共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Targeted Next-Generation Sequencing in Uyghur Families with Non-Syndromic Sensorineural Hearing Loss
Ying Chen Zhentao Wang Zhaoyan Wang Dongye Chen Yongchuan Chai Xiuhong Pang Lianhua Sun Xiaowen Wang Tao Yang Hao Wu 《PloS one》2015,10(5)
The mutation spectrum of deafness genes may vary in different ethnical groups. In this study, we investigated the genetic etiology of nonsyndromic deafness in four consanguineous and two multiplex Uyghur families in which mutations in common deafness genes GJB2, SLC26A4 and MT-RNR1 were excluded. Targeted next-generation sequencing of 97 deafness genes was performed in the probands of each family. Novel pathogenic mutations were identified in four probands including the p.L416R/p.A438T compound heterozygous mutations in TMC1, the homozygous p.V1880E mutation in MYO7A, c.1238delT frameshifting deletion in PCDH15 and c.9690+1G>A splice site mutation in MYO15A. Co-segregation of the mutations and the deafness were confirmed within each family by Sanger sequencing. No pathogenic mutations were identified in one multiplex family and one consanguineous family. Our study provided a useful piece of information for the genetic etiology of deafness in Uyghurs. 相似文献
3.
Physiology and Function of the Tight Junction 总被引:1,自引:0,他引:1
Understanding of tight junctions has evolved from their historical perception as inert solute barriers to recognition of their physiological and biochemical complexity. Many proteins are specifically localized to tight junctions, including cytoplasmic actin-binding proteins and adhesive transmembrane proteins. Among the latter are claudins, which are critical barrier proteins. Current information suggests that the paracellular barrier is most usefully modeled as having two physiologic components: a system of charge-selective small pores, 4 Å in radius, and a second pathway created by larger discontinuities in the barrier, lacking charge or size discrimination. The first pathway is influenced by claudin expression patterns and the second is likely controlled by different proteins and signals. Recent information on claudin function and disease-causing mutations have led to a more complete understanding of their role in barrier formation, but progress is impeded by lack of high resolution structural information.Tight junctions form the continuous intercellular barrier between epithelial cells, which is required to separate tissue spaces and regulate selective movement of solutes across the epithelium. Although there are now >40 proteins (Schneeberger and Lynch 2004; Yamazaki et al. 2008) identified within the tight junction, the claudin family of transmembrane proteins, named from the Latin claudere to close, has emerged as the most critical for defining tight junction selectivity. Here, we review evidence that claudins regulate permselectivity (including size, electrical resistance, and ionic charge preference) derived from studies in cultured epithelial cell models and the phenotypes of knockout mice and human mutants. We highlight the physiologic relevance of selectivity but only briefly discuss how it might be physiologically regulated and altered in pathologic situations. We develop the perspective that the barrier is usefully described as having two pathways: first a system of charge-selective claudin-based pores that are 4 Å in radius and a second pathway created by larger discontinuities in the barrier and that lacks charge and size discrimination. The two pathways may be controlled by different proteins and signals. This article focuses on claudins and physiology and is meant to be read as a companion to the article in this collection contributed by M. Furuse, which focuses on the molecular structure, proteins, and cell biology of the tight junction (Furuse 2009). The reader is also referred to comprehensive reviews on physiology (Diamond 1978; Powell 1981; Van Itallie and Anderson 2006), pathophysiology (Turner 2006; Schmitz et al. 1999; Nusrat et al. 2001), regulation (Tsukita et al. 2008; Gonzalez-Mariscal et al. 2008), and molecular components of the junction (Schneeberger and Lynch 2004; Krause et al. 2008; Gonzalez-Mariscal et al. 2003). 相似文献
4.
