首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Greenhouse experiments with two susceptible hosts of Meloidogyne incognita, a dwarf tomato and wheat, led to the identification of a soil in which the root-knot nematode population was reduced 5- to 16-fold compared to identical but pasteurized soil two months after infestation with 280 M. incognita J2/100 cm3 soil. This suppressive soil was subjected to various temperature, fumigation and dilution treatments, planted with tomato, and infested with 1,000 eggs of M. incognita/100 cm3 soil. Eight weeks after nematode infestation, distinct differences in nematode population densities were observed among the soil treatments, suggesting the suppressiveness had a biological nature. A fungal rRNA gene analysis (OFRG) performed on M. incognita egg masses collected at the end of the greenhouse experiments identified 11 fungal phylotypes, several of which exhibited associations with one or more of the nematode population density measurements (egg masses, eggs or J2). The phylotype containing rRNA genes with high sequence identity to Pochonia chlamydosporia exhibited the strongest negative associations. The negative correlation between the densities of the P. chlamydosporia genes and the nematodes was corroborated by an analysis using a P. chlamydosporia-selective qPCR assay.  相似文献   

2.
The goal of this study was to identify bacteria involved in soil suppressiveness against the plant-parasitic nematode Heterodera schachtii. Since H. schachtii cysts isolated from the suppressive soil can transfer this beneficial property to nonsuppressive soils, analysis of the cyst-associated microorganisms should lead to the identification of the causal organisms. Our experimental approach was to identify bacterial rRNA genes (rDNA) associated with H. schachtii cysts obtained from soil mixtures with various levels of suppressiveness. We hypothesized that we would be able to identify bacteria involved in the suppressiveness by correlating population shifts with differing levels of suppressiveness. Soil treatments containing different amounts of suppressive and fumigation-induced nonsuppressive soils exhibited various levels of suppressiveness after two nematode generations. The 10%-suppressive-soil treatment contained numbers of eggs per gram of soil similar to those of the 100%-suppressive-soil treatment, indicating that the suppressive factor(s) had been transferred. Bacterial rDNA associated with H. schachtii cysts were identified using a culture-independent method termed oligonucleotide fingerprinting of rRNA genes. Bacteria from five major taxonomic groups (Actinobacteria, Cytophaga-Flexibacter-Bacteroides, α-Proteobacteria, β-Proteobacteria, and γ-Proteobacteria) were identified. Three bacterial rDNA groups contained clones that were more prevalent in the highly suppressive soil treatments than in the less suppressive treatments, indicating a potential involvement in the H. schachtii suppressiveness. When these three groups were examined with specific PCR analyses performed on H. schachtii cysts that developed in soils treated with three biocidal compounds, only one bacterial rDNA group with moderate to high sequence identity to rDNA from several Rhizobium species and uncultured α-proteobacterial clones was consistently associated with the highly suppressive treatments. A quantitative PCR analysis confirmed the association of this Rhizobium-like rDNA group with the H. schachtii suppressiveness.  相似文献   

3.
This study was to determine whether Arthrobotrys flagrans, A. oligospora, and Meria coniospora would control the root-knot nematode Meloidogyne hapla on alfalfa and tomato. Alfalfa seeds were coated with a fungus-rye powder in 2% cellulose and were planted in infested soil. Three-week-old seedlings from seed treated with M. coniospora had 60% and 58% fewer galls in two experiments than did seedlings from untreated seeds. Numbers of J2 in the soil were not reduced. Plant growth did not improve. When seed of tomato were coated with M. coniospora and planted in M. hapla-infested soil, roots had 34% fewer galls and 47% fewer J2 in the soil at 28 days. After 56 days there was no reduction in J2 numbers. Plant growth did not improve. When roots of tomato transplants were dusted with M. coniospora fungus-rye powder or sprayed with a spore suspension before planting in M. hapla-infested soil, 42% and 35%, respectively, fewer galls developed in 28 days on treated roots than on roots not treated with fungus. The numbers of J2 extracted from roots or recovered from soil were not reduced, however, and plant growth did not improve.  相似文献   

