.  相似文献   

9.
The CYP74B subfamily of fatty acid hydroperoxide transforming cytochromes P450 includes the most common plant enzymes. All CYP74Bs studied yet except the CYP74B16 (flax divinyl ether synthase, LuDES) and the CYP74B33 (carrot allene oxide synthase, DcAOS) are 13-hydroperoxide lyases (HPLs, synonym: hemiacetal synthases). The results of present work demonstrate that additional products (except the HPL products) of fatty acid hydroperoxides conversion by the recombinant StHPL (CYP74B3, Solanum tuberosum), MsHPL (CYP74B4v1, Medicago sativa), and CsHPL (CYP74B6, Cucumis sativus) are epoxyalcohols. MsHPL, StHPL, and CsHPL converted the 13-hydroperoxides of linoleic (13-HPOD) and α-linolenic acids (13-HPOT) primarily to the chain cleavage products. The minor by-products of 13-HPOD and 13-HPOT conversions by these enzymes were the oxiranyl carbinols, 11-hydroxy-12,13-epoxy-9-octadecenoic and 11-hydroxy-12,13-epoxy-9,15-octadecadienoic acid. At the same time, all enzymes studied converted 9-hydroperoxides into corresponding oxiranyl carbinols with HPL by-products. Thus, the results showed the additional epoxyalcohol synthase activity of studied CYP74B enzymes. The 13-HPOD conversion reliably resulted in smaller yields of the HPL products and bigger yields of the epoxyalcohols compared to the 13-HPOT transformation. Overall, the results show the dualistic HPL/EAS behaviour of studied CYP74B enzymes, depending on hydroperoxide isomerism and unsaturation.  相似文献   

10.
New hydrogen-bonding assemblies were synthesized from the reaction of a metalloligand, [Cu(2,4-pydca)2]2− (LCu) (2,4-pydca = 2,4-pyridinedicarboxylate), with a FeII ion or an imidazole in an aqueous medium and crystallographically characterized. The obtained compounds, [Fe(H2O)6][Cu(2,4-pydca)2] (1) and [Cu(2,4-pydca)(imidazole)2] · 2H2O (2), have metalloligand dimer units, [Cu2(2,4-pydca)4]4− and [Cu2(2,4-pydca)2(imidazole)4], respectively, each of which assembles by π-π (1) and hydrogen-bonding (2) interactions to form 1-D metalloligand arrays. The 1-D metalloligand arrays are linked by rich hydrogen-bonding interactions via H2O molecules.  相似文献   

11.
The nickel arsenatotungstate K10[As2W19(H2O){Ni(H2O)}2O67]·18H2O (1) has been synthesized. Due to its instability in water, attempts to obtain crystals of 1 suitable for X-ray diffraction have failed. The stabilization of the [As2W19(H2O){Ni(H2O)}2O67]10− core has been reached by synthesizing the analogue mixed {CsK} salt. The crystal structure of Cs6K2[Ni(H2O)6][As2W19(H2O){Ni(H2O)}2O67]·17H2O (2) has been resolved. It consists of two [α-AsW9O33]9− sub-units linked via a belt containing a tungsten and two nickel cations. Comparison of infrared and electronic absorption spectroscopic data for 1 and 2 has confirmed the structure proposed for 1. The instability of 1 led us to investigate the behavior of 1 in water. UV-Vis spectroscopy revealed that the formation of this complex is a multi-step reaction. An intermediate, the complex K8[Ni(H2O)6]1.5[As2W19(H2O){K(H2O)}{Ni(H2O)4}O67]·21H2O (3), has been isolated and characterized by elemental analysis, UV-Vis and infrared spectroscopies, and X-ray diffraction. In 3, the two vacant sites of the [As2W19O67]14− anion are occupied by a nickel and a potassium, forming a {WNiK} belt. It follows that the stability of 2 in water is due to the large ionic radius of Cs+, which prevents the inclusion of the alkaline cation into the cavity of the [As2W19O67]14− anion. The complex 3 represents a unique example of a fully characterized intermediate leading to the formation of a sandwich-type polyoxometalate.  相似文献   

12.
The solid state structures of [Ni(1)2][NO3]2 · 2MeOH · 2H2O, [Fe(1)2][ClO4]2 · 2MeOH · 0.5H2O, [Ru(1)2][PF6]2 and [Ru(1)2][PF6][NO3] (1 = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine) are presented and the structural variation observed for the {M(1)2}2+ unit is discussed. Protonation of the pendant pyridine group in [Ru(1)2]2+ leads to the formation of a hydrogen-bonded, one-dimensional polymer [{Ru(1)(H1)}n]3n+ exemplifed by the solid-state structure of [{Ru(1)(H1)}{Fe(NCS)6} · 1.25H2O]n.  相似文献   

