首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A model is presented which solves simultaneously for leaf-scale stomatal conductance, CO2 assimilation and the energy balance as a function of leaf position within canopies of well-watered vegetation. Fluxes and conductances were calculated separately for sunlit and shaded leaves. A linear dependence of photosynthetic capacity on leaf nitrogen content was assumed, while leaf nitrogen content and light intensity were assumed to decrease exponentially within canopies. Separate extinction coefficients were used for diffuse and direct beam radiation. An efficient Gaussian integration technique was used to compute fluxes and mean conductances for the canopy. The multilayer model synthesizes current knowledge of radiation penetration, leaf physiology and the physics of evaporation and provides insights into the response of whole canopies to multiple, interacting factors. The model was also used to explore sources of variation in the slopes of two simple parametric models (nitrogen- and light-use efficiency), and to set bounds on the magnitudes of the parameters. For canopies low in total N, daily assimilation rates are ~10% lower when leaf N is distributed uniformly than when the same total N is distributed according to the exponentially decreasing profile of absorbed radiation. However, gains are negligible for plants with high N concentrations. Canopy conductance, Gc should be calculated as Gc=Aσ(fslgsl+fshgsh), where Δ is leaf area index, fsi and fsh are the fractions of sunlit and shaded leaves at each level, and gsi and gsh are the corresponding stomatal conductances. Simple addition of conductances without this weighting causes errors in transpiration calculated using the ‘big-leaf’ version of the Penman-Monteith equation. Partitioning of available energy between sensible and latent heat is very responsive to the parameter describing the sensitivity of stomata to the atmospheric humidity deficit. This parameter also affects canopy conductance, but has a relatively small impact on canopy assimilation. Simple parametric models are useful for extrapolating understanding from small to large scales, but the complexity of real ecosystems is thus subsumed in unexplained variations in parameter values. Simulations with the multilayer model show that both nitrogen- and radiation-use efficiencies depend on plant nutritional status and the diffuse component of incident radiation, causing a 2- to 3-fold variation in these efficiencies.  相似文献   

2.
The variation in stomatal activity within the crowns ofAcer campestre, Carpinus betulus andQuercus cerris was measured by vapour exchange porometer on several summer days in an oak-hornbeam forest, in SW Slovakia, Czechoslovakia. Variation resulted from crown position in the forest stand and from leaf position within the canopy. The highest stomatal conductance was in sunlit sun leaves in the upper part of the canopy. Stomatal conductance decreased with increasing depth in the canopy. The steepest decrease was in the upper canopy, in the intermediate zone between fully sunlit and fully shaded leaves, and was caused by the decline in leaf irradiance and in stomatal density. In codominant trees, the conductance in shade leaves at the base of the crown was significantly lower than in the sun leaves at the top of the crown. In a dominant tree,Q. cerris, the differences in stomatal conductance were small and most frequently insignificant. Variation in incident light also determined the diurnal variation of stomatal conductance with respect to crown aspect. Differences between sun leaves on the east and west facing aspects of the overstory crown ofQ. cerris were demonstrated for several days.  相似文献   

3.
Modeling stomatal behavior is critical in research on land–atmosphere interactions and climate change. The most common model uses an existing relationship between photosynthesis and stomatal conductance. However, its parameters have been determined using infrequent and leaf‐scale gas‐exchange measurements and may not be representative of the whole canopy in time and space. In this study, we used a top‐down approach based on a double‐source canopy model and eddy flux measurements throughout the growing season. Using this approach, we quantified the canopy‐scale relationship between gross photosynthesis and stomatal conductance for 3 years and their relationships with leaf nitrogen content throughout each growing season above a paddy rice canopy in Japan. The canopy‐averaged stomatal conductance (gsc) increased with increasing gross photosynthesis per unit green leaf area (Ag), as was the case with leaf‐scale measurements, and 41–90% of its variation was explained by variations in Ag adjusted to account for the leaf‐to‐air vapor‐pressure deficit and CO2 concentration using the Leuning model. The slope (m) in this model (gsc versus the adjusted Ag) was almost constant within a 15‐day period, but changed seasonally. The m values determined using an ensemble dataset for two mid‐growing‐season 15‐day periods were 30.8 (SE = 0.5), 29.9 (SE = 0.7), and 29.9 (SE = 0.6) in 2004, 2005, and 2006, respectively; the overall mid‐season value was 30.3 and did not greatly differ among the 3 years. However, m appeared to be higher during the early and late growing seasons. The ontogenic changes in leaf nitrogen content strongly affected Ag and thus gsc. In addition, we have discussed the agronomic impacts of the interactions between leaf nitrogen content and gsc. Despite limitations in the observations and modeling, our canopy‐scale results emphasize the importance of continuous, season‐long estimates of stomatal model parameters for crops using top‐down approaches.  相似文献   