4.
Hirsutella rhossiliensis and Verticillium chlamydosporium infected second-stage juveniles (J2) and eggs of Meloidogyne hapla, respectively, in petri dishes and in organic soil in pots planted to lettuce in the greenhouse. In vitro, H. rhossiliensis produced 78 to 124 spores/infected J2 of M. hapla. The number of J2 in roots of lettuce seedlings decreased exponentially with increasing numbers of vegetative colonies of H. rhossiliensis in the soil. At an infestation of 8 M. hapla eggs/cm³ soil, 1.9 colonies of H. rhossiliensis/cm³ soil were needed for a 50% decrease in J2 penetration of lettuce roots. Egg-mass colonization with V. chlamydosporium varied from 16% to 43% when soil was infested with 8 M. hapla eggs and treated with 5,000 or 10,000 chlamydospores of V. chlamydosporium/cm³ soil. This treatment resulted in fewer J2 entering roots of bioassay lettuce seedlings planted in the infested soils after harvesting the first lettuce plants 7 weeks after infestation with M. hapla. Hirsutella rhossiliensis (0 to 4.3 colonies/cm3 soil), V. chlamydosporium (500 to 10,000 chlamydospores/cm3 soil), or their combination, added to organic soils with 8 M. hapla eggs/cm³ soil, generally did not affect lettuce weight, root galling, or egg production of M. hapla. However, when lettuce was replanted in a mix of infested and uninfested soil (1:3 and 1:7, v:v), egg production was lower in soils with V. chlamydosporium than in soils without the fungus. Both fungi have potential to reduce the M. hapla population, but at densities below 8 eggs/cm³ soil.  相似文献   

5.
The goal of this study was to identify bacteria involved in soil suppressiveness against the plant-parasitic nematode Heterodera schachtii. Since H. schachtii cysts isolated from the suppressive soil can transfer this beneficial property to nonsuppressive soils, analysis of the cyst-associated microorganisms should lead to the identification of the causal organisms. Our experimental approach was to identify bacterial rRNA genes (rDNA) associated with H. schachtii cysts obtained from soil mixtures with various levels of suppressiveness. We hypothesized that we would be able to identify bacteria involved in the suppressiveness by correlating population shifts with differing levels of suppressiveness. Soil treatments containing different amounts of suppressive and fumigation-induced nonsuppressive soils exhibited various levels of suppressiveness after two nematode generations. The 10%-suppressive-soil treatment contained numbers of eggs per gram of soil similar to those of the 100%-suppressive-soil treatment, indicating that the suppressive factor(s) had been transferred. Bacterial rDNA associated with H. schachtii cysts were identified using a culture-independent method termed oligonucleotide fingerprinting of rRNA genes. Bacteria from five major taxonomic groups (Actinobacteria, Cytophaga-Flexibacter-Bacteroides, alpha-Proteobacteria, beta-Proteobacteria, and gamma-Proteobacteria) were identified. Three bacterial rDNA groups contained clones that were more prevalent in the highly suppressive soil treatments than in the less suppressive treatments, indicating a potential involvement in the H. schachtii suppressiveness. When these three groups were examined with specific PCR analyses performed on H. schachtii cysts that developed in soils treated with three biocidal compounds, only one bacterial rDNA group with moderate to high sequence identity to rDNA from several Rhizobium species and uncultured alpha-proteobacterial clones was consistently associated with the highly suppressive treatments. A quantitative PCR analysis confirmed the association of this Rhizobium-like rDNA group with the H. schachtii suppressiveness.  相似文献   