Borum Sagong Jeong-In Baek Se-Kyung Oh Kyung Jin Na Jae Woong Bae Soo Young Choi Ji Yun Jeong Jae Young Choi Sang-Heun Lee Kyu-Yup Lee Un-Kyung Kim 《PloS one》2013,8(3)
Hearing loss (HL) is a congenital disease with a high prevalence, and patients with hearing loss need early diagnosis for treatment and prevention. The GJB2, MT-RNR1, and SLC26A4 genes have been reported as common causative genes of hearing loss in the Korean population and some mutations of these genes are the most common mutations associated with hearing loss. Accordingly, we developed a method for the simultaneous detection of seven mutations (c.235delC of GJB2, c.439A>G, c.919-2A>G, c.1149+3A>G, c.1229C>T, c.2168A>G of SLC26A4, and m.1555A>G of the MT-RNR1 gene) using multiplex SNaPshot minisequencing to enable rapid diagnosis of hereditary hearing loss. This method was confirmed in patients with hearing loss and used for genetic diagnosis of controls with normal hearing and neonates. We found that 4.06% of individuals with normal hearing and 4.32% of neonates were heterozygous carriers. In addition, we detected that an individual is heterozygous for two different mutations of GJB2 and SLC26A4 gene, respectively and one normal hearing showing the heteroplasmy of m.1555A>G. These genotypes corresponded to those determined by direct sequencing. Overall, we successfully developed a robust and cost-effective diagnosis method that detects common causative mutations of hearing loss in the Korean population. This method will be possible to detect up to 40% causative mutations associated with prelingual HL in the Korean population and serve as a useful genetic technique for diagnosis of hearing loss for patients, carriers, neonates, and fetuses. 相似文献
5.
Nayoung K. D. Kim Tomohito Higashi Kyoung Yeul Lee Ah Reum Kim Shin-ichiro Kitajiri Min Young Kim Mun Young Chang Veronica Kim Seung-Ha Oh Dongsup Kim Mikio Furuse Woong-Yang Park Byung Yoon Choi 《PloS one》2015,10(2)
The immunoglobulin (Ig)-like domain containing receptor 1 (ILDR1) gene encodes angulin-2/ILDR1, a recently discovered tight junction protein, which forms tricellular tight junction (tTJ) structures with tricellulin and lipolysis-stimulated lipoprotein receptor (LSR) at tricellular contacts (TCs) in the inner ear. Previously reported recessive mutations within ILDR1 have been shown to cause severe to profound nonsyndromic sensorineural hearing loss (SNHL), DFNB42. Whole-exome sequencing of a Korean multiplex family segregating partial deafness identified a novel homozygous ILDR1 variant (p.P69H) within the Ig-like domain. To address the pathogenicity of p.P69H, the angulin-2/ILDR1 p.P69H variant protein, along with the previously reported pathogenic ILDR1 mutations, was expressed in angulin-1/LSR knockdown epithelial cells. Interestingly, partial mislocalization of the p.P69H variant protein and tricellulin at TCs was observed, in contrast to a severe mislocalization and complete failure of tricellulin recruitment of the other reported ILDR1 mutations. Additionally, three-dimensional protein modeling revealed that angulin-2/ILDR1 contributed to tTJ by forming a homo-trimer structure through its Ig-like domain, and the p.P69H variant was predicted to disturb homo-trimer formation. In this study, we propose a possible role of angulin-2/ILDR1 in tTJ formation in the inner ear and a wider audiologic phenotypic spectrum of DFNB42 caused by mutations within ILDR1. 相似文献
6.
Tahir Atik Huseyin Onay Ayca Aykut Guney Bademci Tayfun Kirazli Mustafa Tekin Ferda Ozkinay 《PloS one》2015,10(11)
Comprehensive genetic testing has the potential to become the standard of care for individuals with hearing loss. In this study, we investigated the genetic etiology of autosomal recessive nonsyndromic hearing loss (ARNSHL) in a Turkish cohort including individuals with cochlear implant, who had a pedigree suggestive of an autosomal recessive inheritance. A workflow including prescreening of GJB2 and a targeted next generation sequencing panel (Illumına TruSightTM Exome) covering 2761 genes that we briefly called as mendelian exome sequencing was used. This panel includes 102 deafness genes and a number of genes causing Mendelian disorders. Using this approach, we identified causative variants in 21 of 29 families. Three different GJB2 variants were present in seven families. Remaining 14 families had 15 different variants in other known NSHL genes (MYO7A, MYO15A, MARVELD2, TMIE, DFNB31, LOXHD1, GPSM2, TMC1, USH1G, CDH23). Of these variants, eight are novel. Mutation detection rate of our workflow is 72.4%, confirming the usefulness of targeted sequencing approach in NSHL. 相似文献
7.