4.
This study quantified stomatal conductance in a CO2-fertilized warm-temperate forest. The study considered five items: (1) the characteristics of the diurnal and seasonal variation, (2) simultaneous measurements of canopy-scale fluxes of heat and CO2 and the normalized difference vegetation index (NDVI), (3) the stomatal conductance of sunlit and shaded leaves, (4) a stomatal conductance model, and (5) the effects of leaf age on stomatal conductance. Sampled plants included evergreen and deciduous species. Stomatal conductance, SPAD, and leaf nitrogen content were measured between March and December 2001. Sunlit leaves had the largest diurnal and seasonal variation in conductance in terms of both magnitude and variability. In contrast, shaded leaves had only low conductance and slight variation. Stomatal conductance increased sharply in new shooting leaves of Quercus serrata until reaching a maximum 2 months after full leaf expansion. The seasonal changes in the canopy-scale heat and CO2 fluxes were similar to the change in the canopy-scale NDVI of the upper-canopy plants. These seasonal changes were correlated with the leaf-level H2O/CO2 exchanges of upper-canopy plants, although these did not represent the stomatal conductance in fall completely. Seasonal variations in the leaf nitrogen content and SPAD were similar, except leaf foliation, until day 130 of the year, when the behaviors were completely the opposite. A Jarvis-type model was used to estimate the stomatal conductance. We modified it to include SPAD as a measure of leaf age. The seasonal variation in stomatal conductance was not as sensitive to SPAD, although estimates for evergreen species showed improvements.  相似文献   

5.
Thermal imaging is a potential tool for estimating plant temperature, which can be used as an indicator of stomatal closure and water deficit stress. In this study, a new method for processing and analysing thermal images was developed. By using remote sensing software, the information from thermal and visible images was combined, the images were classified to identify leaf area and sunlit and shaded parts of the canopy, and the temperature statistics for specific canopy components were calculated. The method was applied to data from a greenhouse water-stress experiment of Vicia faba L. and to field data for Vitis vinifera L. Vaseline-covered and water-sprayed plants were used as dry and wet references, respectively, and two thermal indices, based on temperature differences between the canopy and reference surfaces, were calculated for single Vicia faba plants. The thermal indices were compared with measured stomatal conductance. The temperature distributions of sunlit and shaded leaf area of Vitis vinifera canopies from natural rainfall and irrigation treatments were compared. The present method provides two major improvements compared with earlier methods for calculating thermal indices. First, it allows more accurate estimation of the indices, which are consequently more closely related to stomatal conductance. Second, it gives more accurate estimates of the temperature distribution of the shaded and sunlit parts of canopy, and, unlike the earlier methods, makes it possible to quantify the relationship between temperature variation and stomatal conductance.  相似文献   