6.
Yin  Bei  Scupham  Alexandra J  Menge  John A.  Borneman  James 《Plant and Soil》2004,259(1-2):19-27
Understanding the mechanisms of suppressive soils should lead to the development of new strategies to manage pests and diseases. For suppressive soils that have a biological nature, one of the first steps in understanding them is to identify the organisms contributing to this phenomenon. Here we present a new approach for identifying microorganisms involved in soil suppressiveness. This strategy identifies microorganisms that fill a niche similar to that of the pathogen by utilizing substrate utilization assays in soil. To demonstrate this approach, we examined an avocado grove where a Phytophthora cinnamomi epidemic created soils in which the pathogen could not be detected with baiting techniques, a characteristic common to many soils with suppressiveness against P. cinnamomi. Substrate utilization assays were used to identify rRNA genes (rDNA) from bacteria that rapidly grew in response to amino acids known to attract P. cinnamomi zoospores. Six bacterial rDNA intergenic sequences were prevalent in the epidemic soils but uncommon in the non-epidemic soils. These sequences belonged to bacteria related to Bacillus mycoides, Renibacterium salmoninarum, and Streptococcus pneumoniae. We hypothesize that bacteria such as these, which respond to the same environmental cues that trigger root infection by the pathogen, will occupy a niche similar to that of the pathogen and contribute to suppressiveness through mechanisms such as nutrient competition and antibiosis.  相似文献   

7.
8.
Intensive farming in agriculture raises questions in relation to environmental sustainability and the widespread use of agrochemicals. In the present work, we compare the impact of organic and intensive farming, in connection to the soil suppressiveness against the soilborne pathogen Rhizoctonia solani. Three farms were considered in the study: two practicing organic cultivation (for 10 and 20 years, respectively), and one applying conventional cultivation. Soil suppressiveness was assessed in a greenhouse bioassay with lettuce (Lactuca sativa). Soil microbiome was characterized by combining BIOLOG EcoPlates? with high‐throughput sequencing of bacterial and eukaryotic rRNA gene markers. Suppressiveness towards R. solani was higher in organic than in conventional farming soil, but this property was lost after soil sterilization. Functional biodiversity was significantly higher in the two organic soils, and this parameter was predictive of the suppressiveness towards R. solani. According to our analyses, the overall microbial taxonomic diversity was unlinked to suppressiveness. A correlation analysis, carried out at the genus level for the most abundant bacterial and eukaryotic microbial taxa, showed that 58.7% of the genera had a statistically significant correlation with suppressiveness. In particular, the genera Flavisolibacter, Massilia, Pseudomonas, Ramlibacter, Rhizophus and the oligochaete worms belonging to the Enchytraeidae family positively correlated with the disease suppression.  相似文献   

9.
The long-term persistence and suppressiveness of Pasteuria penetrans against Meloidogyne arenaria race 1 were investigated in a formerly root-knot nematode suppressive site following 9 years of continuous cultivation of three treatments and 4 years of continuous peanut. The three treatments were two M. arenaria race 1 nonhost crops, bahiagrass (Paspalum notatum cv. Pensacola var. Tifton 9), rhizomal peanut (Arachis glabrata cv. Florigraze), and weed fallow. Two root-knot nematode susceptible weeds commonly observed in weed fallow plots were hairy indigo (Indigofera hirsuta) and alyce clover (Alysicarpus vaginalis). The percentage of J2 with endospores attached reached the highest level of 87% in 2000 in weed fallow, and 63% and 53% in 2002 in bahiagrass and rhizomal peanut, respectively. The percentage of endospore-filled females extracted from peanut roots grown in weed fallow plots increased from nondetectable in 1999 to 56% in 2002, whereas the percentages in bahiagrass and rhizomal peanut plots were 41% and 16%, respectively. Over 4 years, however, there was no strong evidence that endospores densities reached suppressive levels because peanut roots, pods, and pegs were heavily galled, and yields were suppressed. This might be attributed to the discovery of M. javanica infecting peanut in this field in early autumn 2001. A laboratory test confirmed that although the P. penetrans isolate specific to M. arenaria attached to M. javanica J2, no development occurred. In summary, P. penetrans increased on M. arenaria over a 4-year period, but apparently because of infection of M. javanica on peanut at the field site root-knot disease was not suppressed. This was confirmed by a suppressive soil test that showed a higher level of soil suppressiveness than occurred in the field (P ≤ 0.01).  相似文献   

10.
The northern root-knot nematode (Meloidogyne hapla) is a major pathogen of processing carrot in New York, significantly reducing marketable yield and profitability. Severely infected carrots are stubby, galled and forked and therefore unmarketable. In field microplot trials in 1996 and 1998, the incidence and severity of root-galling increased and the marketable yield of carrot decreased as the initial inoculum density of M. hapla was increased from 0 to 8 eggs/cm3 soil, in mineral or organic soils. The application of oxamyl at planting was effective against M. hapla and its damage to carrots grown in mineral and organic soils. Oxamyl application reduced root-galling severity and increased marketable yield. In commercial fields, the cost-effectiveness of oxamyl application was related to the level of soil infestation with M. hapla.  相似文献   