Ching-Chyuan Su Shuan-Yow Li Yung-Chang Yen Jhih-Hao Nian Wei-Guang Liang Jiann-Jou Yang 《Cell biochemistry and biophysics》2013,66(2):277-286
Connexins (CXs), as a component of gap junction channel, are homologous four transmembrane-domain proteins, with numerous studies confirming their auditory functions. Among a cohort of patients having incurred non-syndromic hearing loss, we identified two novel missense mutations, p.R15G and p.L23H, in the GJC3 gene encoding CX30.2/CX31.3, as causally related to hearing loss in previous study. However, the functional alteration of CX30.2/CX31.3 caused by the mutant GJC3 gene remains unknown. In this study, we compared the intracellular distribution of mutant CX30.2/CX31.3 (p.R15G and p.L23H) with the wild-type (WT) protein in HeLa cells and the effect of the mutant protein had on those cells. Analytical results indicated that p.R15G and p.L23H mutant exhibited continuous staining along apposed cell membranes in the fluorescent localization assay, which is the same with the WT. Moreover, ATP release (hemichannel function) is less in HeLa cells carrying mutant GJC3 genes than those of WT expressing cells. We believe that although p.R15G and p.L23H mutants do not decrease the trafficking of CX proteins, mutations in GJC3 genes result in a loss of hemichannel function of CX30.2/CX31.3 protein, possibly causing hearing loss. Results of this study provide a novel molecular explanation for the role of GJC3 in hearing loss. 相似文献
8.
《Bioscience, biotechnology, and biochemistry》2013,77(8):1516-1523
Dietary glucosylceramide improves the skin barrier function. We used a microarray system to analyze the mRNA expression in SDS-treated dorsal skin of the hairless mouse to elucidate the molecular mechanisms involved. The transepidermal water loss of mouse skin was increased by the SDS treatment, this increase being significantly reduced by a prior oral administration of glucosylceramides. The microarray-evaluated mRNA expression ratio showed a statistically significant increase in the expression of genes related to the cornified envelope and tight junction formation when compared with all genes in the glucosylceramide-fed/SDS-treated mouse skin. We then examined the contribution of glucosylceramide metabolites to the tight junction formation of cultured keratinocytes. The SDS treatment of cultured keratinocytes significantly decreased the transepidermal electrical resistance, this decrease being significantly ameliorated in the presence of sphingosine or phytosphingosine, the major metabolites of glucosylceramide. These results suggest that an oral administration of glucosylceramide improved the skin barrier function by up-regulating genes associated with both the cornified envelope and tight junction formation. 相似文献
9.
10.
Jing Zheng Zhengbiao Ying Zhaoyang Cai Dongmei Sun Zheyun He Yinglong Gao Ting Zhang Yi Zhu Ye Chen Min-Xin Guan 《PloS one》2015,10(6)
Mutations in Gap Junction Beta 2 (GJB2) have been reported to be a major cause of non-syndromic hearing loss in many populations worldwide. The spectrums and frequencies of GJB2 variants vary substantially among different ethnic groups, and the genotypes among these populations remain poorly understood. In the present study, we carried out a systematic and extended mutational screening of GJB2 gene in 1067 Han Chinese subjects with non-syndromic hearing loss, and the resultant GJB2 variants were evaluated by phylogenetic, structural and bioinformatic analysis. A total of 25 (23 known and 2 novel) GJB2 variants were identified, including 6 frameshift mutations, 1 nonsense mutation, 16 missense mutations and 2 silent mutations. In this cohort, c.235delC is the most frequently observed pathogenic mutation. The phylogenetic, structural and bioinformatic analysis showed that 2 novel variants c.127G>T (p.V43L), c.293G>C (p.R98P) and 2 known variants c. 107T>C (p.L36P) and c.187G>T (p.V63L) are localized at highly conserved amino acids. In addition, these 4 mutations are absent in 203 healthy individuals, therefore, they are probably the most likely candidate pathogenic mutations. In addition, 66 (24 novel and 42 known) genotypes were identified, including 6 homozygotes, 20 compound heterozygotes, 18 single heterozygotes, 21 genotypes harboring only polymorphism(s) and the wild type genotype. Among these, 153 (14.34%) subjects were homozygous for pathogenic mutations, 63 (5.91%) were compound heterozygotes, and 157 (14.71%) carried single heterozygous mutation. Furthermore, 65.28% (141/216) of these cases with two pathogenic mutations exhibited profound hearing loss. These data suggested that mutations in GJB2 gene are responsible for approximately 34.96% of non-syndromic hearing loss in Han Chinese population from Zhejiang Province in eastern China. In addition, our results also strongly supported the idea that other factors such as alterations in regulatory regions, additional genes, and environmental factors may contribute to the clinical manifestation of deafness. 相似文献
11.