6.
Summary The structural characteristics of a diverse array of Quercus coccifera canopies were assessed and related to measured and computed light attenuation, proportion of sunlit foliage, foliage temperatures, and photosynthesis and diffusive conductance behavior in different canopy layers. A canopy model incorporating all components of shortwave and longwave radiation, and the energy balance, conductance, and CO2 and H2O exchanges of all leaf layers was developed and compared with measurements of microclimate and gas exchange in canopies in four seasons of the year. In the denser canopies with a leaf area index (LAI) greater than 5, there is little sunlit foliage and the diffuse radiation (400–700 nm) is attenuated to 5% or less of the global radiation (400–700 nm) incident on the top of the canopy. Foliage of this species is nonrandomly distributed with respect to azimuth angle, and within each canopy layer, foliage azimuth and inclination angles are correlated. A detailed version of the model which computed radiation interception and photosynthetic light harvesting according to these nonrandom distributions indicated little difference in whole-canopy gas exchange from calculations of the normal model, which assumes random azimuth orientation. The contributions of different leaf layers to canopy gas exchange are not only a function of the canopy microclimate, but also the degree to which leaves in the lower layers of the canopy exhibit more shade-leaf characteristics, such as low photosynthetic and respiratory capacity and maximal conductance. On cloudless days, the majority of the foliage in a canopy of 5.4 LAI is shaded —70%–90% depending on the time of year. Yet, the shaded foliage under these conditions is calculated to contribute only about one-third of the canopy carbon gain. This contribution is about the same as that of the upper 13% of the canopy foliage. Computed annual whole-canopy carbon gain and water use are, respectively, 60% and 100% greater for a canopy of 5 LAI than for one of 2 LAI. Canopy water-use efficiency is correspondingly less for the canopy of 5 LAI than for that of 2 LAI, but most of this difference is apparent during the cool months of the year, when moisture is more abundant.  相似文献   

7.
Two radiative transfer canopy models, SAIL and the two-layer Markov-Chain Canopy Reflectance Model (MCRM), were coupled with in situ leaf optical properties to simulate canopy-level spectral band ratio vegetation indices with the focus on the photochemical reflectance index in a cornfield. In situ hyperspectral measurements were made at both leaf and canopy levels. Leaf optical properties were obtained from both sunlit and shaded leaves. Canopy reflectance was acquired for eight different relative azimuth angles (ψ) at three different view zenith angles (θv), and later used to validate model outputs. Field observations of PRI for sunlit leaves exhibited lower values than shaded leaves, indicating higher light stress. Canopy PRI expressed obvious sensitivity to viewing geometry, as a function of both θv and ψ. Overall, simulations from MCRM exhibited better agreements with in situ values than SAIL. When using only sunlit leaves as input, the MCRM-simulated PRI values showed satisfactory correlation and RMSE, as compared to in situ values. However, the performance of the MCRM model was significantly improved after defining a lower canopy layer comprised of shaded leaves beneath the upper sunlit leaf layer. Four other widely used band ratio vegetation indices were also studied and compared with the PRI results. MCRM simulations were able to generate satisfactory simulations for these other four indices when using only sunlit leaves as input; but unlike PRI, adding shaded leaves did not improve the performance of MCRM. These results support the hypothesis that the PRI is sensitive to physiological dynamics while the others detect static factors related to canopy structure. Sensitivity analysis was performed on MCRM in order to better understand the effects of structure related parameters on the PRI simulations. LAI showed the most significant impact on MCRM-simulated PRI among the parameters studied. This research shows the importance of hyperspectral and narrow band sensor studies, and especially the necessity of including the green wavelengths (e.g., 531 nm) on satellites proposing to monitor carbon dynamics of terrestrial ecosystems.  相似文献   