11.
Pasteuria penetrans isolate P-20 has been attributed as the cause of soil suppressiveness to peanut root-knot nematode in Florida. In this study, P. penetrans was transferred from a suppressive site to a new site and established by growing susceptible hosts to the peanut root-knot nematode during both summer and winter seasons. When two soil fumigants, 1,3-dichloropropene (1,3-D) and chloropicrin, were applied broadcast at the rate of 168 liters/ha and 263 kg/ha, respectively, the bacterium was not adversely affected by 1,3-D but was adversely affected by chloropicrin. In autumn 2005, after the harvest of the second peanut crop, the greatest number of J2 was recorded in the chloropicrin-treated plots, followed by the non-fumigated plots and 1,3-D-fumigated plots. The percentage J2 encumbered with endospores, endospores per J2 and percentage of P. penetrans-infected females were greatest in the non-fumigated plots, followed by 1,3-D- and chloropicrin-fumigated plots. This study demonstrates that P. penetrans can be transferred from a suppressive site to a new site and increased to suppressive densities against the peanut root-knot nematode.  相似文献   

12.
The objective of this experiment was to determine the effects of fenamiphos 15G and short-cycle potato (PO)-sweet potato (SP) grown continuously and in rotation with peanut (PE)-grain sorghum (GS) on yield, crop quality, and mixed nematode population densities of Meloidogyne arenaria, M. hapla, M. incognita, and Mesocriconema ornatum. Greater root-gall indices and damage by M. hapla and M. incognita occurred on potato than other crops. Most crop yields were higher and root-gall indices lower from fenamiphos-treated plots than untreated plots. The total yield of potato in the PO-SP and PO-SP-PE-GS sequences increased from 1983 to 1985 in plots infested with M. hapla or M. arenaria and M. incognita in combination and decreased in 1986 to 1987 when root-knot nematode populations shifted to M. incognita. The total yields of sweet potato in the PO-SP-PE-GS sequence were similar in 1983 and 1985, and declined each year in the PO-SP sequence as a consequence of M. incognita population density increase in the soil. Yield of peanut from soil infested with M. hapla increased 82% in fenamiphos-treated plots compared to untreated plots. Fenamiphos treatment increased yield of grain sorghum from 5% to 45% over untreated controls. The declining yields of potato and sweet potato observed with both the PO-SP and PO-SP-PE-GS sequences indicate that these crop systems should not be used longer than 3 years in soil infested with M. incognita, M. arenaria, or M. hapla. Under these conditions, these two cropping systems promote a population shift in favor of M. incognita, which is more damaging to potato and sweet potato than M. arenaria and M. hapla.  相似文献   

13.
Changes in population levels of Meloidogyne hapla, M. incognita, Pratylenchus coffeae, and P. penetrans were studied in 12 strawberry fields in the Dahu region of Taiwan. Ten potential rotation crops and two cultural practices were evaluated for their effect on nematode populations and influence on strawberry yield. Rotation with rice or taro and the cultural practice of flooding and bare fallowing for four months were found to reduce nematode soil populations to two or fewer nematodes per 100 ml soil. Average strawberry yields increased between 2.4% to 6.3% following taro compared to the bare fallow treatment. Corn suppressed M. incognita and M. hapla populations and resulted in an increased in strawberry yield compared to bare fallow. Other phytopathogens also present in these fields limited taro as the rotation choice for nematode management. Results of this research and economic analysis of the input requirements for various rotation crops, corn and bare fallow were recommended as the most appropriate rotation strategies for nematode management in strawberry in this region.  相似文献   