Blastocyst formation is essential for implantation and maintenance of pregnancy and is dependent on the expression and coordinated function of a series of proteins involved in establishing and maintaining the trans-trophectoderm ion gradient that enables blastocyst expansion. These consist of Na/K-ATPase, adherens junctions, tight junctions (TJ) and aquaporins (AQP). While their role in supporting blastocyst formation is established, the intracellular signaling pathways that coordinate their function is unclear. The p38 MAPK pathway plays a role in regulating these proteins in other cell types and is required for embryo development at the 8–16 cell stage, but its role has not been investigated in the blastocyst.
Hypothesis
p38 MAPK regulates blastocyst formation by regulating blastocyst formation gene expression and function.Methods
Embryos were cultured from the early blastocyst stage for 12 h or 24 h in the presence of a potent and specific p38 MAPK inhibitor, SB 220025. Blastocyst expansion, hatching, gene family expression and localization, TJ function and apoptosis levels were analyzed.Results
Inhibition of the p38 MAPK pathway reduced blastocyst expansion and hatching, increased tight junction permeability, affected TJP1 localization, reduced Aqp3 expression, and induced a significant increase in apoptosis.Conclusion
The p38 MAPK pathway coordinates the overall events that regulate blastocyst formation. 相似文献12.
Autosomal dominant non-syndromic hearing loss is highly heterogeneous, and eyes absent 4 (EYA4) is a disease-causing gene. Most EYA4 mutations founded in the Eya-homologous region, however, no deafness causative missense mutation in variable region of EYA4 have previously been found. In this study, we identified a pathogenic missense mutation located in the variable region of the EYA4 gene for the first time in a four-generation Chinese family with 57 members. Whole-exome sequencing (WES) was performed on samples from one unaffected and two affected individuals to systematically search for deafness susceptibility genes, and the candidate mutations and the co-segregation of the phenotype were verified by polymerase chain reaction amplification and by Sanger sequencing in all of the family members. Then, we identified a novel EYA4 mutation in exon 8, c.511G>C; p.G171R, which segregated with postlingual and progressive autosomal dominant sensorineural hearing loss (SNHL). This report is the first to describe a missense mutation in the variable region domain of the EYA4 gene, which is not highly conserved in many species, indicating that the potential unconserved role of 171G>R in human EYA4 function is extremely important. 相似文献
13.
该研究通过生物信息学方法,从桑树基因组中获得了8个花青素生物合成调控关键转录因子(MYB)候选基因,利用转录组数据及实时荧光定量PCR技术,分析了各基因在不同组织及果实发育过程中的表达。聚类分析结果显示,4个MYB基因与葡萄、水稻和玉米花青素调控相关MYB基因聚为一类,仅1个MYB基因与拟南芥、苹果花青素调控相关MYB基因聚为一类。转录组数据显示多数基因在雄花中高水平表达。实时荧光定量PCR结果表明,2个MYB基因(MnMYBJ和MnMYB4)在果实发育过程中持续下调,1个MYB基因(MnMYB330)在果实发育过程中显著上调,分别与花青素在桑椹中的积累成负相关和正相关关系。因此,桑树MYB基因家族对花青素的积累可能存在正调控与负调控两种机制。 相似文献
14.
Tia DiTommaso Denny L. Cottle Helen B. Pearson Holger Schlüter Pritinder Kaur Patrick O. Humbert Ian M. Smyth 《PLoS genetics》2014,10(10)
Keratins are cytoskeletal intermediate filament proteins that are increasingly being recognised for their diverse cellular functions. Here we report the consequences of germ line inactivation of Keratin 76 (Krt76) in mice. Homozygous disruption of this epidermally expressed gene causes neonatal skin flaking, hyperpigmentation, inflammation, impaired wound healing, and death prior to 12 weeks of age. We show that this phenotype is associated with functionally defective tight junctions that are characterised by mislocalization of the integral protein CLDN1. We further demonstrate that KRT76 interacts with CLDN1 and propose that this interaction is necessary to correctly position CLDN1 in tight junctions. The mislocalization of CLDN1 has been associated in various dermopathies, including the inflammatory disease, psoriasis. These observations establish a previously unknown connection between the intermediate filament cytoskeleton network and tight junctions and showcase Krt76 null mice as a possible model to study aberrant tight junction driven skin diseases. 相似文献
15.