8.
More Productive Than Maize in the Midwest: How Does Miscanthus Do It?   总被引:1,自引:0,他引:1  
In the first side-by-side large-scale trials of these two C4 crops in the U.S. Corn Belt, Miscanthus (Miscanthus × giganteus) was 59% more productive than grain maize (Zea mays). Total productivity is the product of the total solar radiation incident per unit land area and the efficiencies of light interception (εi) and its conversion into aboveground biomass (εca). Averaged over two growing seasons, εca did not differ, but εi was 61% higher for Miscanthus, which developed a leaf canopy earlier and maintained it later. The diurnal course of photosynthesis was measured on sunlit and shaded leaves of each species on 26 dates. The daily integral of leaf-level photosynthetic CO2 uptake differed slightly when integrated across two growing seasons but was up to 60% higher in maize in mid-summer. The average leaf area of Miscanthus was double that of maize, with the result that calculated canopy photosynthesis was 44% higher in Miscanthus, corresponding closely to the biomass differences. To determine the basis of differences in mid-season leaf photosynthesis, light and CO2 responses were analyzed to determine in vivo biochemical limitations. Maize had a higher maximum velocity of phosphoenolpyruvate carboxylation, velocity of phosphoenolpyruvate regeneration, light saturated rate of photosynthesis, and higher maximum quantum efficiency of CO2 assimilation. These biochemical differences, however, were more than offset by the larger leaf area and its longer duration in Miscanthus. The results indicate that the full potential of C4 photosynthetic productivity is not achieved by modern temperate maize cultivars.  相似文献   

9.
本文根据Wang和BMdocchi(1989)最近提出的冠层辐射模型,进一步给出了一个模拟冠层光合作用速率和气孔传导率的模式.模式将冠层中每一层的叶面积分为向光叶、半影叶、和全遮荫叶三种,并分别计算其光合作用速率和气孔传导率。计算得到的光合速率廓线表明,在落叶阔叶林内,冠层下部的叶片常处于光照不足状态;半影效应使得透过林冠达于底部的辐射量增大,这对于林下植物的光合作用是有利的。 模式计算值与实测值之间的微弱差别应归因于纯辐射模型无法考虑湍流输送机制造成的CO_2传输和冠层底部耐荫性叶对于低光照的适应能力。  相似文献   

10.
We assessed the daily time‐courses of CO2 assimilation rate (A), leaf transpiration rate (E), stomatal conductance for water vapour (gs), leaf water potential ( Ψ w) and tree transpiration in a wet and a dry season for three late‐stage canopy rainforest tree species in French Guiana differing in leaf carbon isotope composition ( δ 13C). The lower sunlit leaf δ 13C values found in Virola surinamensis ( ? 29·9‰) and in Diplotropis purpurea ( ? 30·9‰), two light‐demanding species, as compared to Eperua falcata ( ? 28·6‰), a shade‐semi‐tolerant species, were clearly associated with higher maximum gs values of sunlit leaves in the two former species. These two species were also characterized by a high sensitivity of gs, sap flow density (Ju) and canopy conductance (gc) to seasonal soil drought, allowing maintenance of high midday Ψ w values in the dry season. The data for Diplotropis provided an original picture of increasing midday Ψ w with increasing soil drought. In Virola, stomata were extremely sensitive to seasonal soil drought, leading to a dramatic decrease in leaf and tree transpiration in the dry season, whereas midday Ψ w remained close to ? 0·3 MPa. The mechanisms underlying such an extremely high sensitivity of stomata to soil drought remain unknown. In Eperua, gs of sunlit leaves was non‐responsive to seasonal drought, whereas Ju and gc were lower in the dry season. This suggests a higher stomatal sensitivity to seasonal drought in shaded leaves than in sunlit ones in this species.  相似文献   

11.

Background and Aims

Water and nitrogen (N) are two limiting resources for biomass production of terrestrial vegetation. Water losses in transpiration (E) can be decreased by reducing leaf stomatal conductance (gs) at the expense of lowering CO2 uptake (A), resulting in increased water-use efficiency. However, with more N available, higher allocation of N to photosynthetic proteins improves A so that N-use efficiency is reduced when gs declines. Hence, a trade-off is expected between these two resource-use efficiencies. In this study it is hypothesized that when foliar concentration (N) varies on time scales much longer than gs, an explicit complementary relationship between the marginal water- and N-use efficiency emerges. Furthermore, a shift in this relationship is anticipated with increasing atmospheric CO2 concentration (ca).