13.
《Inorganica chimica acta》1986,121(2):131-136
Reactions involving Bi(III) halides and 4,6- dimethylpyrimidine-2(1H)-thione (L) in HX solution result in the formation of [HL]3[BiX6]·2H2O (X=C1, Br) and [HL]3[Bi2I9]. These compounds together with the organic molecule in the form of the hydrochloride, (HLCl) were characterized by means of spectroscopic and thermogravimetric measurements. For HLCl·H2O (1) and [HL]3[BiCl6]·2H2O (2), X-ray structures were determined. In 1, which crystallizes in the space group Pca21, with four molecules in the cell, the structure consists of roughly planar protonated organic molecules stacked along the [100] axis and built up by hydrogen bonds involving chlorine atoms and water molecules. For 2, the space group is P21/n, Z=4, the structure contains [BiCl6]3− anions, protonated organic molecules stacked along the [010] axis and water molecules which form strong hydrogen bonds with the [BiCl6]3− anions. The final R indices are 0.0320 and 0.0465 for 1 and 2, respectively.  相似文献   

14.
Several new Cu-hippurate derivative-phenanthroline ternary complexes have been prepared. The X-ray structure of one of them, [Cu(hip)(phen)2]+·(hip) (2) (where hip is hippurate and phen is 1,10-phenanthroline) has been solved. The structure of this new compound shows important differences (3D-pattern) to other similar related complexes (2D-pattern). A study of the biological activity of [Cu(hip)(phen)2]+·(hip)·2H2O (2), [Cu(BGG)(phen)2]+·(BGG)·6H2O (3), [Cu(BIGG)2(phen)](H2O) (4) and [Cu(I-hip)(bpy)2]+·(I-hip)·3.5H2O (5) (where I-hip is ortho-iodohippurate, BGG corresponds to benzoylglycilglycine, and BIGG is ortho-iodobenzoylglycilglycine) is included and compared with the anti-proliferative activity of [Cu(I-hip)(phen)2]+·(I-hip)·7H2O (1) previously described, resulting in a greater cytotoxic activity of the compounds with 1,10-phenanthroline instead of those with 2,2′-bipyridyl, in the same way that removing iodine substitution or lengthening the peptidic chain diminishes the activity of compounds compared with 1. The presence of an ortho-iodine group and the direct bond between Ar-CO and glycine moieties yield to the best results.  相似文献   

15.
Feeding of [1-13C]- and [1,2-13C2]acetates to cultures of Aspergillus terreus gave labeled quadrone (1) and terrecyclic acid (2) which were analyzed by high-field 13C NMR. The patterns of enhancements and couplings were used not only in the analysis of the biosynthetic origins of the two metabolites, but also in the assignment of the 13C spectra themselves. The latter assignments were confirmed and further extended by extensive analysis by a combination of 1H COSY, 1H13C heteroCOSY, and difference NOE spectra of quadrone. The biosynthetic pathway was further probed by incorporation of [3,4-13C2]mevalonate, revealing that formation of 1 and 2 involves cleavage of the 3,4-bond of one of the three mevalonte precursors. The results are consistent with the formation of quadrone and terrecyclic acid by cyclization of farnesyl pyrophosphate (8).  相似文献   

16.
Reaction of [Mo2O2(μ-S)2(H2O)6]2+ with Mo(CO)6 or metallic Mo under hydrothermal conditions (140 °C, 4 M HCl) gives oxido-sulfido cluster aqua complex [Mo33-S)(μ-O)2(μ-S)(H2O)9]4+ (1). Similarly, [W33-S)(μ-O)2(μ-S)(H2O)9]4+ (2) is obtained from [W2O2(μ-S)2(H2O)6]2+ and W(CO)6. While reaction of [Mo2O2(μ-S)2(H2O)6]2+ with W(CO)6 mainly proceeds as simple reduction to give 1, [W2O2(μ-S)2(H2O)6]2+ with Mo(CO)6 produces new mixed-metal cluster [W2Mo(μ3-S)(μ-O)2(μ-S)(H2O)9]4+ (3) as main product. From solutions of 1 in HCl supramolecular adduct with cucurbit[6]uril (CB[6]) {[Mo3O2S2(H2O)6Cl3]2CB[6]}Cl2⋅18H2O (4) was isolated and structurally characterized. The aqua complexes were converted into acetylacetonates [M3O2S2(acac)3(py)3]PF6 (M3 = Mo3, W3, W2Mo; 5a-c), which were characterized by X-ray single crystal analysis, electrospray ionization mass spectrometry and 1H NMR spectroscopy. Crystal structure of (H5O2)(Me4N)4[W33-S)(μ2-S)(μ2-O)2(NCS)9] (6), obtained from 2, is also reported.  相似文献   