植物种质群体遗传结构改变的测度 总被引:20,自引:1,他引:20
盖钧镒 《植物遗传资源学报》2005,6(1):1-8,14
本文旨在探讨植物种质资源保存中由于人为和自然缘故导致遗传结构改变的评价指标和评价方法.在介绍植物种质资源保存研究一些基本概念的基础上,归纳了测度种质库(收集品)遗传潜势的6种遗传多样性统计指标,包括同一变异层次的类型数、类型分布均衡度、遗传相似性与遗传距离、遗传方差与遗传变异系数、多元变异指数以及亲本系数.指出若无遗传丰富度相伴,单有遗传离散度并未提供遗传多样性的完整测度.探讨了人为条件导致植物种质资源遗传结构改变的遗传流失、环境胁迫所致植物种质资源遗传结构改变的遗传脆弱性和种子扩繁所引发的植物种质资源遗传结构改变的遗传漂变和遗传漂移等的统计指标.文末给出了自花授粉植物和异花授粉植物群体适宜样本容量研究的个例. 相似文献
16.
Kunjan Patel Arnaud P. Giese J. M. Grossheim Rashima S. Hegde Maria Delio Joy Samanich Saima Riazuddin Gregory I. Frolenkov Jinlu Cai Zubair M. Ahmed Bernice E. Morrow 《PloS one》2015,10(10)
Hearing loss is a complex disorder caused by both genetic and environmental factors. Previously, mutations in CIB2 have been identified as a common cause of genetic hearing loss in Pakistani and Turkish populations. Here we report a novel (c.556C>T; p.(Arg186Trp)) transition mutation in the CIB2 gene identified through whole exome sequencing (WES) in a Caribbean Hispanic family with non-syndromic hearing loss. CIB2 belongs to the family of calcium-and integrin-binding (CIB) proteins. The carboxy-termini of CIB proteins are associated with calcium binding and intracellular signaling. The p.(Arg186Trp) mutation is localized within predicted type II PDZ binding ligand at the carboxy terminus. Our ex vivo studies revealed that the mutation did not alter the interactions of CIB2 with Whirlin, nor its targeting to the tips of hair cell stereocilia. However, we found that the mutation disrupts inhibition of ATP-induced Ca2+ responses by CIB2 in a heterologous expression system. Our findings support p.(Arg186Trp) mutation as a cause for hearing loss in this Hispanic family. In addition, it further highlights the necessity of the calcium binding property of CIB2 for normal hearing. 相似文献
17.
Jie Qing Denise Yan Yuan Zhou Qiong Liu Weijing Wu Zian Xiao Yuyuan Liu Jia Liu Lilin Du Dinghua Xie Xue Zhong Liu 《PloS one》2014,9(10)
Inherited deafness has been shown to have high genetic heterogeneity. For many decades, linkage analysis and candidate gene approaches have been the main tools to elucidate the genetics of hearing loss. However, this associated study design is costly, time-consuming, and unsuitable for small families. This is mainly due to the inadequate numbers of available affected individuals, locus heterogeneity, and assortative mating. Exome sequencing has now become technically feasible and a cost-effective method for detection of disease variants underlying Mendelian disorders due to the recent advances in next-generation sequencing (NGS) technologies. In the present study, we have combined both the Deafness Gene Mutation Detection Array and exome sequencing to identify deafness causative variants in a large Chinese composite family with deaf by deaf mating. The simultaneous screening of the 9 common deafness mutations using the allele-specific PCR based universal array, resulted in the identification of the 1555A>G in the mitochondrial DNA (mtDNA) 12S rRNA in affected individuals in one branch of the family. We then subjected the mutation-negative cases to exome sequencing and identified novel causative variants in the MYH14 and WFS1 genes. This report confirms the effective use of a NGS technique to detect pathogenic mutations in affected individuals who were not candidates for classical genetic studies. 相似文献
18.