14.
Chitin, wheat mash, or brewery compost were incorporated into unfumigated and methyl bromide-fumigated organic soils placed in microplots formed from cylindrical drainage tiles (0.25 m-diam. clay tile). After 3 weeks, Meloidogyne hapla and cell or spore suspensions of Bacillus thuringiensis, Paecilomyces marquandii, and Streptomyces costaricanus were individually added to the soils of designated microplots. A B. thuringiensis + S. costaricanus combination was also tested. Lettuce seedlings, cv. Montello, were transplanted into the soils 3 to 4 days later. All the bacterial and fungal antagonists applied without a soil amendment, except the B. thuringiensis + S. costaricanus treatment, reduced root galling and increased lettuce head weight in the unfumigated organic soil, but not in the fumigated soil. All three amendments were also effective against M. hapla and reduced root galling in fumigated and unfumigated soils. Wheat mash amendment increased lettuce head weight in the unfumigated soil. In general, no antagonist × amendment interaction was detected. Soil populations of B. thuringiensis were maintained at ≥4.0 log10 colony-forming units/g organic soil during the first 14 days after planting. However, viable cells of B. thuringiensis were not detected after 49 days.  相似文献   

15.
Invasion of tomato (Lycopersicon esculentum L.) roots by combined and sequential inoculations of Meloidogyne hapla and a tomato population of Heterodera schachtii was affected more by soil temperature than by nematode competition. Maximum invasion of tomato roots, by M. hapla and H. schachtii occurred at 30 and 26 C, respectively. Female development and nematode reproduction (eggs per plant) of M. hapla was adversely affected by H. schachtii in combined inoculations of the two nematode species. Inhibition of M. hapla development and reproduction on tomato roots from combined nematode inoculations was more pronounced as soil temperature was increased over a range of 18-30 C and with prior inoculation of tomato with H. schachtii. M. hapla minimally affected H. schachtii female development, but there was significant reduction in the buildup of H. schachtii when M. hapla inoculation preceded that of H. schachtii by 20 days.  相似文献   

16.
Often research efforts that address both the practical concerns of managing Meloidogyne spp. and understanding their basic biology involve greenhouse reproduction assays. However, there is little consensus in regards to what parameters should be used to conduct greenhouse assays. The goal of this research was to evaluate how pot size, Meloidogyne spp. inoculation life stage, inoculation density, and time of assay impacted final reproduction factor (RF = initial nematode density/final nematode density) values. In experiments with M. incognita, the factor of the pot size mattered, with higher RF values in pots containing 500 g soil vs. pots with 100 g soil; larger pots containing 3,000 g soil did not have RF values different from the aforementioned sizes. Inoculating with M. incognita J2 resulted in RF values on average of >2 fold higher then when inoculating with eggs at comparable densities. Inoculation density of M. incognita did not have an impact on final M. incognita RF values. In experiments that considered time of assay, three species were evaluated: M. incognita, M. chitwoodi, and M. hapla. There was no difference in M. incognita RF values when assays were conducted for 5 wk, 6 wk, 7 wk, and 8 wk. However, a longer assay time resulted in higher RF values for M. hapla and M. chitwoodi, with at least a 7 week assay required. In conclusion, a moderate pot size (500 g of soil) inoculated with M. incognita J2 resulted in maximum RF values. The length of the assay required will depend on the Meloidogyne spp. in question, with longer duration assays required for M. hapla and M. chitwoodi than for M. incognita.  相似文献   

17.
Legumes of the genera Astragalus (milkvetch), Coronilla (crownvetch), Lathyrus (pea vine), Lotus (birdsfoot trefoil), Medicago (alfalfa), Melilotus (clover), Trifolium (clover), and Vicia (common vetch) were inoculated with a population of Melaidogyne chitwoodi from Utah or with one of three M. hapla populations from California, Utah, and Wyoming.Thirty-nine percent to 86% of alfalfa (M. scutellata) and 10% to 55% of red clover (T. pratense) plants survived inoculation with the nematode populations at a greenhouse temperature of 24 ± 3°C. All plants of the other legume species survived all nematode populations, except 4% of the white clover (T. repens) plants inoculated with the California M. hapla population. Entries were usually more susceptible to the M. hapla populations than to M. chitwoodi. Galling of host roots differed between nematode populations and species. Root-galling indices (1 = none, 6 = severely galled) ranged from 1 on pea vine inoculated with the California population of M. hapla to 6 on yellow sweet clover inoculated with the Wyoming population of M. hapla. The nematode reproductive factor (Rf = final nematode population/initial nematode population) ranged from 0 for all nematode populations on pea vine to 35 for the Wyoming population of M. hapla on alfalfa (M. sativa).  相似文献   