17.
Two racemic twin crystals containing left- and right-handed polyoxometalates (POMs) chains [Cu(en)2][Cu(en)2(H2O)]2 [SiW11CuO39] · 5H2O (D-1 and L-1; en = ethylenediamine) have been synthesized and structurally characterized. Both chiral compounds (D-1 and L-1) were constructed from the achiral building blocks [SiW11CuO39]6− and [Cu(en)2(H2O)n]2+ (n = 0 or 1). The structural chirality is induced by the [Cu(en)2(H2O)n]2+ units asymmetrically coordinated on the chainlike [SiW11CuO39]n6n polyoxoanions, leading to the whole molecules crystallized in the chiral P1 space group. The chiroptical activities of D-1 and L-1 were confirmed by the solid-state circular dichroism spectroscopy. Their electrochemical and electrocatalytic properties were also investigated.  相似文献   

18.
Three new borates containing nonmetal compounds, [C4H12N][BO4(C7H4O)2] (1), [C8H20N][BO4(C7H4O)2] (2) and [C6H18N2]0.5[BO4(C7H4O)2] (3) have been prepared, aiming at the formation of extended supramolecular networks with organic-inorganic hybrid materials of salicylic acid and boric acid. The corresponding compounds have been characterized by chemical and spectroscopic techniques. X-ray diffraction analyses of available single crystals revealed that the molecular structures of the three compounds have the same isolated [BO4(C7H4O)2] anion. The [BO4(C7H4O)2] anion with a distorted BO4 tetrahedron is formed by bidentate coordination of the B atom to two salicylic acid molecules via the O atoms of the central carboxyl and α-hydroxyl groups. The three compounds display violet luminescence with emission maxima around 365 nm.  相似文献   

19.
Three compounds based on the polyoxometalate building block [V12B18O60H6], (Na)10[(H2O)V12B18O60H6]·18H2O (1), Na8[Cu(en)2]2[V12B18O60H6](NO3)2·14.7H2O (2), Na7[Cu(en)2]2[V12B18O60H6](NO3)·15.5H2O (3), (en = ethylenediamine), have been hydrothermally synthesized and characterized by single-crystal X-ray diffraction analysis and TGA. Compound 1 consists of polyoxovanadium borate [V12B18O60H6] clusters which are surrounded by sodium countercations in octahedral sites, stabilized by electrostatic interactions with the oxygen atoms of both vanadium and boron centres. However, compounds 2 and 3 correspond to more complicated structures, constructed from the same polyoxometalate clusters, which are interconnected by [Cu(en)2]2+ moieties via the terminal oxygen atoms of the polyoxoanions, generating one-dimensional structures. The functionalization of this polyoxovanadium borate cluster has been obtained by the use of [Cu(en)2]2+ complex ions, thus demonstrating the capacity of the terminal oxygen atoms of the cluster to bind transition metal centres. The structural stability of the [V12B18O60H6] cluster permits the formation of functionalized polyoxometalate clusters, generating various crystalline lattices.  相似文献   

20.
The reaction of sodium cyclopentadienide (NaCp) with pentafluoropyridine gives Na[4-(C5F4N)C5H4] (PyFCpNa, 1) contaminated with starting NaCp from which pure 1 could be extracted with Et2O. Hydrolysis of 1 and subsequent crystallization gives pure Diels-Alder dimer 1,4-bis(tetrafluoro-4-pyridyl)tricyclo[5.2.1.02,6]deca-3,8-diene (2). The reactions of 1 with FeCl2, [MnBr(CO)5], CoBr2, [Ni(NH3)6]Cl2, [TiCl4(THF)2] and [CpTiCl3] cleanly affords the corresponding metallocenes [Fe(PyFCp)2] (3), [(PyFCp)Mn(CO)3] (5), [Co(PyFCp)2] (6), [Ni(PyFCp)2] (8), [(PyFCp)2TiCl2] (9) and [(PyFCp)(Cp)TiCl2] (10), respectively. Tetrafluoro-4-pyridyl-substituted ferrocene 3 and [Fe(PyFCp)(Cp)] (4) can be alternatively prepared by the reaction of the respective lithioferrocenes with C5F5N in THF. Air-oxidation of complex 6 affords the corresponding cobaltocenium salt [Co(PyFCp)2]PF6 (7). All prepared compounds were characterized spectroscopically and by elemental analysis. The crystal structures of 3-7 were determined, revealing extensive arene π?π stacking and C-H?F-C contacts. Electrochemical studies supported with the spectroscopic data of the prepared metallocene complexes evidenced strong electron-withdrawing nature of the tetrafluoro-4-pyridyl substituent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号