Methods

Optimization theory is employed to quantify interactions between resource-use efficiencies under elevated ca and soil N amendments. The analyses are based on marginal water- and N-use efficiencies, λ = (∂A/∂gs)/(∂E/∂gs) and η = ∂A/∂N, respectively. The relationship between the two efficiencies and related variation in intercellular CO2 concentration (ci) were examined using A/ci curves and foliar N measured on Pinus taeda needles collected at various canopy locations at the Duke Forest Free Air CO2 Enrichment experiment (North Carolina, USA).

Key Results

Optimality theory allowed the definition of a novel, explicit relationship between two intrinsic leaf-scale properties where η is complementary to the square-root of λ. The data support the model predictions that elevated ca increased η and λ, and at given ca and needle age-class, the two quantities varied among needles in an approximately complementary manner.

Conclusions

The derived analytical expressions can be employed in scaling-up carbon, water and N fluxes from leaf to ecosystem, but also to derive transpiration estimates from those of η, and assist in predicting how increasing ca influences ecosystem water use.  相似文献   

12.
Canopy gaps express the time-integrated effects of tree failure and mortality as well as regrowth and succession in tropical forests. Quantifying the size and spatial distribution of canopy gaps is requisite to modeling forest functional processes ranging from carbon fluxes to species interactions and biological diversity. Using high-resolution airborne Light Detection and Ranging (LiDAR), we mapped and analyzed 5,877,937 static canopy gaps throughout 125,581 ha of lowland Amazonian forest in Peru. Our LiDAR sampling covered a wide range of forest physiognomies across contrasting geologic and topographic conditions, and on depositional floodplain and erosional terra firme substrates. We used the scaling exponent of the Zeta distribution (λ) as a metric to quantify and compare the negative relationship between canopy gap frequency and size across sites. Despite variable canopy height and forest type, values of λ were highly conservative (λ mean  = 1.83, s  = 0.09), and little variation was observed regionally among geologic substrates and forest types, or at the landscape level comparing depositional-floodplain and erosional terra firme landscapes. λ-values less than 2.0 indicate that these forests are subjected to large gaps that reset carbon stocks when they occur. Consistency of λ-values strongly suggests similarity in the mechanisms of canopy failure across a diverse array of lowland forests in southwestern Amazonia.  相似文献   

13.
This paper reviews and discusses strategies for the use of thermal imaging for studies of stomatal conductance in the field and compares techniques for image collection and analysis. Measurements were taken under a range of environmental conditions and on sunlit and shaded canopies to illustrate the variability of temperatures and derived stress indices. A simple procedure is presented for correcting for calibration drift within the images from the low-cost thermal imager used (SnapShot 225, Infrared Solutions, Inc.). The use of wet and dry reference surfaces as thresholds to eliminate the inclusion of non-leaf material in the analysis of canopy temperature is discussed. An index that is proportional to stomatal conductance was compared with stomatal measurements with a porometer. The advantages and disadvantages of a possible new approach to the use of thermal imagery for the detection of stomatal closure in grapevine canopies, based on an analysis of the temperature of shaded leaves, rather than sunlit leaves, are discussed. Evidence is presented that the temperature of reference surfaces exposed within the canopy can be affected by the canopy water status.  相似文献   

14.
Summary Kudzu occurs in a variety of habitats in the southeastern United States. It is most common in exposed, forest edge sites and road cuts where it forms an extensive ground canopy as well as a canopy overtopping nearby trees, but it can also be found in completely open fields and deeply shaded sites within a forest. Microclimate, stomatal conductance, leaf water potential and photosynthetic responses to light, temperature and humidity were measured in two contrasting microhabitats on Pueraria lobata, kudzu. Midsummer leaf temperatures and leaf-to-air water vapor deficits for plants growing in an exposed site were significantly greater than for those in a shaded site, exceeding 35° C and 50 mmol mol-1, respectively. Maximum stomatal conductance exceeded 400 mmol m-2 s-1 in exposed leaves during peak vegetative growth. Stomatal conductance in shaded leaves was approximately half the value measured in exposed leaves on any particular dya. Maximum photosynthetic carbon uptake was also higher in leaves growing in exposed sites compared to leaves in shaded sites, exceeding 18.7 and 14.0 mol m-2 s-1, respectively. Photosynthesis, stomatal conductance and intercellular CO2 concentration decreased dramatically in response to increasing water vapor deficit for leaves from both sites. However, transpiration showed an initial increase at intermediate water vapor deficits, leveling off or even decreasing at higher values. Leaf water potential demonstrated marked diurnal variation, but remained constant over a wide range of transpirational water fluxes. This latter feature, combined with microenvironmental modification through rapid leaf orientation and pronounced stomatal responses to water vapor deficits may represent important adaptive responses in the exploitation of a diverse array of habitats by kudzu.  相似文献   