Giorgia Girotto Dragana Vuckovic Annalisa Buniello Beatriz Lorente-Cánovas Morag Lewis Paolo Gasparini Karen P. Steel 《PloS one》2014,9(1)
Considerable progress has been made in identifying deafness genes, but still little is known about the genetic basis of normal variation in hearing function. We recently carried out a Genome Wide Association Study (GWAS) of quantitative hearing traits in southern European populations and found several SNPs with suggestive but none with significant association. In the current study, we followed up these SNPs to investigate which of them might show a genuine association with auditory function using alternative approaches. Firstly, we generated a shortlist of 19 genes from the published GWAS results. Secondly, we carried out immunocytochemistry to examine expression of these 19 genes in the mouse inner ear. Twelve of them showed distinctive cochlear expression patterns. Four showed expression restricted to sensory hair cells (Csmd1, Arsg, Slc16a6 and Gabrg3), one only in marginal cells of the stria vascularis (Dclk1) while the others (Ptprd, Grm8, GlyBP, Evi5, Rimbp2, Ank2, Cdh13) in multiple cochlear cell types. In the third step, we tested these 12 genes for replication of association in an independent set of samples from the Caucasus and Central Asia. Nine out of them showed nominally significant association (p<0.05). In particular, 4 were replicated at the same SNP and with the same effect direction while the remaining 5 showed a significant association in a gene-based test. Finally, to look for genotype-phenotype relationship, the audiometric profiles of the three genotypes of the most strongly associated gene variants were analyzed. Seven out of the 9 replicated genes (CDH13, GRM8, ANK2, SLC16A6, ARSG, RIMBP2 and DCLK1) showed an audiometric pattern with differences between different genotypes further supporting their role in hearing function. These data demonstrate the usefulness of this multistep approach in providing new insights into the molecular basis of hearing and may suggest new targets for treatment and prevention of hearing impairment. 相似文献
19.
南京汉族群体肺癌易感性相关基因的研究 总被引:12,自引:0,他引:12
为了探讨南京汉族群体肺癌易感性相关基因,我们采用1:1病例对照研究方法,以PCR—RFLP技术检测了152对肺癌和健康对照的CYP1A1、CYP2E1、GSTM1、GSTT1、GSTP1、mEH和NQO1基因的基因型并分析其与肺癌的相关性。结果发现携带CYP1A1突变基因型(wt/mt和mt/mt)的个体明显增加患肺鳞癌的风险(OR=2.31,95%CI=1.23-4.36);GSTT1(-)基因型可使肺癌发生的风险增加2.06倍(95%CI=1.30-3.24);具有NQO1wt/mt与mt/mt基因型者发生肺癌的风险也有所增高(OR=1.66,95CI%=1.01-2.74); CYP1A1突变基因型与GSTT1缺失基因型、CYP1A1突变基因型与NQO1突变基因型对肺癌的发生存在协同作用,同时具有两种易感基因型的个体更容易发生肺癌。研究结果表明,CYP1A1、GSTT1、NQO1基因可能与南京汉族群体肺癌遗传易感性有关,基因型之间的联合检测更有助于高危人群的筛选。Abstract: To investigate the genes related to lung cancer susceptibility in Nanjing Han population, China, a 1:1 matched case-control study was performed in which 152 hospital controls were matched to the 152 original lung cancer cases. The polymorphisms of CYP1A1, CYP2E1, GSTM1, GSTT1, GSTP1, mEH and NQO1 genes were analyzed by PCR—RFLP assay. The results showed that the heterozygote and mutation homozygote genotypes of CYP1A1 were related to the risk of squamous cell carcinoma (OR=2.31, 95%CI=1.23-4.36). The risk of suffering from lung cancer was increased 2.06-fold in the individuals with GSTT1(-) genotype (95%CI= 1.30-3.24). The genotype of NQO1 wt/mt and mt/mt was found also to be associated with the risk of lung cancer (OR=1.66,95%CI=1.01-2.74). It was shown that there was no difference in the genotype distribution of CYP2E1, GSTM1, GSTP1 or mEH between cases and controls. Furthermore, stratified analysis suggested that the combination of genotypes of both CYP1A1 and GSTT1 enzymes had a synergistic action in risk of lung cancer (OR=3.41, 95%CI =1.77-6.55). Similarly, there was a cooperation between CYP1A1 mutation genotype and NQO1 mutation genotype (OR=2.45, 95%CI=1.13-5.31). This study suggested that CYP1A1, GSTT1 and gene NQO1 polymorphisms might be associated with the susceptibility to lung cancer in Nanjing Han population. Analysis of gene-gene interactions was helpful to identification of susceptible individuals and screening high-risk population to lung cancer. 相似文献
20.