18.
The effects of Dactylella oviparasitica strain 50 applications on sugarbeet cyst nematode (Heterodera schachtii) population densities and plant weights were assessed in four agricultural soils. The fungus was added to methyl iodide-fumigated and nonfumigated portions of each soil. The soils were seeded with Swiss chard. Four weeks later, soils were infested with H. schachtii second-stage juveniles (J2). Approximately 1,487 degree-days after infestation, H. schachtii cyst, egg and J2 numbers and plant weights were assessed. In all four fumigated soils, D. oviparasitica reduced all H. schachtii population densities and increased most of the plant weights compared to the nonamended control soils. In two of the nonfumigated soils (10 and SC), D. oviparasitica reduced H. schachtii population densities and increased most plant weight values compared to the nonamended control soils. For the other two nonfumigated soils (44 and 48), which exhibited pre-existing levels of H. schachtii suppressiveness, fungal applications had relatively little impact on H. schachtii population densities and plant weights. The results from this study combined with those from previous investigations suggest that D. oviparasitica strain 50 could be an effective biological control agent.  相似文献   

19.
In the Pacific Northwest, alfalfa (Medicago sativa) is host to two species of root-knot nematodes, including race 2 of the Columbia root-knot nematode (Meloidogyne chitwoodi) and the northern root-knot nematode (Meloidogyne hapla). In addition to the damage caused to alfalfa itself by M. hapla, alfalfa’s host status to both species leaves large numbers of nematodes available to damage rotation crops, of which potato is the most important. A nematode-resistant alfalfa germplasm release, W12SR2W1, was challenged with both nematode species, to determine the correlation, if any, of resistance to nematode reproduction. Thirty genotypes were screened in replicated tests with M. chitwoodi race 2 or M. hapla, and the reproductive factor (RF) was calculated. The distribution of natural log-transformed RF values was skewed for both nematode species, but more particularly for M. chitwoodi race 2, where more than half the genotypes screened were non-hosts. Approximately 30 percent of genotypes were non-hosts or very poor hosts of M. hapla, but RF values for M. hapla on susceptible genotypes were generally much higher than RF values for genotypes susceptible to M. chitwoodi race 2. The Spearman rank correlation was positive (0.52) and significant (p-value = 0.003), indicating there is some relationship between resistance to these two species of root-knot nematode in alfalfa. However the relationship is not strong enough to suggest genetic loci for resistance are identical, or closely linked. Breeding for resistance or immunity will require screening with each species separately, or with different DNA markers if marker-assisted breeding is pursued. A number of genotypes were identified which are non-hosts to both species. These plants will be intercrossed to develop a non-host germplasm.  相似文献   

20.
Meloidogyne incognita-infected tomato seedlings were transplanted into sterilized soil or unsterilized soil collected from 20 California tomato fields to measure suppression caused by Paecilomyces lilacinus, Verticillium chlamydosporium, and other naturally occurring antagonists. Unsterilized soils Q, A, and H contained 35, 39, and 55% fewer M. incognita second-stage juveniles (J2) than did sterilized soil 1 month after infected tomato seedlings were transplanted to these soils and placed in a greenhouse. Three months after infected seedlings were transplanted to unsterilized or sterilized soil, unsterilized soils K, L, and Q had 97, 62, and 86% fewer J2 than the corresponding sterilized soils. Unsterilized soils of M. incognita-infected seedlings that were maintained 1 month in a greenhouse followed by 1 or 2 months of post-harvest incubation contained J2 numbers equal to, or greater than, numbers in the corresponding sterilized soil. The most suppressive of the unsterilized soils, K and Q, were not infested with V. chlamydosporium. Paecilomyces lilacinus and V. chlamydosporium increased in colony forming units in unsterilized soil of all bioassays, but they were not associated with lower numbers of J2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号