15.
The relationship between stomatal conductance and capacity for assimilation was investigated in flacca, a mutant of tomato (Lycopersicon esculentum Mill.) that has abnormal stomatal behavior and low abscisic acid (ABA) content. The assimilation capacity, determined by measuring assimilation rate as a function of intercellular CO2 pressure, did not differ in leaves of flacca and its parent variety, Rheinlands Ruhm (RR). On the other hand, stomatal conductance of flacca leaves was greater than that of RR, and could be phenotypically reverted by spraying with 30 micromolar ABA. Stomatal conductance of flacca leaves was also reduced by increasing CO2 pressure, increasing leaf to air vapor pressure difference, and decreasing quantum flux, irrespective of ABA treatment.

The high conductance of flacca leaves resulted in a high intercellular CO2 pressure. This allowed greater discrimination against 13CO2, as evidenced by more negative δ 13C values for flacca as compared to RR. The δ 13C values of both flacca and RR plants as influenced by ABA treatment were consistent with predictions based on gas exchange measurements, using a recent model of discrimination.

  相似文献   

16.
We defined gas exchange phenology as the seasonality of the gas exchange characteristics of a forest canopy, and investigated how the gas exchange phenology could be directly detected from an eddy covariance (EC) dataset and its influence on the canopy fluxes within an evergreen Japanese cypress forest. For the detection of gas exchange phenology, we derived three bulk parameters of the extended big-leaf model (Kosugi et al. 2005) inversely from EC flux data over a 7-year period: surface conductance (g c), maximum rate of carboxylation of the “big leaf” (V CMAX), and intercellular CO2 concentration of the “big leaf” (C I). The relationship between g c and the vapor pressure deficit declined in winter and spring. The relationship between the daily ecosystem respiration and air temperature was greater in the spring than in the other seasons. The temperature dependence curve of V CMAX decreased substantially in the winter and was different from that of an evergreen broadleaved forest. A decrease in C I was occasionally coupled with the decrease in canopy gross primary production during April and August, indicating that stomatal closure was responsible for a decline in canopy photosynthesis. Gas exchange phenology should be quantified when understanding the determining factors of the seasonality of canopy fluxes at evergreen coniferous forests.  相似文献   

17.
Terminase, an enzyme encoded by the Nu1 and A genes of bacteriophage lambda, is crucial for packaging concatemeric DNA into virions. cosN, a 22-bp segment, is the site on the virus chromosome where terminase introduces staggered nicks to cut the concatemer to generate unit-length virion chromosomes. Although cosN is rotationally symmetric, mutations in cosN have asymmetric effects. The cosN G2C mutation (a G-to-C change at position 2) in the left half of cosN reduces the phage yield 10-fold, whereas the symmetric mutation cosN C11G, in the right half of cosN, does not affect the burst size. The reduction in phage yield caused by cosN G2C is correlated with a defect in cos cleavage. Three suppressors of the cosN G2C mutation, A-E515G, A-N509K, and A-R504C, have been isolated that restore the yield of λ cosN G2C to the wild-type level. The suppressors are missense mutations that alter amino acids located near an ATPase domain of gpA. λ A-E515G, A-N509K, and A-R504C phages, which are cosN+, also had wild-type burst sizes. In vitro cos cleavage experiments on cosN G2C C11G DNA showed that the rate of cleavage for A-E515G terminase is three- to fourfold higher than for wild-type terminase. The A-E515G mutation changes residue 515 of gpA from glutamic acid to glycine. Uncharged polar and hydrophobic residues at position 515 suppressed the growth defect of λ cosN G2C C11G. In contrast, basic (K, R) and acidic (E, D) residues at position 515 failed to suppress the growth defect of λ cosN G2C C11G. In a λ cosN+ background, all amino acids tested at position 515 were functional. These results suggest that A-E515G plays an indirect role in extending the specificity of the endonuclease activity of λ terminase.  相似文献   

18.
The spatial dispersion of photoelements within a vegetation canopy, quantified by the clumping index (CI), directly regulates the within-canopy light environment and photosynthesis rate, but is not commonly implemented in terrestrial biosphere models to estimate the ecosystem carbon cycle. A few global CI products have been developed recently with remote sensing measurements, making it possible to examine the global impacts of CI. This study deployed CI in the radiative transfer scheme of the Community Land Model version 5 (CLM5) and used the revised CLM5 to quantitatively evaluate the extent to which CI can affect canopy absorbed radiation and gross primary production (GPP), and for the first time, considering the uncertainty and seasonal variation of CI with multiple remote sensing products. Compared to the results without considering the CI impact, the revised CLM5 estimated that sunlit canopy absorbed up to 9%–15% and 23%–34% less direct and diffuse radiation, respectively, while shaded canopy absorbed 3%–18% more diffuse radiation across different biome types. The CI impacts on canopy light conditions included changes in canopy light absorption, and sunlit–shaded leaf area fraction related to nitrogen distribution and thus the maximum rate of Rubisco carboxylase activity (Vcmax), which together decreased photosynthesis in sunlit canopy by 5.9–7.2 PgC year−1 while enhanced photosynthesis by 6.9–8.2 PgC year−1 in shaded canopy. With higher light use efficiency of shaded leaves, shaded canopy increased photosynthesis compensated and exceeded the lost photosynthesis in sunlit canopy, resulting in 1.0 ± 0.12 PgC year−1 net increase in GPP. The uncertainty of GPP due to the different input CI datasets was much larger than that caused by CI seasonal variations, and was up to 50% of the magnitude of GPP interannual variations in the tropical regions. This study highlights the necessity of considering the impacts of CI and its uncertainty in terrestrial biosphere models.  相似文献   

19.
20.

Background and Aims

Global climate models predict decreases in leaf stomatal conductance and transpiration due to increases in atmospheric CO2. The consequences of these reductions are increases in soil moisture availability and continental scale run-off at decadal time-scales. Thus, a theory explaining the differential sensitivity of stomata to changing atmospheric CO2 and other environmental conditions must be identified. Here, these responses are investigated using optimality theory applied to stomatal conductance.

Methods

An analytical model for stomatal conductance is proposed based on: (a) Fickian mass transfer of CO2 and H2O through stomata; (b) a biochemical photosynthesis model that relates intercellular CO2 to net photosynthesis; and (c) a stomatal model based on optimization for maximizing carbon gains when water losses represent a cost. Comparisons between the optimization-based model and empirical relationships widely used in climate models were made using an extensive gas exchange dataset collected in a maturing pine (Pinus taeda) forest under ambient and enriched atmospheric CO2.

Key Results and Conclusion

In this interpretation, it is proposed that an individual leaf optimally and autonomously regulates stomatal opening on short-term (approx. 10-min time-scale) rather than on daily or longer time-scales. The derived equations are analytical with explicit expressions for conductance, photosynthesis and intercellular CO2, thereby making the approach useful for climate models. Using a gas exchange dataset collected in a pine forest, it is shown that (a) the cost of unit water loss λ (a measure of marginal water-use efficiency) increases with atmospheric CO2; (b) the new formulation correctly predicts the condition under which CO2-enriched atmosphere will cause increasing assimilation and decreasing stomatal conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号